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Abstract

The concept of improving the timing behavior of a circuit by relocating registers is called retiming and was
first presented by Leiserson and Saxe. They showed that the problem of determining an equivalent minimum
area (total number of registers) circuit is polynomial-time solvable. In this work, we show how this approach
can be reapplied in the deep sub-micron domain when area-delay trade-offs and delay constraints are
considered. The main result is that the concavity of the trade-off function allows for casting this problem into
a classical minimum area retiming problem. The solution paves the way for retiming to be incorporated in
the architectural floorplanning stage of a design flow tailored for deep sub-micron circuits. Some examples
and a register-based interconnect strategy suitable to the developed retiming technique on global wires is
presented. © 2000 Elsevier Science B.V. All rights reserved.

1. Introduction
1.1. Managing design complexity

It is generally agreed within the design automation community that deep sub-micron (DSM)
semiconductor technology is forcing major discontinuities in traditional design methods. The
complexity and scale of integration, and the need for greater design productivity, as well as the
significant cost of design errors, promote a re-evaluation of design practice. The increasing raw
capacity and level of integration is enabling the realization of a complete system-on-chip (SoC)
design. In the near future, a single chip will host many different computational modules (such as
controllers, microprocessor, DSP’s, I/O units, analog circuitry, custom hardware), together with
a large amount of (possibly distributed) memory blocks. For these reasons, and to handle other
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complexity issues associated with DSM, top—down block-oriented design methodologies have been
advocated, as a means of reducing design complexity [1]. In such methodologies high-level design
and budgeting constraints play an important role where high-level information is used to externally
constrain the design of sub-blocks in terms of the three most important design metrics: perfor-
mance, area and power.

On the other hand, bottom-up approaches such as component-based design methodologies
have also been suggested, with chip-level assembly of pre-characterized intellectual property (IP)
modules with specified area-delay-power flexibilities as the goal. Proponents of these methods
claim that the required productivity objectives can be met through replication and reuse. Manag-
ing concurrency is an essential issue that has to be addressed.

It is conceivable that the best strategy would be to combine both of the aforementioned
approaches: combine pre-designed and characterized modules with different flexibilities along with
new modules that serve a special purpose in a given design. We can then deduce that design
methodologies using trade-offs such as between area, delay and power are becoming more
important. System-level integration tools would have to solve complex optimization problems that
involve meeting system level constraints provided by the environment while simultaneously
balancing different trade-offs and exploring the possibly huge design space.

In such an IP integration framework for DSM, interconnect delays will play an increasingly
important role. As system-on-chip (SoC) designs and faster clock speeds become a reality, timing
and interconnect delays will become more critical, while interconnect effects impact performance,
compromise signal integrity, and increase power dissipation. By 2006, according to NTRS,!
designs will contain over 100M transistors in a technology with feature sizes well below 0.1 pm
technology and with an increase in the number of I/O pins by a factor of 1.5 over present day
technologies. More devices on chip and closer packed interconnects with thinner aspect ratios will
mean more potential for simultaneous current surges, more coupling events that have the potential
of causing false switching or delayed signals, and increased difficulty in determining circuit timing
in the design flow. Signal delay and degradation in the DSM era can have a crippling effect on the
performance of designs. Signal preservation cannot be solved as an afterthought in the design
process. It must be dealt with at an early stage in the flow in order to minimize delay, and
accommodate parasitic effects. Increased clock frequencies, larger chip dimensions, and smaller
feature sizes (i.e. more device capacity) are making variable inter-module interconnect lengths, as
well as making interconnect delay at the global level dominant over that of devices [2]. While
system timing constraints are being met by increased clock speeds, functional timing constraints
(i.e. relative timing requirements between module inputs) are becoming harder to satisfy because of
this interconnect delay, and the variable wire lengths. Thus, when global wire delays start to exceed
the global clock period of the design, the delay on some global wires will become lower bounded

!'Such forecasts can be found in the National Technology Roadmap for Semiconductors, from 1997 published by
Semiconductor Industry Association. Another intersting source is the Draft Report on Physical Design from the same year,
and composed by the SRC Physical Design Task Force: Ray Abrishami, LSI Logic; Eli Chiprout, IBM Corporation, Mike
Jassowski, Intel Corporation; Bernd Koenemann, Logic Vision Corporation; ChiCheng Liaw, Lucent Technologies;
Sury Maturi, National Semiconductor; Ching-Hao Shaw, Texas Instruments Incorporated.
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by an integer number of clock cycles, based on a pre-selected system-level clock and an initial
placement of the modules. The challenge is to use these delay flexibilities along with flexibilities in
the implementation of the modules being integrated to improve the design (using the area, delay,
and power metrics) while satisfying the pre-specified performance constraints (such as I/O timing
constraints).

1.2. Application domain

The target application of this work? is the chip level assembly of IP blocks, each fewer than 100 k
gates in size, either as hard, firm, or soft macros. The design of such a system involves the placement
and wireplanning for performance [3] of 200-2000 modules whose average size is 50 k gates with
a dynamic range of module sizes of 1-500 k gates [2]. Modules can be of different types: hard
(layout), firm (gate level), or soft (register transfer level). Such a network has a large number of nets:
40-100 k with 10-100 pins per modules. This application domain puts limitations on which
techniques can be used to address performance and timing issues. In order to manage complexity,
components are abstracted where the designer may not be able to massage the function in order to
remedy interconnect delay or parasitic problems, but has to work with a given set of implementa-
tions with different trade-offs (such as area versus delay). Industry experts agree that IP integration
is the ideal technology for rapid SoC design development in a cost-efficient and fast time-to-market
manner. This technology has not been widely adopted yet (full-custom designs are still favored)
mostly because many issues still need to be resolved in terms of interfacing these components
together. One idea, now finding wide acceptance in the community, is to register-bound IPs, and
thus temporally decouple the inside of the block from the outside. This allows IP blocks to be
treated as “components” or “black-boxes” that are immune to glitches at the input, and do not
generate any at their outputs. It also supports “plug-and-play” capabilities during design where
system developers can substitute one black box IP by another, given that they have the same
functionality.

1.3. The target design flow

The system-level integration framework being advocated supports a one-level hierarchy of
design. This is considered as the minimum number of levels needed to support reuse, midway
between flat (very costly in terms of running time with low probability of convergence) and two- or
higher-level (that may generate solutions that are too far away from the global optimum). The
objective of this framework is the placement and routing of IP modules in order to integrate them
into a system as described above. It should be noted that this is a dramatically different problem
than the one typically addressed in current design frameworks.

The aim of this new design flow (which is based on [3]) is to minimize the number of design
iterations by supporting two critical guiding notions: planning at the early stages of the flow, and

2This is part of the activities of the NexSIS CAD Group, University of California at Berkeley, with principal
investigators: Robert K. Brayton and A. Richard Newton. (http://gigascale.org/nexsis).
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Fig. 1. Design flow.

incremental successive refinement during the integration process. One of the main characteristics of
this design flow is the integration of retiming with architectural floorplanning in order to have a
better handle on timing issues as required for DSM circuits (see Fig. 1).

The proposed flow has the following components:

Functional decomposition: This step provides an entry point for reused IPs, where register transfer
level descriptions may already be well characterized, and area-delay trade-offs are taken in as
important performance aids. The result is a set of modules with some area-delay trade-off
estimates.

Retiming: This step takes in lower bound timing constraints from placement, and creates upper
bound constraints. This is a path-based approach that reduces the area of modules whenever
possible. It can be made refinable and incremental, depending on the granularity of the representa-
tion.

Placement and routing: The initial placement and routing step can be any constructive approach
such as min-cut for example. It has to be fast, and should yield lower bounds on delays between
modules. Subsequent iterations take in upper bounds from retiming as flexibility on placement.
This step replaces modules resulting in better lower bound constraints. The main objective is to
reduce total chip area, where delays are reduced indirectly.

Logic synthesis: The main assumption is that the problem can be solved in a predictable manner
for a given size module. This step can be performed in parallel for the different modules and
provides better area-delay trade-off estimates for subsequent iterations.

Iterations: There are two iterations within this flow:

® Between placement/routing and retiming: This may iterate many times until no further improve-
ments are possible. This step is very similar to initial min-cut partitioning followed by low-
temperature simulated annealing.

® Between floorplanning/wireplanning and logic synthesis/layout: This involves only a few iterations,
where for each iteration, information about possible implementations for each module are
retained through area-delay trade-offs to guarantee convergence.

Note that unlike current design flows, iterations are made incremental, with information from
previous iterations kept around for use in subsequent iterations.
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1.4. Problem statement

Retiming is a technique for optimizing sequential circuits. It is a procedure that repositions the
registers in a circuit leaving the combinational portion unchanged. There are two extreme forms:

1. minimizing the clock period without regard to the number of registers in the final circuit or,
2. minimizing the number of registers in the final circuit with no constraints on the clock period

and many more practical variants in between. A common variant on that theme is that of
constrained minimum area retiming, that is retiming with the main objective of finding a circuit
with the minimum number of registers for a specified clock period. Over a decade and a half
have elapsed since Leiserson and Saxe first presented a graph-theoretic formulation to solve this
problem for single-clock edge-triggered sequential circuits, where proposed algorithms have
polynomial time complexity. Since then research efforts have focused on incorporating retiming in
a synthesis framework, addressing issues that arise due to retiming, and extending the domain of
circuits for which retiming can be applied. One motivation for these algorithms is to examine the
area-delay trade-off of the implementation. However, due to the high computational expense of
certain forms of this optimization, its use has been limited.

A new “retiming problem” comes up in the non-iterative (i.e. constructive) flow [3] for deep
sub-micron applications described above. The problem, which we call minimum area retiming with
trade-offs and constraints (Martc), can be formulated as follows (see Fig. 2):

Given: agraph G(V, E) (i.e. system-level view), where each node v (i.e. component) has a specified
area delay trade-off curve a,(d), which gives for each number of clock cycles d (i.e. the
number of registers retimed into the node v), the area required to perform the computa-
tion associated with the node v (i.e. many possible implementations with different
latencies). On each edge e(u, v) (i.e. wire), there is an integer k(e(u, v)), giving the required
number of clock cycles associated with that edge. This lower bound is provided by
a current placement of the components using optimally buffered wires. The lower bound
implies that it is impossible to send a signal over this wire in less clock cycles. To satisfy
the edge one needs to put at least k(e(u, v)) registers on it. On each edge e(u, v) there is an

area

_

delay

> k(e(u,v))
w(e(u,v))

Fig. 2. Problem statement.
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initial number w(e(u, v)) of registers given. These represent the initial latencies allowed
between u and v.

Problem: The optimization problem is to find a retiming of the graph G represented by the graph
G, such that:

minimize A(G,) =) a,(d)

v

subject to  w,(e(u, v)) = k(e(u, v))
2. Retiming
2.1. Leiserson—Saxe retiming algorithm

Retiming is a procedure that involves relocating registers across logic blocks to allow the circuit
to be operated under a faster clock. Leiserson and Saxe first proposed the technique, where the
algorithmic basis of retiming circuits with registers was described without specifically focusing on
implementation aspects. Retiming to achieve the minimum clock period is termed minimum period
retiming, while retiming to minimize the number of registers for a given target clock period is called
minimum area retiming.

A sequential circuit is represented by a directed graph G(V, E), where each vertex v corresponds
to a gate, and a directed edge e(u, v) represents a connection from the output of gate u to the input of
gate v, passing through zero, or more registers. Each edge has a weight w(e(u, v)), which is the initial
number of registers between the output of gate u and the input of gate v. Each vertex has a constant
delay d(v). A special vertex, the host, is introduced in the graph, with edges from it to all primary
inputs of the circuit, and edges from all primary outputs to the host. A retiming is a labeling of the
vertices r:V — Z, where Z is the set of integers. The retiming label r(v) for a vertex v represents the
number of registers moved from its output towards its inputs. The weight of an edge e(u, v) after
retiming, denoted by w,(e(u, v)) is given by

wieu, ) = wie,u,v) + H(v) — H{u).
One may define the weight w(p) of any path p originating at vertex u and terminating at vertex
v (represented as p:u — v)), as the sum of the weights on the edges of p, and its delay d(p) as the sum

of the delays of the vertices on p. A path with w(p) = 0 corresponds to a purely combinational path
with no registers on it. Therefore the clock period can be calculated as

c= Max d(p)
{plw(p)=0}
Another important concept is that of the W and D matrices which are defined as follows:

W(u,v) = Min w(p),

piu—v

D(u,v) = Max d(p).

{plw(p) =W (u,v)}
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The matrices are defined for all pairs of vertices (u, v) such that there exists a path p:u — v that does

not include the host vertex. W(u,v) denotes the minimum latency, in clock cycles, for the data

flowing from u to v and D(u,v) gives the maximum delay from u to v for the minimum latency.
Let the total number of registers of a circuit after retiming r be denoted by

S(G,) = Z w(e).
The minimum area retiming problem can be stated as minimizing S(G,), subject to timing
constraints. But, given the relationship between w,(e) and w(e), one can rewrite S(G,) as

S(G,) =Y. wi(e) =3 (Wle) + 1(v) — r(w) = S(G) + ., (IFI(v)] — [FO@))r(v),
where |FI(v)| and |FO(v)| are the number of fanins and fanouts of node v. The case where not all
register costs are the same can be modeled as

S(G,) = cost(e)w, Z cost(e ) + 1(v) — r(u)

= S(G) + ), < Y. costle) — . cost(e > v).

e:?7—-v ev—?

The minimum area retiming problem can then be formulated as the following linear program:
minimize Y (|FI(v)| — [FO((v)|) r(v)

subject to (1) — r(v) < w(e(u,v)),
ru) —r(v) < W(u,v) — 1,V,,: D(u,v) > c.

The meaning of the objective function and the constraints is as follows (the reader is referred to
Leiserson and Saxe [4] for details).

e The objective function represents the number of registers added to the retimed circuit in relation
to the original circuit.

e The first constraint ensures that the weight w,(e(u, v)) for each edge (i.e. the number of registers
between the output of gate u and the input of gate v) after retiming is non-negative.

e The second constraint ensures that after retiming, each path whose delay is larger than the clock
period has at least one register on it.

This formulation assumes that all registers fanout to exactly one gate. However, in physical circuits
registers can fanout to several gates. Thus registers at the fanouts of a gate can be combined or
shared. To accurately model the number of registers in a circuit one needs to take this sharing into
account. This can be accomplished by using the model given by Leiserson and Saxe [4], which
introduces for every gate u with multiple fanouts a mirror vertex m,. The objective function of the
linear program can also be modified as described there. It is also pointed out in that the dual of this
problem is an instance of a minimum cost network flow problem; hence the problem can be solved
efficiently as a minimum cost flow problem.
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2.2. Improved techniques

Although the algorithms mentioned above are polynomial in the circuit size, naive implementa-
tions suffer the worst-case (O(n*) time and ((n?) space) for all circuits. Recently, algorithms for
handling large VLSI circuits were introduced. In the following subsections, we list several such
algorithms.

Shenoy and Rudell [5] describe two major hurdles towards an efficient implementation of
minimum area retiming:

e computing the W and D matrices,
e solving the minimum cost circulation problem.

Their method takes advantage of on-the-fly computations and eliminates the need to completely
set up the problem (which can be huge in size) before starting to solve it. They point out that the
method proposed by Leiserson—-Saxe to compute the W and D matrices, is an algorithm with
O(V]?) time and O(|V|?) space complexity even in the best case, because it is based on solving the
all-pairs shortest-paths algorithm.3

The advantage in is the space savings obtained by an algorithm that computes in ¢(|V]) space
and generates a smaller set of constraints. One of the best methods known to solve the minimum
cost circulation problem is a group of cost-scaling techniques. A disadvantage of these techniques
is that the graph cannot change during the computations. Consequently, the period edges must be
determined before starting the cost-scaling algorithm. Shenoy and Rudell’s implementation is
based on the generalized cost-scaling framework of Goldberg and Tarjan and has time complexity
O(V||E|lg|V|lg|V|C) where C is one more than the number of registers in the circuit.

With the introduction of the Astra algorithm [6] an alternative view of retiming using the
equivalence between retiming and clock skew optimization was proposed. The Minaret algorithm
[7] uses the linear programming formulation and incorporates the Astra approach to reduce the
number of variables and constraints. The introduction of clock skew at a register has an effect
similar to moving it across module boundaries (gates). The effect of applying a positive clock skew
on a register is equivalent to moving it from the inputs to the outputs. Similarly, application of
a negative clock skew is equivalent to moving it from the output to the inputs. Hence both retiming
and clock skew are equivalent and can be used for retiming optimization of sequential circuits.
Since clock skew is a continuous optimization while retiming is discrete, the minimum clock period
achievable by clock skew may not be obtained by retiming. This relationship between skew and
retiming motivates the following two-phase solution to the minimum period retiming problem in
the Astra approach.

Phase A: The clock skew problem is solved to find the optimal values of the skew at each register,
with the objective of minimizing the clock period, or to satisfy a given feasible clock period. This
involves the (possibly repeated) application of the Bellman-Ford algorithm on a constraint graph.

3To be fair, in [4] the authors state that, for sparse graphs one could use an ¢(|V||E| + |V|?Ig|V|) time algorithm which
uses the fibonacci heap data structure due to Fredman and Tarjan, and this could dramatically improve the running time
although the space requirements would still be the same.
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Phase B: The skew solution is translated into a retiming by relocating registers across gates in an
attempt to set the values of all skews to be as close to zero as possible. The algorithm attempts to
reduce the magnitude of all registers’ skews by moving each positive skew register opposite to the
direction of signal propagation and each negative skew register in the direction of signal propaga-
tion.

After Phase B, all skews are forced to zero. This can cause the clock period to increase from
Phase A, but never by an amount larger than the greatest node delay in the network. The minimum
clock period using skews may not be achievable using retiming, since retiming allows cycle-
borrowing only in discrete amounts (corresponding to gate delays), while skew is a continuous
optimization. As in the Leiserson—Saxe approach, Minaret [ 7] also formulates the minimum area
retiming problem as a linear program. The Astra approach is utilized to obtain reliable bounds on
the variables in this linear program. These bounds are then used to reduce the problem size by
reducing both the number of variables and the number of constraints. By spending additional
computation time on the Astra runs, this method leads to significant reductions in the total
execution time of the minimum area retiming problem.

2.3. Minimum cost network flow

The minimum area retiming problem can be reduced to the minimum cost network flow problem
[4], by noting that the formulation presented earlier can be recast into a minimum cost flow
problem. One can regard each edge e(u, v) as a network flow arc having infinite capacity and cost
w(e(u, v)) per unit of flow. The dual of the linear programming problem given asks that one can
assign to each edge a non-negative flow f(e(u,v)) such that:

minimize ), w(e(u,v))f(e(u,v))

e(u,v)

subject to Y f(e) — >, f(e) = [FO@)| — |FI(v)|.

v—? ?7-v

Thus the lags #(v) in the minimum area retiming are the dual variables (potentials) for the optimal
flow f*(e), which most minimum cost flow algorithms compute. The dominant cost in solving the
minimum area retiming problem is solving the minimum cost flow problem, for which many
algorithms exist. Using the algorithm due to Orlin [8], the problem can be solved in
O(E|*lg|V| + |V||E|lg?|V]) time. Under the assumption that the largest number of registers on any
single edge in the circuit is at most polynomial in |V, the algorithm of Goldberg and Tarjan can
be used. More recent work, which is more relevant here, presents an algorithm for handling convex
costs [9]. In this work the authors present a method for extending the work of Orlin [8] to handle
convex costs while retaining the strong polynomial properties of the problem. Even though
the minimum cost flow problem is of interest in this problem, from a theoretical point of view,
the implementation of these algorithms is not very practical in terms of performance [5]. Only the
ideas of how to solve the convexity of the costs and the proofs that this can be done, as well as the
polynomial complexity proofs, are relevant here. In practice, better approaches need to be found to
implement the convex costs approach.
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3. Minimum area retiming with area-delay trade-offs and constraints
3.1. Transformation

Before casting the problem at hand into a minimum area retiming problem, we state some
assumptions:

1. The area-delay trade-off curves are monotone decreasing and convex: the slope of the curve
never gets steeper with increasing delay. Without this assumption the problem might be
N"P-hard, since the exploration of all possible combinations of trade-offs at the different nodes
seems to be required.

2. We assume that the wire delays considered are much larger than the delays at the nodes and the
clock period. Delays at the nodes are neglected. This seems to be a valid assumption in the DSM
regime [2,3].

3. The clock period is the time granularity in this problem. As clocking speeds increase, this fact
will become more valid.

We now transform the problem at hand into a minimum area retiming problem. The nodes are split
to form one edge, which can now contain registers. These will represent registers retimed into the
node in order to increase its delay but decrease its area. This problem matches closely the original
Leiserson-Saxe formulation of minimum area retiming (i.e. without clock constraints), except that
the function being optimized is area instead of the number of registers and is convex instead of
linear. Thus the mathematical programming problem is:

minimize A(G,) =) a.(w,(e(u,v)))

subject to  w,(e(u,v)) = wle(u,v)) + r(v) — r(u) = k(e(u, v))
= 1(u) — r(v) < wle(u, v)) — k(e(u, v)),

where a, represents the convex area-delay trade-off function for the node associated with that edge.
The constraint represents the transformed non-negativity (lower bound) constraint on the number
of registers on certain edges. Initially, registers can be positioned anywhere within the circuit.

Using the approach of Pinto and Shamir [9] for transforming piecewise-linear convex costs into
additional edges and vertices of linear costs and keeping in mind the duality of the two problems,
one can transform this problem into an exact minimum area retiming problem (see Fig. 3). This is
accomplished by splitting nodes in the original graph into two nodes connected by one edge, but
into several nodes with one edge for each line segment of the trade-off curve. The equation for the
total area can then be rewritten as

AG,) =} ac(wi(eu,v) = ). ac(wle(u,v)) + . ; slope(l) (r(v:) — r(ur))

e e

= AG) + Y le slope(l) (r(v;) — r(u;))

= A(G) + ). . (slope(v, — v) — slope(v — vy)) (v),
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Fig. 3. Transformation at the graph level.

where v, and v, are the predecessor and successor of v, respectively. Thus each linear piece is
converted to a corresponding arc with cost equal to its slope, and weight constrained by its
projected length (width) on the delay axis:

cost(e(u,v)) = slope(l),
0 < w(e(u,v)) < width(l).
In general, there are two possible types of constraints:
r(u) — r(v) < wle(u, v)) — wi(e(u, v)),
r(v) — r(u) < wyle(u, v)) — wle(u, v)),

where w; and w, denote the upper and lower bound on the weights, respectively. For created edges
w; = 0 while for original edge w, = 0.

Since it is guaranteed that registers on segments with lower cost (more negative slope) will be
preferred, the resulting optimal retiming will always be correct in terms of filling edges with bigger
area reductions first, due to the concavity of the area-delay trade-off curves.

Lemma 1. Given two consecutive segments, l; and l, (slope(ly) < slope(l,)) in the split node, then in
the minimum retiming solution it is always the case that |, is completely filled (w,(l{) = width(l,))
whenever 1, gets filled (w,.(I,) > 0).

Proof. Assume that a minimum solution such that the lemma is false (w,(l;) < width(l;) whenever
w,(l,) > 0). We know that the coefficient of the retiming function at internal nodes is negative
(slope(ly) — slope(l,) < 0) because the trade-off delay curve is convex. Since node retimings have
negative coefficients for the internal nodes of the split node one can move registers from [, to
Iy across a node v(r(v) is increased). This will reduce the cost of the solution even further (4(G,) is
decreased) because it corresponds to a positive retiming of the node v in between. This can be done
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[ area

Fig. 4. Transformation at the vertex level.

until the segment [, is filled completely (w,.(l{) = width(l{)) and no further improvements are
possible, proving that the given solution is not a minimum. [

Theorem 1. The vertex level transformation (see Fig. 4) is correct in the sense that a solution to the
linear program is a minimum area solution for the original problem.

Proof. The lemma shows that no further minimum area retiming is possible at the vertex level.
Thus no special care has to be taken in solving the linear program since the resulting solution is
guaranteed to be a minimum solution of the original problem. [

In the following, we turn the reader’s attention to the following important points about this
description method.

Granularity: As with classical retiming approaches, the view here is that the graph represents
a network of functional elements and globally clocked registers. The model is not concerned with
the level of complexity of the functional elements, so the abstraction level of the description can
control the granularity of the problem. This fact can be used to control the complexity and level of
optimization required in solving this problem.

Constraints: The constraints presented at each edge are independent and are set at the functional
decomposition phase of the IP integration flow. For added edges, they represent the different
possible ranges of implementations for a given module, while for original edges they represent the
lower bound constraints determined by placement of the modules. Note that it is possible to
describe modules whose implementation has a delay, which is greater than one global clock cycle,
and this is accomplished by having lower bound constraint on added edges used to represent
area-delay trade-offs of modules.

More general delay models: As described in [4] it is possible to extend the methods described in
this section to deal with functional elements in which the propagation delay through individual
functional elements are non-uniform. That work, with minor modifications, generalizes our
original circuit model to handle this situation, and shows how the retiming problem can be
reapplied to this more general case.
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3.2. The algorithm

The algorithm is a two-phase process. The first phase involves checking satisfiability of
constraints or deriving constraints if none are given. In the second phase, after constraints have
been handled, the minimization process begins, resulting in a minimum area retiming of the given
circuit.

Phase 1: Checking feasibility can be easily performed on the transformed graph as a constraint
problem. Constraints are given by

r(u) — r(v) < wie(u, v)) — wi(e(u,v)) = ry(u, v),
r(v) — r(u) < wyle(u,v)) — we(u,v)) = — r(u,v).

From these constraints we set up a weight matrix R where the entry R(u,v) represents the upper
bound r,(u,v) on the difference r(u) — r(v), while R(v,u) represents the lower bound r,(u, v). This
constraint matrix R is a difference bound matrix [10], where there is no need to specify the
tightness of the constraints (i.e. a flag in each entry of the matrix) since all are tight. Satisfiability of
given constraints can be determined using a classical all-pairs-shortest-path computation on this R.
In order to derive constraints, we apply an all-pairs-shortest-path approach to convert the R into
canonical form, which represents tight constraints on the retimings. We then derive upper and
lower bounds on the number of registers using the equations

wi(e(u, v)) = wle(u, v)) — ry(u,v),
wy(e(u, v)) = w(e(u, v)) — ri(u, v).

Phase 11: Now that the problem has been cast into a minimum area retiming problem without
cycle-time constraints, it can be solved using the linear programming approach originally sugges-
ted by Leiserson and Saxe [4] who did this through a minimum cost flow dual formulation, which
can be used to derive the optimal flow and then the optimal potential that directly translates into
retiming at the nodes. Using the improved techniques [5,7] discussed earlier, one can optimize the
space requirement and reduce the number of constraints and variables required, thus making the
problem more manageable. A relaxation-based is also possible, although it might be inefficient in
some cases. The information derived from the slacks computed in the first phase are then used to
decide to put the registers on the edges with the most negative cost, after which new slacks are
derived for the subgraphs, until the minimum area solution is reached.

The final algorithm has the following steps:

1. Consider the area-delay trade-off curve for each node in the original graph.
2. Split the node accordingly by representing each segment, where an edge corresponding to
a segment has

O a cost equal to slope of the segment,
O a lower and upper bound derived from the length of the segment on the time axis.

3. Solve the minimum area retiming of the resulting problem.
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4. Translate the solution into a retiming of the original graph. As described earlier, the construc-
tion will result in the correct retiming at the nodes and this can be attributed to the special form
of the node splitting and the convex piece-wise linear area-delay trade-off curves.

4. A simple example

We used already available capabilities in the retime package in SIS [11]. That package contains
an implementation of the two types of retiming using the Leiserson-Saxe approach described
earlier. The minimum area capabilities are relevant here. The necessary modifications are listed
below.*

building of the retiming graph was changed,

splitting of nodes to handle piece-wise linear area-delay trade-off segments was added,
data about weights and area-delay trade-off curve is externally specified and read in,

no register sharing is considered,

W and D matrix are not relevant in this formulation and so are not computed,

clocking constraints are not added to the constraints matrix because they are not relevant,
phase I: checking/deriving external timing constraints,

phase II: the resulting linear program is solved using the Simplex approach.

The example was chosen to show some of the aspects of the algorithm. The retime graph has 17
edges and eight nodes (the one first built by Sis from the original circuit). For convenience, the
area-delay trade-off curve was the same for all nodes, but this does not affect the performance or
correctness of the algorithm. Only the maximum number of segments of these curves affects the
complexity of the algorithm, since the number of constraints required to handle the splitting of
nodes is |E| + 2k|V|, where k is the maximum number of segments. The number of registers was not
changed from the original circuit specification. The example is an interesting case of retiming, and
shows what can happen during this process:

The results of retiming of this graph are:

e The register between G8 and G11 could not be moved because of the restrictions of correct
retiming, even though a possible decrease in area would result.

e The register before G12 was moved into G12 to minimize the area of that node. It may seem that
a combinational cycle between G12 and G13 has been introduced, but this is not so since there is
a delay within G12.

e The register in G12 was not moved into G13 and G15 even though it decreases area because of
correct retiming constraints.

4 A better implementation of this software package will be integrated into NexSIS, the new IP integration SoC
framework currently being developed at the University of California at Berkeley. Currently work is going on in creating
benchmarks for the SoC integration domain. In this section, the example to demonstrate the retiming part of the flow is
derived from 527 from the ISCAS89 benchmarks and was used in [7] (see Fig. 5).
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Gl11D=1.6,
A=2

GIl0D=1.6,
A4=2

Fig. 5. s27 retiming example.

e The register after G10 was moved back into it. It was not possible to move this register forward
into G11 because this results again in incorrect retiming.

Thus, the resulting circuit has minimum area within the constraints of the trade-off function and
correct retiming.

5. Interconnect strategy

Retiming [12] and placement techniques [3] will be able to satisfy delay constraints as long as
interconnect delay is within bounds and can be properly characterized and predicted. To this end
and to remedy the global wire delay problem, this section focuses on suggesting interconnect
solutions, when the registers retimed onto wires cannot be implemented by reassigning wires to
slower metal layers. We have devised a registered interconnect strategy for the IP integration
component-based design SoC domain [13]. This strategy is summarized here.

5.1. Pipelined IP interconnect (PIPE)

In DSM, global wires contribute significantly to the delay of a circuit and therefore need to be
“retimed” in order to satisfy the functional timing constraint requirements. The idea here is to
insert registers (i.e. pipelining) within the (register bounded) global interconnect wires in order to
reduce “perceived” delays thus permitting modules to meet constraints on the relative timing of
inputs. We propose to use registers that have the following characteristics:

e high performance,
e minimum area impact because of the large number of module pins, and
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e low clock loading (to minimize clock distribution problems), and
e low power consumption.

5.2. Circuit implementation

The focus of this section is the implementation aspects of the pipelined interconnect strategy, and
the exploration of the different implementation choices.

5.2.1. Driver/receiver

As stated earlier, the requirement here is for registers to be present at the boundaries of the IP
blocks. This is a desirable requirement as explained before (i.e. straightforward synchronous
integration), and can be easily satisfied by design. Therefore, in order to minimize crosstalk
effects and glitching, static (or pseudo-static) high-speed (edge-triggered) registers should be used
at the IP boundaries. In addition, the driver should be able to support the required fanout. These
are the guiding metrics for the driver/receiver design choices. We leave the choice of registers at the
IP boundaries to the designer and assume standard CMOS line drivers. We focus next on the
circuit implementation of the registers needed to support the proposed pipelined interconnect
strategy.

5.2.2. IP interconnect strategy implementation

True single phase clock (TSPC) latches are commonly used in high-performance digital systems
due to their simplicity and fast operation [14]. The advantages of this choice are: the single clock
phase, which avoids clock overlap problems, and the low clock loading. One can generalize the
above TSPC latch and recognize that there are four basic stages in TSPC latch or register design as
shown in Fig. 6 [15].

A p-latch consists of two p-stages while an n-latch consists of two n-stages. A precharged latch is
formed by a precharged stage followed by a non-precharged stage. A non-precharge latch is formed
by two non-precharge stages. Registers are formed by the combination of these latches. Using the

o * —d - g

—aL — g o
¢ o — —
P N P N
(a) Precharged (a) Non-precharged

Fig. 6. The basic four TSPC stages.
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TSPC basic stages shown earlier it is possible to devise several interconnect pipeline schemes [13].
These schemes can each be implemented as:

1. lumped: optimally buffered wire segments surrounded by registers, or
2. distributed: registers split up into the basic TSPC stages which replace the buffers.

The schemes can then be evaluated with or without coupling to account for crosstalk. Initial results
[13] show that these possible solutions provide a wide range of implementations that can
potentially be used in a trade-off optimization setting, just as was done in the case of modules.

6. Conclusions and future developments

In this work we showed how the minimum area retiming approach could be reapplied to
a problem arising in DSM, where area-delay trade-offs and delay constraints are considered. We
presented a framework to cast that problem into a classical minimum area retiming problem with
no cycle constraints. Results show the correctness of this approach, but in cases where the
area-delay trade-off has many segments, the number of constraints may have to be reduced using
available methods. Our initial implementation in SIS has not addressed efficiency issues, just
feasibility. However, we should be able to apply many of the techniques in the literature used to
make retiming efficient. This will be left to the implementation currently being developed, to be
incorporated in the NexSIS framework.
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