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Abstract

Simulation and Modelling Techniques for Noise in Radio Frequency Integrated

Circuits

by

Amit Mehrotra

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Alberto L Sangiovanni-Vincentelli, Chair

In high speed communications and signal processing applications, random electri-

cal noise that emanates from devices has a direct impact on critical high level specifications,

for instance, system bit error rate or signal to noise ratio. Hence, predicting noise in RF

systems at the design stage is extremely important. Additionally, with the growing com-

plexity of modern RF systems, a flat transistor-level noise analysis for the entire system

is becoming increasingly difficult. Hence accurate modelling at the component level and

behavioural level simulation techniques are also becoming increasingly important. In this

work, we concentrate on developing noise simulation techniques and mathematically accu-

rate noise models at the component level. These models will also enable behavioural level

noise analysis of large RF systems.

The difference between our approach of performing noise analysis for RF circuits

and the traditional techniques is that we first concentrate on the noise analysis for oscillators

instead of non-oscillatory circuits. As a first step, we develop a new quantitative description

of the dynamics of stable nonlinear oscillators in presence of deterministic perturbations.

Unlike previous such attempts, this description is not limited to two-dimensional system of

equations and does not make any assumptions about the type of nonlinearity. By consider-

ing stochastic perturbations in a stochastic differential calculus setting, we obtain a correct

mathematical characterization of the noisy oscillator output. We show that the oscillator

output is the sum of two stochastic processes: a large signal stochastic process with Brow-

nian motion phase deviation and a small “amplitude” noise process. We further show that
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the response of the noisy oscillator is asymptotically wide-sense stationary with Lorentzian

power spectral density. We also show that the second order statistics of this output are

characterized by a single scalar constant. We present efficient numerical techniques both

in time domain and in frequency domain for computing this constant. This approach also

determines the relative contribution of the device noise sources to phase noise, which is very

useful for oscillator design.

This new way of characterizing the oscillator output has a far-reaching impact on

the noise analysis methodology for nonautonomous circuits, which we also investigate. We

develop noise analysis techniques for nonautonomous circuits that are driven by a large

single-tone periodic signal with phase noise. We formulate this problem as a stochastic

differential equation and solve it in presence of white noise sources. We show that the

output of a nonlinear nonautonomous circuit, in presence of input signal phase noise which

has Brownian motion phase deviation, is asymptotically stationary. We also show that the

Lorentzian spectrum of the input signal and the characteristics of the Brownian motion

input phase deviation process are preserved at the output. We further show that the input

signal phase noise contributes an additional wide-band amplitude noise term that appears

as a white noise source modulated by the time derivative of the steady state response.

We also extend this analysis to circuits that are driven by more than one large

periodic signal that are corrupted by phase noise. We show that, similar to the one tone

case, the output of a nonautonomous circuit driven by two or more large tones is also

asymptotically stationary. We show that phase noise of each input signal contributes one

additional white noise source that is modulated by derivatives of the steady state response.

These models for autonomous and nonautonomous components of RF circuits will

enable one to perform nonlinear noise simulation at the behavioural level for large RF

systems. These models can also be used for behavioural level performance optimization

and constraint generation for the RF components.

Professor Alberto L Sangiovanni-Vincentelli
Dissertation Committee Chair
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Chapter 1

Introduction

With the explosive growth of the communication market in the past few years,

mobile personal communication devices have become extremely popular. The primary de-

sign effort in this area has been to lower the cost and power dissipation of these systems.

Lower power dissipation directly translates into longer battery life, which is very critical

for such applications. Another area of interest is to design systems that can conform to

multiple standards. This gives rise to interesting challenges in terms of designing different

components in this system and the design of entire system itself. Understanding the im-

pact of electronic devices and the underlying process technology limitations on the design

of components and the overall system is an important aspect of the design process. These

systems are popularly known as radio frequency (RF) or infrared (IR) systems depending

on the frequency of operation.

Radio frequency normally refers to the range of frequencies at which the signal is

transmitted and received in such a system. Modern RF systems typically operate in 900

MHz to 2.4 GHz frequency range. For IR systems the frequency range is much higher.

Design of a complex circuit operating at such frequencies is a challenging problem. In this

thesis we address the problem of predicting the performance of RF systems in the presence

of noise. By noise we mean any undesired signal that corrupts the signal of interest. Noise

performance in such systems needs to be predicted both at the individual component level

and also at the system level. In this work we address the problem of predicting noise and

developing noise models at the component level which can be used in a system level noise

simulation technique. We begin by discussing the architecture of a typical present day RF

system and also discuss what a future RF system is predicted to look like. We indicate
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Figure 1.1: Block diagram of an RF transceiver front-end

some of the challenges that are present in designing a complex, multi-standard RF system

at very high frequency ranges. We then motivate the problem of performing noise analysis

in such systems, both at the component level and at the system level. We also provide a

brief outline of this thesis.

1.1 Architecture of an RF Front End

The block diagram of the front end of an RF system is given in Figure 1.1 [GM95].

The front end consists of both the transmitter and the receiver part of the RF system. An

input signal from the antenna is first filtered using a band-pass filter to reject any out-

of-band noise. This signal, which is typically very small (few tens of microwatts to few

milliwatts) is amplified by a low noise amplifier (LNA) which typically provides a power

gain of about 10dB. This also reduces the noise contribution from subsequent mixing and

amplification stages of the receiver. Let the frequency of this received signal be denoted by

fRF . The RF signal is frequency-shifted to base band before information can be retrieved

from the signal. This frequency-shifting, or downconversion typically happens in more
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than one stage. This is due to the fact that the frequency of the received signal is of the

order of few gigahertz whereas the base band signal has bandwidth of a few kilohertz which

makes downconversion in one stage very expensive. Input RF signal is mixed with a large

local oscillator signal of frequency fLO and gets downconverted to a fixed intermediate

frequency signal fIF where fIF = |fRF − fLO|. This allows channel selection filtering and

gain control at lower frequencies where high quality factor (Q) filters and variable gain

amplifiers can be realized economically [FM99]. By varying the frequency of the local

oscillator signal, channels at different frequency band can be downconverted to the same

intermediate frequency. By the very nature of the process of downconversion, input signals

of frequency 2fLO − fRF , called the image frequency, also get downconverted to the same

intermediate frequency. Hence the RF mixer is preceded by a band-pass filter, called the

image-reject filter, which rejects the signals at the image frequency. This is usually a

ceramic filter which is implemented off chip. Since the LNA and the RF mixer operate

at RF frequencies, they are implemented on a separate chip using Gallium Arsenide or

specialized high speed bipolar technology.

The intermediate frequency signal is amplified and filtered to remove any signal

outside the desired band. Since the intermediate frequency of a typical RF system is fixed,

the IF filter need not be tunable and hence can be implemented with an extremely sharp

cutoff. Surface acoustic wave (SAW) filters are typically used for this purpose. The filtered

signal is mixed with the IF local oscillator signal and both the in-phase and quadrature

components of the signal get downconverted to base band. These are filtered using a low

pass filter to remove any undesired high frequency signal which would be folded to base

band during the subsequent sampling and digitization. The intermediate frequency range is

in few tens of megahertz and typically these circuits are implemented in standard BiCMOS

or CMOS technology.

In the transmit path, the in-phase and quadrature signals are upconverted to

RF frequency using a transmit phase lock loop (PLL). This signal is amplified using a

power amplifier before it drives the antenna. Due to power levels required and frequency

of operation, the upconversion mixer and the power amplifier are implemented on separate

chips using Gallium Arsenide or specialized high speed bipolar technology.

This architecture usually is implemented in four or five different chips which use

several different technologies, ranging from Gallium Arsenide and high speed bipolar to

digital CMOS technology. It also consists of some off chip ceramic and SAW filters. This
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increases the power consumption and cost of the overall system. Every time an RF signal

is driven off chip, the output stage needs to drive the impedance of the lines on a PC board

which is typically 50Ω. This incurs extra power dissipation. Hence to increase battery life,

the trend in current RF designs is to minimize the number of times high frequency signals

need to be driven off chip. This is achieved by integrating more and more components

at radio and intermediate frequency of both the transmitter and the receiver on the same

silicon die. For designing RF systems which can be used for multiple standards, it is

also desirable to digitize the signal at as high a frequency as possible and perform IF

downconversion and other signal processing steps in the digital domain. With scaling of

digital CMOS technology, the digital portions of RF circuits are getting faster, which also

enables intermediate frequency operations to be performed in the digital domain. The block

diagram of a future, highly integrated RF transceiver is shown in Figure 1.2 [GM95]. In

such an architecture, the number of off chip elements is very small. The main objective

is to replace the functions traditionally implemented by high performance, high-Q discrete

components with integrated on-chip solutions [RON+98]. For instance, noise and image

rejection is performed using active components and channel-select synthesizer is realized

using on-chip active and passive components.

A direct consequence of this high integration is that the number of active and

passive devices, not just in the RF portion of the system, but also the signal path is

increasing. Unlike the digital portion of the system, which can be automatically synthesized

using digital synthesis techniques, the RF portion is still designed manually. The increasing

number of active and passive devices in this portion causes a dramatic increase in the

complexity of the design process and RF front end design is becoming more and more of a

bottleneck in the design of the overall communication system. Moreover, high integration

typically results in components with inferior performance as compared to their discrete

counterparts. For instance, on-chip VCOs which are used in the channel-select synthesizer

have much inferior phase noise performance compared to a VCO with high Q off-chip passive

elements [ROC+97]. This further exacerbates the design process complexity and leaves little

room for over-design.

To enable ease of design at the component level, efficient simulation techniques at

the transistor level are required which can effectively handle large circuits with a number

of devices operating in their strong nonlinear region. Additionally, in the initial stage of

design, transistor level description of the entire system may not be available. Hence compact
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Figure 1.2: Future high integration RF front-end

models of various components, along with behavioural level simulation techniques which use

these models, are required. These enable a system designer to quickly evaluate different

architectures and choose the one that is best suited for the current set of specifications. The

models should therefore be complete, so as to capture all the important effects which have

an impact on system performance, and compact so that the behavioural level simulation

algorithm does not become excessively slow.

Behavioural level simulation must be able to capture all significant interactions

between different components of the system so that the sensitivity of overall system perfor-

mance to specifications of a particular component performance can be accurately predicted.

More importantly, the change required in the specifications of other components of the

system, in order to maintain the overall system performance when the specification of one

component is changed, must also be predicted accurately. This enables a system designer

to investigate various design trade-offs at the behavioural level in a more systematic and

meaningful manner. Even at the later stage of a design, when the transistor level netlist

for the entire RF system might be available, it is prudent to extract these models from the

transistor level description of various components and use a behavioural level simulation
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technique using these models.

1.2 Motivation

One of the reasons why RF front-end design is a bottleneck is that noise perfor-

mance is a very important part of high level specifications of an RF transceiver. Unlike

digital circuits where noise is a second order effect, noise in RF circuits directly affects high

level system performance such as signal to noise ratio (SNR) or the overall bit error rate

(BER). Noise also affects how the system SNR degrades in presence of a large adjacent

channel blocker signal. In the transmit path, it affects how much noise power the system is

leaking into adjacent channels [Pat96].

Roughly speaking noise refers to any unwanted change in signals in a circuit. For

instance, in a digital circuit, noise refers to any deviation of a signal from a logic zero (which

typically is 0V) or a logic one (which typically is the supply voltage VDD). In an RF circuit,

noise refers to any unwanted signal coupled into the circuit as well as unwanted signals

generated by the devices themselves.

1.2.1 Noise Sources in RF Transceiver

In a highly integrated transceiver, switching signals from digital portions of the

circuit can couple into sensitive RF circuit nodes and directly degrade the overall signal

to noise ratio. This coupling can happen through power supply lines as well as substrate.

However, careful design and layout techniques can minimize the effect of this coupling. By

ensuring separate power supply and ground for digital and RF portions of the system, using

a large bypass capacitance to remove any unwanted high frequency signals on the supply

network and by making the resistance of power supply to the RF portions very low, switching

noise coupled through the power supply can be minimized. Several techniques have been

proposed in the literature to minimize the amount of coupling from substrate [Gha96].

These usually involve using grounded guard rings around the sensitive RF circuits. For

different substrates, different topologies of guard rings can be used to minimize the amount

of signal that is coupled through the substrate [Gha96].

Another type of noise that has a detrimental effect on the system performance is

electrical noise which is intrinsic to electronic devices that make up the circuit itself. The
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discrete nature of charge transfer gives rise to shot noise whenever the current crosses a

potential barrier. Shot noise is modelled as a zero mean stochastic process.

For a general one-dimensional stochastic process X(t), the autocorrelation, as a

function of two time variables t and τ , is given by

Rxx(t, τ) = E [X(t)X(t+ τ)]

If Rxx(t, τ) is independent of t, the stochastic process is called wide-sense stationary. For a

wide-sense stationary stochastic process, the power spectral density, i.e., power Sxx(ω) in a

unit frequency range at an angular frequency ω is given by

Sxx(ω) =
∫ ∞
−∞

Rxx(τ) exp(−ωτ)dτ

The spectral density of shot noise is given by

Sxx,shot(ω) = 2qId (1.1)

where q is the electron charge and Id is the current. The power spectral density is constant

for a very large frequency range (few tens of gigahertz) and hence can be modelled as

a scaled white noise source with power spectral density given in (1.1). White noise is a

mathematical idealization of this stochastic process. A white noise process is one which has

unit power spectral density for all frequencies.

Nyquist theorem shows that the short circuit current in a resistor, which is in

thermodynamic equilibrium, is a zero mean stochastic process. The power spectral density

of the output noise, called thermal noise is given by

Sxx,thermal(ω) = 4kTR (1.2)

where k is the Boltzmann’s constant, T is equilibrium temperature and R is the resistance.

The power spectral density is constant for a very large frequency range before dropping to

zero. Hence this noise process is also modelled as a scaled white noise process.

Another source of noise in devices is the flicker or 1/f noise. The physical origin

of this noise is due to random capture and release of charge by surface impurities. Due

to this noise generation method, noise power spectral density is typically much larger for

lower frequencies than higher frequencies. The noise power spectral density for this process

is given by

Sxx,flicker(ω) ∝ 1
ωb

(1.3)
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where b is 1 for typical flicker noise processes and ω is the angular frequency. This type

of noise represents a problem for noise modelling since the integrated noise power in any

finite band of frequencies around ω = 0 is infinite which is clearly unphysical [Wei93]. A

popular model of flicker noise is a stochastic process whose spectral density flattens out

at a finite and small frequency. This can be modelled as a series of filtered white noise

processes [MK82]. We will postpone further discussion of modelling flicker noise for now.

In this work we address the problem of analyzing the effect of electrical noise in RF

circuits. Specifically we address the problem of noise analysis in presence of additive white

noise sources. We use the mathematical idealization of a white noise source and formulate

the problem of noise analysis in nonlinear RF circuits as solutions of appropriate stochastic

differential equations. Given the specific nature of these stochastic differential equations,

we enumerate various properties of the solutions and develop compact and accurate math-

ematical models for RF components.

1.2.2 Autonomous versus Nonautonomous Circuits

For the purpose of noise analysis, we divide components present in a typical RF

system into two broad categories, autonomous and nonautonomous circuits. Autonomous

circuits are those which have no inputs (except for DC power supplies) and produce a (usu-

ally) periodic output. Typical examples of such circuits in an RF front-end are oscillators.

Nonautonomous circuits on the other hand will produce an interesting output only if sup-

plied with one or more inputs. Typical examples of such components in an RF front end

are mixers, filters, amplifiers etc.

Noise in autonomous oscillators is an important topic of investigation in itself.

A noiseless oscillator is supposed to provide a perfect time reference to the circuit. How-

ever since the oscillator output is corrupted by noise, it is not perfectly periodic and it

is said to have phase noise. Predicting phase noise in oscillators which are present in an

RF system is extremely important because it critically affects the overall system noise per-

formance [Nez98, Tom98, HKK98, VV83, Rob82]. Consider the frequency plot shown in

Figure 1.3. The desired channel that needs to be down-converted is showed as a solid ar-

row. Due to phase noise in the local oscillator, the oscillator output spectrum is not a

delta function, but is spread around the frequency of oscillation. If an adjacent channel

is also transmitting at the same time (shown as broken arrow), since the noisy oscillator
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Figure 1.3: Effect of oscillator phase noise on blocking performance

output power spectral density is nonzero at this adjacent channel frequency, the adjacent

channel also gets down-converted to base band, thereby directly degrading the overall SNR

of the system. Similarly in the transmit path, phase noise in local oscillator output causes

the upconverted signal to have finite energy outside the desired channel. Hence predicting

oscillator output noise is an important problem in its own right.

1.3 Thesis Overview

This dissertation is organized in the following manner: In Chapter 2 we present

a mathematical framework for performing noise analysis for RF circuits, both autonomous

and nonautonomous. We classify some of the existing noise analysis techniques in this

framework. We observe that traditional noise analysis of RF circuits is based on linear

perturbation analysis. We then show that this analysis cannot be carried over to oscil-

latory circuits since linear perturbation analysis is not valid for autonomous system of

equations (Chapter 3). We develop a new perturbation analysis technique for oscillatory

system of equations that is valid for deterministic perturbations. We obtain a nonlinear

differential equation for phase error of oscillators. For white noise perturbations, this dif-

ferential equation becomes a stochastic differential equation (Chapter 4). We use standard

techniques from stochastic differential equation theory to obtain a second order character-

ization of phase error and oscillator output as a stochastic process. The new oscillator

phase noise characterization forces us to revisit the traditional noise analysis techniques for

nonautonomous circuits which are driven by periodic signal which are derived from real os-

cillators and hence have phase noise. We address this problem in Chapter 5. We extend this

analysis (Chapter 6) to nonautonomous circuits which are driven by more than one large

periodic signals with incommensurable frequencies. We conclude (Chapter 7) by pointing
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out some future directions where we believe this research can be extended.
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Chapter 2

Overview of Existing Techniques

In this chapter we review some of the existing noise analysis techniques for au-

tonomous and nonautonomous circuits. We begin by describing a general framework of

noise analysis of nonautonomous circuits. We review some of the existing noise analysis

techniques based on this framework. We then review existing noise analysis techniques for

oscillators. We conclude by briefly describing our approach and contrasting them against

existing techniques.

2.1 Perturbation Analysis of a Nonoscillatory System

The behaviour of a nonlinear electronic circuit can be described by the following

system of differential equations

dq(x(t))
dt

+ f(x(t)) + b(t) = 0 (2.1)

In this equation x(·) : R→ R
n represents a vector of state variables which, for an electronic

circuit, are node voltages and branch currents of voltage sources and inductors. q(·) : Rn →
R
n represents the nonlinear charge and flux storage elements in the circuit, f(·) : Rn → R

n

represents memoryless nonlinearities in the circuit and b(·) : R → R
n represents inputs to

the nonautonomous circuit. RF circuits are usually analyzed for their steady-state response

for one or more periodic inputs. For the purpose of our analysis we assume that b(t) is a

large periodic signal with period T . By large we imply that the application of b(t) causes

the circuit operating point to change appreciably as a function of time. We assume that

the steady-state response of this circuit is given by xs(t), i.e., xs(t) satisfies (2.1). Since
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the circuit is nonautonomous, xs(t) is also periodic with period T . Now we assume that

the circuit equations are perturbed by a perturbation term D(x)b(t). D(·) : Rn → R
n×p

is state dependent modulation term and b(·) : R → R
p is the state independent (but time

dependent) perturbation term. I.e., the perturbed system of equations is given by

dq(x(t))
dt

+ f(x(t)) + b(t) +D(x)b(t) = 0 (2.2)

Let z(t) be the solution of (2.2). Linear perturbation analysis proceeds by assuming that

the response z(t) can be represented as

z(t) = xs(t) + xp(t) (2.3)

and for small perturbation term D(x)b(t), the deviation term xp(t) is small and bounded

for all t. Substituting the form of the solution (2.3) in (2.2) we have

dq(xs(t) + xp(t))
dt

+ f(xs(t) + xp(t)) + b(t) +D(xs(t) + xp(t))b(t) = 0 (2.4)

Since xp(t) is assumed to be small, the nonlinear functions q and f can be linearized around

the periodic steady-state solution xs(t) and (2.4) can be written as

d
dt

(
q(xs(t)) +

dq(x)
dx

∣∣∣∣
xs(t)

xp(t)

)
+ f(xs(t)) +

df(x)
dx

∣∣∣∣
xs(t)

xp(t) + b(t) +D(xs(t))b(t) = 0

Here we have ignored xp(t) in the argument of D(·). We use only the zeroth order Taylor

series term B(xs)b(t) which captures the modulation of the perturbation sources with the

large signal steady state and ignore the first order term in the expansion of B(x)b(t) around

xs(t), i.e.,

dD(x)
dx

∣∣∣∣
xs(t)

xp(t)b(t)

This term is a high-order effect that captures the modulation of the perturbation sources

with themselves and can be neglected for all practical purposes. Since xs(t) is the solution

of (2.1), we obtain

d
dt

(C(t)xp(t)) +G(t)xp(t) +D(xs(t))b(t) = 0 (2.5)

where

C(t) =
dq(x)

dx

∣∣∣∣
xs(t)
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and

G(t) =
df(x)

dx

∣∣∣∣
xs(t)

and C(t) and G(t) are T -periodic. (2.5) can be rewritten as

C(t)ẋp(t) +A(t)xp(t) +D(xs(t))b(t) = 0 (2.6)

where A(t) = G(t)+ Ċ(t). For a typical circuit, C(t) need not be full rank and hence not all

entries of xp(t) are independent of each other. (2.6) is a differential equation that is linear

in xp(t) and the coefficient matrices A(t) and C(t) are T -periodic. Hence the homogeneous

part of (2.6) describes a linear periodic time varying (LPTV) transfer function h(t1, t2).

Once h(t1, t2) is obtained, the output xp(t) can be obtained by the following convolution

integral

xp(t) =
∫ ∞
−∞

h(t, s)D(xs(s))b(s)ds

2.2 Noise Analysis of Nonoscillatory Systems

For stochastic perturbations, specifically for white noise perturbations b(t) = ξ(t),

(2.6) is a stochastic differential equation and xp(t) is now a stochastic process. (2.6) is

written in the stochastic differential form as follows [Øks98]

C(t)dxp(t) +A(t)xp(t)dt+D(xs(t))dB(t) = 0 (2.7)

where B(t) is a p-dimensional Brownian motion process. It can be shown that this linear

differential equation has a solution of the form

xp(t) =
∫ ∞
−∞

h(t, s)D(xs(s))dB(s)

where the integral in the above equation is to be interpreted as a stochastic integral [Øks98].

Hence

E

[
xp(t1)xTp (t2)

]
= E

[∫ ∞
−∞

h(t1, s1)D(xs(s1))dB(s1)
∫ ∞
−∞

dBT (s2)DT (xs(s2))hT (t2, s2)
]

=
∫ ∞
−∞

∫ ∞
−∞

h(t1, s1)D(xs(s1))E
[
dB(s1)dBT (s2)

]
DT (xs(s2))hT (t2, s2)

=
∫ ∞
−∞

h(t1, s)D(xs(s))DT (xs(s))hT (t2, s)ds
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Existing noise analysis techniques take advantage of the fact that the transfer function is

linear periodic time varying and hence satisfies the relation

h(t1, t2) = h(t1 + T, t2 + T )

This implies that for stationary input noise (i.e., the second order statistics do not change

with time) or cyclostationary input noise (i.e., the second order statistics are periodic with

the same period T ), the output noise is also cyclostationary. Noise statistics for one period

are directly computed from (2.7). There are several techniques proposed in the literature

which perform this computation either in time domain or in frequency domain.

2.2.1 LPTV Approaches and Extensions

Noise analysis of nonlinear RF components driven by one or more periodic sig-

nals, has been a focus of attention of several researchers. One of the earliest efforts was

concentrated on noise analysis of millimeter wave mixers [HK77]. Earlier works concen-

trated on extending traditional linear time invariant noise analysis techniques to weakly

nonlinear circuits [RPP88]. Target circuits for these approaches were almost invariably

high frequency mixers [RMC89]. Efforts were made later to extend this noise analysis to

strongly nonlinear components present in RF front ends [HKW91, Hud92] and with arbitrary

topologies [RM92]. Earlier efforts concentrated on microwave circuits which were predom-

inantly linear with very few nonlinear elements [OTS91, RMM92b, RMM92a, RMM94b,

RMM94a, RMM95, RMC98]. Since then, techniques have been suggested to speed up

Newton iteration and the solution of the underlying large linear system of equations us-

ing iterative linear algebra techniques [RFL98]. These techniques can also address the

problem of noise analysis of nonautonomous circuits driven by two or more large periodic

signals [RMM94b, RMM94a, RFL98]. Though frequency domain techniques, usually based

on harmonic balance, are more popular for RF circuits, several time domain techniques

have also been suggested [Hul92, HM93, TKW96]. All these techniques usually concentrate

on analyzing noise performance of nonlinear nonautonomous circuits assuming perfect LO

input. The underlying assumption is that a noisy oscillator output can be viewed as a de-

terministic, large, perfectly periodic signal with additive amplitude and phase noise. With

this assumption, input signal noise can be absorbed in the circuit and can be viewed as a

circuit noise source [RMMN92]. However, as we will see in Chapter 3, this representation
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is not valid for real oscillator output. Therefore we need to revisit the problem of noise

analysis of nonautonomous circuits in presence of input signal phase noise.

2.2.2 Time Domain Analysis

In [DLSV96], a technique for numerically solving (2.7) as a stochastic differential

equation is presented. No assumption is made about the nature of inputs. From (2.7),

an ordinary differential equation for the variance E
[
x(t)xT (t)

]
and the autocorrelation

E

[
x(t1)xT (t2)

]
is derived. These equations are solved numerically using transient simulation

algorithm in Spice. Circuit noise sources are modelled as white noise processes. This

technique is used to compute output noise of a bipolar active mixer (along with several

other circuits). Since input to the mixer is assumed to be perfectly periodic, the output

noise variance is calculated to be periodically varying with time. However, no provision

has been made to account for input signal phase noise in the simulation algorithm. Several

other time domain noise analysis techniques have also been proposed which use different

numerical integration techniques for stochastic differential equations [SD98, Dob93].

2.2.3 Our Approach

Existing techniques for noise simulation for nonautonomous circuits do not take

into account the effect of input signal phase noise. If the input signal is noiseless and per-

fectly periodic, the output noise is cyclostationary as would be predicted by these existing

techniques. However, the input signal is derived from a real signal source (oscillator) and

therefore has phase noise. A noisy periodic signal does not provide a perfect time reference.

Therefore noise in a circuit driven by such a signal cannot be cyclostationary. Cyclosta-

tionarity of output noise implies that its statistics vary perfectly periodically with time, i.e.,

provide a perfect time reference.

We formulate the problem of performing noise analysis of nonautonomous circuits

driven by large periodic signals with phase noise as the solution of a stochastic differential

equation. We show that

• The output of nonlinear nonautonomous systems in the presence of period input with

Brownian motion phase deviation, is asymptotically wide sense stationary.

• The Lorentzian spectrum of the input signal and the characteristics of the Brownian

motion input phase deviation process are preserved at the output.
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Figure 2.1: LTI noise analysis of a three stage ring oscillator

• Noisy input is shown to contribute a wide-band amplitude noise term at the output

of the nonlinear circuit. This appears as a white noise source modulated by the time

derivative of the steady-state response of the system.

2.3 Oscillator Phase Noise Analysis

We now review some of the techniques proposed in the literature for performing

noise analysis of oscillators. Most of the approaches try to extend the LPTV noise analysis

techniques of nonautonomous circuits to oscillators. A few techniques take advantage of

the fact that phase uncertainty in an oscillator output is equivalent to uncertainty in timing

and predict the time uncertainty directly at specific instances (such as zero crossings of the

output). Some very sophisticated techniques for predicting spectral dispersions in lasers

have been proposed in optics literature and we give a brief overview of those as well.

2.3.1 LTI/LTV Noise Analysis

We first investigate what happens if linear perturbation analysis based noise anal-

ysis is applied to oscillators. Consider a three stage ring oscillator shown in Figure 2.1.

Each stage of the oscillator consists of a linear gain −Gm, output resistance R, input ca-

pacitance of the next stage C and noise source In. Traditional linear perturbation analysis

based noise analysis proceeds by first computing the open loop transfer function H(ω).

For stable oscillators it can shown that the resulting closed loop transfer is proportional to
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Figure 2.2: Timing jitter analysis of a three stage ring oscillator

1/(∆ω)2 [Raz96] where ∆ω is the offset frequency from the frequency of oscillation. For

input white noise source In, the closed loop transfer function modulates the output noise

process and the spectrum of the output noise is also proportional to 1/(∆ω)2. These inves-

tigations aim to provide insight into frequency domain properties of phase noise in order to

develop rules for designing practical oscillators [Lee66, Sau77, Rob82, RC95, AKR94].

To account for nonlinearities in high Q oscillator, attempts to improve on LTI

analysis have concentrated on borrowing linear time-varying (LTV) analysis methods from

forced nonoscillatory systems [Haf66, Kur68, ABR76]. Several works on computational

methods for general oscillators using LTV analysis are also available [RMMN93, RCMC94,

OT97, DSG97, HL98]. These techniques can be used to compute the noise power spec-

tral density at an offset frequency. However, at the oscillation frequency, these techniques

predicts infinite noise power spectral density. Moreover, the total integrated noise power

spectral density in a finite band around the frequency of oscillation is also infinite. Nonlin-

ear effects such as frequency upconversion due to nonlinear operation of the circuit have also

been specifically addressed in [Ohi93, VLPG96, Raz96, Poo97, FAOR95, SS85, Che91]. Spe-

cialized techniques for special type of oscillators have also been proposed [CHG95, DTS98a,

DTS98b, YL97, AM97]. [Swe72] proposed a noise analysis technique for Gunn oscillators

while [Sjö72] proposed a noise analysis technique for Read oscillators.

2.3.2 Timing Jitter Analysis

The same circuit as in Figure 2.1 can also be analyzed in time domain. A noiseless

oscillator output provides a perfect periodic time reference with period T . If the first zero
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crossing of the oscillator output is synchronized to t = 0, then a noiseless oscillator output

will have a zero crossing at time t = kT , k ∈ Z+. Since a real oscillator output is corrupted

by noise, zero crossings will not exactly be at time t = kT . The variance of zero crossing

time is known as cycle to cycle jitter. Consider the three stage ring oscillator in Figure 2.2.

Variance in zero crossing is computed by calculating the voltage noise at the zero crossing

instance and dividing it by the square of the slew rate at that time. There are techniques

proposed in the literature [WKG94, McN97] which compute the voltage variance assuming

idealized models of specific kinds of delay cells that are used in the ring oscillator. Similar

techniques [AM83] are proposed for oscillators with regenerative switching (or relaxation

oscillator). The mechanisms of such oscillators suggest the fundamental intuition that

timing or phase errors increase with time. These technique become extremely involved if

realistic models for delay cells are used. It is also not clear how to extend these techniques

to compute phase noise in nonswitching (harmonic) oscillators.

2.3.3 Time Domain Noise Analysis

Demir et. al. [DSV96] used their time domain non-Monte Carlo noise simulation

algorithm [DLSV96] to compute the noise in an oscillator output. The noise simulation

technique is also based on linear perturbation analysis. They concluded that the envelop of

the variance of output noise power keeps increasing unbounded with time. This result, in

some sense, is the time domain equivalent interpretation of the result derived in Section 2.3

which predict infinite integrated power of oscillator output noise. The reason why both

these techniques show this unphysical result is because they are based on linear perturbation

analysis which is not valid for oscillators.

2.3.4 Other Approaches

More sophisticated analysis techniques exist in optics. Here, stochastic analysis is

common and it is well known that that phase error in oscillators, due to white noise sources,

is described by a Brownian motion process. Although justifications of this fact are often

based on approximations, precise descriptions of phase noise have been obtained for certain

systems. In the seminal work of Lax [Lax67], an equation describing the growth of phase

fluctuations with time is obtained for pumped lasers. The fact that a Brownian motion phase

error process leads to Lorentzian output power spectrum is also well established [FV88,



CHAPTER 2. OVERVIEW OF EXISTING TECHNIQUES 19

VV83]. However, a general theory is not available in this field as well.

There are a few approaches which are based on nonlinear analysis of the oscilla-

tor dynamics [Dek87, Gol89]. Possibly the most general and rigorous treatment of phase

noise has been that of [Kär90]. Using several novel methods, the oscillator response is

decomposed into phase and amplitude variation and a nonlinear differential equation for

phase error is obtained. By solving a linear, small time approximation to this equation with

stochastic inputs, a Lorentzian spectrum due to white noise is obtained. In spite of these

advances, certain gaps remain, particularly with respect to the derivation and solution of

the differential equation governing phase error.

2.3.5 Our Approach

Our approach for oscillator phase noise analysis can be summarized as follows:

• As a first step, we develop a new quantitative description of the dynamics of stable

nonlinear oscillators in presence of deterministic perturbations which is not limited to

two-dimensional system of equations and does not make any assumptions about the

type of nonlinearity.

• By considering stochastic perturbations in a stochastic differential calculus setting,

we obtain a correct mathematical characterization of the noisy oscillator output.

• We show that the oscillator output is represented as the sum of two stochastic pro-

cesses: a large signal output with Brownian motion phase deviation and a small

“amplitude” noise process.

• We further show that the response of the noisy oscillator is asymptomatically wide-

sense stationary with Lorentzian power spectral density.
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Chapter 3

Perturbation Analysis of Stable

Oscillators

As pointed out in Chapter 2, noise analysis in electrical circuits is based on pertur-

bation analysis. It is well known that linear perturbation analysis is not valid for oscillatory

circuits. In order to develop a noise analysis technique for oscillators we first need to develop

a rigorous perturbation analysis technique. In this chapter we first show that traditional

linear perturbation analysis is not valid for oscillators. This also helps us introduce the

notations which we use when we describe our perturbation analysis technique. We show

that this incorrect linearization leads to nonphysical results such as infinite oscillator output

phase noise power in presence of white noise. We then describe our perturbation analysis

technique in detail. This analysis is not limited to any specific type electrical oscillator. In

fact this analysis is valid for any autonomous system of equations with oscillatory solution.

We also demonstrate our technique with an example.

3.1 Mathematical Preliminaries

The dynamics of any autonomous system without undesired perturbations can be

described by a system of differential equations:1

ẋ = f(x) (3.1)

1For notational simplicity, we use the state equation formulation to describe the dynamics of an au-
tonomous system. The results we present can be easily extended to mixed differential-algebraic formulation
given by dq(x)

dt
+ f(x) = 0.
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where x ∈ Rn and f(·) : Rn → R
n. We assume that f(·) satisfies the conditions of the

Picard-Lindelőf existence and uniqueness theorem for initial value problems [Far94]. We

assume that solution of (3.1), xs(t) is periodic with period T and describes an asymptotically

orbitally stable limit cycle in the n-dimensional solution space. We explain the concept of

asymptotic orbital stability below [Far94].

Since xs(t) is a solution of (3.1), xs(t−t0) is also a nonconstant T -periodic solution

for arbitrary t0 ∈ R. The initial values xs(0) and xs(−t0) can be arbitrarily close (if |t0| is

small enough), and still xs(t) − xs(t − t0) does not tend to zero as t tends to infinity. Let

the path γ of the T -periodic solution xs(t) be

γ = {x ∈ R : x = xs(t), t ∈ R+}

We note that xs(t) and xs(t− t0) have the same path γ.

Definition 3.1 (Orbital Stability) The solution xs(t) of (3.1) is said to be orbitally

stable if for every ε > 0, there exists a δ(ε) such that if the distance of the initial value

x(0) = x0 from the path γ of xs(t) is less than δ(ε), i.e., dist(x0, γ) < δ(ε), then the solution

φ(t, x0) of (3.1) that assumes the value x0 at t = 0 satisfies

dist(φ(t, x0), γ) < ε

for t ≥ 0.

For instance, the system of equations which describes an unstable limit cycle is not orbitally

stable, since for any initial condition not on the limit cycle, the solution will diverge away

from it. Consider the differential equationẋ1

ẋ2

 =

 x2

2(x2
1 − 1)x2 + x1


The response of the oscillator describes an unstable limit cycle (or path γ) in the phase

plane (x1-x2 plane) as shown in Figure 3.1. Hence for any initial condition outside the

region enclosed by the limit cycle, the phase plane trajectory diverges away. Similarly for

any initial condition inside the limit cycle, the phase plane trajectory goes to zero.

If the solution xs(t) is orbitally stable, then each solution with the same path γ,

i.e., every solution xs(t+ α) for α ∈ R, is also orbitally stable.
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Figure 3.1: Response of an orbitally unstable oscillator

Definition 3.2 (Asymptotic Orbital Stability) The solution xs(t) of (3.1) is said to

be asymptotically orbitally stable if it is orbitally stable, and if a δ > 0 exists such that

dist(x0, γ) < δ implies

dist(φ(t, x0), γ)→ 0 as t→∞

Definition 3.3 (Asymptotic Phase Property) The solution xs(t) is said to have the

asymptotic phase property if a δ > 0 exists such that to each initial value x0 satisfying

dist(x0, γ) < δ there corresponds an asymptotic phase α(x0) ∈ R with the property

lim
t→∞
|φ(t, x0)− xs(t+ α(x0))| = 0

A lossless LC tank with a finite energy stored in the tank is not an asymptotically

orbitally stable system. The response of the oscillator describes a closed orbit in two-

dimensional state space (formed by the capacitor voltage and inductor current). However,

if the oscillator is perturbed by a small instantaneous change in the system energy, the

system moves to a new limit cycle and never returns to its original limit cycle. Hence
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this is not an asymptotically orbitally stable system. For the autonomous systems we are

dealing in this work, we assume that there exists a nontrivial periodic solution xs(t) which

is asymptotically orbitally stable, and has the asymptotic phase property.

We are interested in the response of such systems to a small state-dependent

perturbation of the form D(x)b(t) where D(·) : Rn → R
n×p and b(·) : R → R

p. I.e., the

perturbed system is described by

ẋ = f(x) +D(x)b(t) (3.2)

Let the exact solution of the perturbed system in (3.2) be z(t).

3.2 Perturbation Analysis Using Linearization

The traditional approach to analyzing perturbed nonlinear systems is to linearize

about the unperturbed solution under the assumption that the resultant deviation, i.e., the

difference between the solutions of the perturbed and unperturbed systems, will be small.

Let this deviation be w(t), i.e.,

z(t) = xs(t) + w(t)

Substituting this expression in (3.2) we obtain

ẋs(t) + ẇ(t) = f(xs(t) + w(t)) +D(xs(t) + w(t))b(t)

We assume that for “small” perturbations D(x)b(t) the resulting deviation w(t) will be

small. Hence, in the above expression we can approximate f(xs(t) +w(t)) by its first order

Taylor series expansion and replace D(xs(t) + w(t))b(t) with D(xs(t))b(t). Using these

approximations and observing that xs(t) satisfies (3.1), we obtain

ẇ(t) ≈ ∂f(x)
∂x

∣∣∣∣
xs(t)

w(t) +D(xs(t))b(t)

= J(t)w(t) +D(xs(t))b(t)

(3.3)

where the Jacobian

J(t) =
∂f(x)
∂x

∣∣∣∣
xs(t)

J : R→ R
n×n is T -periodic. We would like to solve for w(t) in (3.3) to see if our assumption

that it is small is indeed justified. (3.3) describes a linear periodically time-varying system
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of equations governing the dynamics of w(t). For solving this equation we will use results

from Floquet theory [Far94, Gri90] which we describe below.

3.2.1 Floquet Theory

The homogeneous system of differential equations corresponding to (3.3) is given

by

ẇ = J(t)w (3.4)

We begin by making the following observations:

Remark 3.1

• The conditions of the Picard-Lindelőf existence and uniqueness theorem [Far94] for

initial value problems are trivially satisfied by (3.3) and (3.4). Hence, there exist

unique solutions to (3.3) and (3.4) given an initial condition w(t0) = w0.

• It can be shown that the set of real solutions of (3.4) form an n-dimensional linear

space.

• Let w1(t, t0), . . . , wn(t, t0) be n linearly independent solutions of (3.4). Then,

W (t, t0) = [w1(t, t0), . . . , wn(t, t0)]

is called a fundamental matrix. The fundamental matrix satisfies

dW (t, t0)
dt

= J(t)W (t, t0)

If W (t0, t0) = I, the n× n identity matrix then W (t, t0) is called the principal funda-

mental matrix, or the state transition matrix for (3.4), denoted by Φ(t, t0).

• Any solution of (3.4) can be expressed as W (t, t0)c where c 6= 0 is a constant vector.

In particular, for w(t0) = x0, the solution of (3.4) is given by Φ(t, t0)x0.

• If W̃ (t, t0) is another fundamental matrix for (3.4) then W̃ (t, t0) = W (t, t0)C where

C is a nonsingular constant matrix.

• The solution w of (3.3) satisfying the initial condition w(t0) = w0 is given by

w(t, t0, x0) = Φ(t, t0)x0 +
∫ t

t0

Φ(t, s)D(xs(s))b(s)ds
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In the above observations we have not used the fact that the entries of J(t) are

periodic. Since for the case of a periodic oscillator, J(t) is T -periodic, J(t + T ) = J(t) for

all t ∈ R. Let W (t, t0) be a fundamental matrix for (3.4). We further observe that:

Remark 3.2

• If W (t, t0) is a fundamental matrix then for W (t+ T, t0), we have

Ẇ (t+ T, t0) = J(t+ T )W (t+ T, t0)

= J(t)W (t+ T, t0)

hence W (t+ T, t0) is also a fundamental matrix. Then,

W (t+ T, t0) = W (t, t0)B

where B is a nonsingular matrix and

B = W−1(t0, t0)W (t0 + T, t0)

Since the columns of W are linearly independent, the inverse in the above expression

exists.

• Even though B is not unique, it can be shown that any other B will have the same

eigenvalues.

• The (unique) eigenvalues of B, λ1, . . . , λn, are called the characteristic multipliers of

the equation (3.4) and the characteristic (Floquet) exponents µ1, . . . , µn are defined

as

λi = exp(µiT )

Assumption 3.1 We assume that B has distinct eigenvalues and it is diagonalizable2.

Now we state a result due to Floquet (1883):

Theorem 3.1 (Floquet) Let B be diagonalized as

B = ΞΛΞ−1

2The extension to nondiagonalizable matrices is straightforward.
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where Λ = diag[λ1, . . . , λn]. Let

D = diag[µ1, . . . , µn]

where µi is defined as λi = exp(µiT ). Then, the state transition matrix of the system (3.4),

as a function of two variables, t and s = t0, can be written in the form

Φ(t, s) = U(t) exp(D(t− s))V (s) (3.5)

where U(t) and V (t) are both T -periodic and nonsingular, and satisfy

U(t) = V −1(t)

for all t.

Proof: We have

W (t+ T, s) = W (t, s)B

= W (t, s)ΞΛΞ−1

and hence

W (t+ T, s)Ξ = W (t, s)ΞΛ (3.6)

Let Y (t, s) = W (t, s)Ξ. Using this relation, (3.6) reduces to

Y (t+ T, s) = Y (t, s)Λ

= Y (t, s) exp(DT )

Since W (t, s) is nonsingular, Y (t, s) is also a fundamental matrix of (3.4). For a given s let

U(t) = Y (t, s) exp(−D(t− s))

and V (t) = U−1(t). We observe that

U(t+ T ) = Y (t+ T, s) exp(−D(t+ T − s))
= Y (t, s) exp(DT ) exp(−D(t+ T − s))
= Y (t, s) exp(−D(t− s))
= U(t)

i.e., U(t) is T -periodic. Here we used the fact that for scalar s and t

exp(Ds) exp(Dt) = exp(Dt) exp(Ds) = exp(D(t+ s))
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Hence both U(t) and V (t) are T -periodic. Let

Φ(t, s) = U(t) exp(D(t− s))V (s)

We note that Φ(s, s) = I and Φ(t, s) satisfies (3.4), hence Φ(t, s) is the state transition

matrix of (3.4).

Remark 3.3

• The state transition matrix Φ(t, s) can be written as

Φ(t, s) =
[
u1(t) . . . un(t)

]
eµ1(t−s)

. . .

eµn(t−s)



vT1 (s)

...

vTn (s)


=

n∑
i=1

exp (µi(t− s))ui(t)vTi (s)

where ui(t) are the columns of U(t), and vTi (t) are the rows of V (t) = U−1(t).

• With this representation of the state transition matrix, the solutions of the homoge-

neous system (3.4) and the inhomogeneous system (3.3) with a periodic coefficient

matrix are given by

wH(t) =
n∑
i=1

exp (µi(t− t0))ui(t)vTi (t0)x(t0)

and

wIH(t) = wH(t) +
n∑
i=1

ui(t)
∫ t

t0

exp (µi(t− s))vTi (s)b(s)ds

• For any i, w(t) = ui(t) exp(µit) is a solution of (3.4) with the initial condition w(t0) =

ui(t0) exp(µit0). Similarly, w(t) = vi(t) exp(−µit) is a solution of the adjoint system

ẇ = −JT (t)w

with the initial condition w(t0) = vi(t0) exp(−µit0).

• We have

Φ(T, 0) =
n∑
i=1

exp (µiT )ui(T )vTi (0)

=
n∑
i=1

exp (µiT )ui(0)vTi (0)
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From the above, ui(0) are the eigenvectors of Φ(T, 0) with corresponding eigenval-

ues exp (µiT ), and vi(0) are the eigenvectors of Φ(T, 0)T corresponding to the same

eigenvalues.

3.2.2 Response to Deterministic Perturbation

We now use the results of Floquet Theory to obtain a solution w(t) of (3.3). The

state transition matrix of (3.4), the homogeneous part of (3.3), is given by (3.5) which is

repeated here

Φ(t, s) = U(t) exp(D(t− s))V (s)

Here U(t) is a T -periodic nonsingular matrix, V (t) = U−1(t) and D = diag[µ1, . . . , µn]

where where µi are the Floquet (characteristic) exponents and exp (µiT ) are the character-

istic multipliers.

Remark 3.4 Let ui(t) be the columns of U(t) and vTi (t) be the rows of V (t) = U−1(t).

Then {u1(t), u2(t), . . . , un(t)} and {v1(t), v2(t), . . . , vn(t)} both span Rn and satisfy the bi-

orthogonality conditions vTi (t)uj(t) = δij for every t. In general, U(t) itself is not an

orthogonal matrix.

Let us first consider the homogeneous part of (3.3), the solution of which is given

by

wH(t) = U(t) exp(Dt)V (0)w(0)

=
n∑
i=1

ui(t) exp(µit)vTi (0)w(0)

where w(0) is the initial condition. Next, we will show that one of the terms in the sum-

mation in the above equation does not decay with t.

Lemma 3.2

• The time-derivative of the periodic solution xs(t) of (3.1), i.e., ẋs(t), is a solution of

the homogeneous part of (3.3).

• The unperturbed oscillator (3.1) has a nontrivial T -periodic solution xs(t) if and only

if the number 1 is a characteristic multiplier of the homogeneous part of (3.3), or

equivalently, one of the Floquet exponents satisfies exp(µiT ) = 1.
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Proof: Since xs(t) is a nontrivial periodic solution of (3.1), it satisfies

ẋs(t) = f(xs(t))

Taking the time derivative of both sides of this equation, we have

ẍs =
∂f

∂x

∣∣∣∣
xs(t)

ẋs

Hence, ẋs(t) satisfies ẇ = J(t)w, the homogeneous part of (3.3). Thus,

ẋs(t) =
n∑
i=1

ui(t) exp(µit)vTi (0)ẋs(0)

Since ẋs(t) is periodic, it follows that at least one of the Floquet exponents satisfies

exp(µiT ) = 1.

Remark 3.5 One can show that if 1 is a characteristic multiplier, and the remaining n−1

Floquet exponents satisfy |exp(µiT )| < 1, i = 2, . . . , n, then the periodic solution xs(t) of

(3.1) is asymptotically orbitally stable and it has the asymptotic phase property [Far94].

This is a sufficient condition for asymptotic orbital stability, not a necessary one. We

assume that this sufficient condition is satisfied by the system and the periodic solution

xs(t). Moreover, if any of the Floquet exponents satisfy | exp (µiT )| > 1, then the solution

xs(t) is orbitally unstable.

Without loss of generality, we choose µ1 = 0 and u1(t) = ẋs(t).

Remark 3.6 With u1(t) = ẋs(t), we have

vT1 (t) ẋs(t) = 1

and

vT1 (t)uj(t) = 0 j = 2, . . . , n

v1(t) will play an important role in the rest of our treatment.

Next, we obtain the particular solution of (3.3), given by

wP (t) =
∫ t

0
U(t) exp(D(t− r))V (r)D(xs(r))b(r)dr

=
n∑
i=1

ui(t)
∫ t

0
exp(µi(t− r))vTi (r)D(xs(r))b(r)dr
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Since exp(µ1T ) = 1, the first term in the above summation is given by

u1(t)
∫ t

0
vT1 (r)D(xs(r))b(r)dr

If the integrand has a nonzero average value, then the deviation w(t) in (3.3) will grow

unbounded. Hence, the assumption that w(t) is small becomes invalid and the linearization

based perturbation analysis is inconsistent.

Before we present our perturbation analysis technique for stable oscillators, we will

show that noise analysis of oscillators based on linear perturbation analysis is also invalid

and it leads to nonphysical results such as infinite total integrated noise power.

3.2.3 Response to Stochastic Perturbation

Now, we consider the case where the perturbation b(t) is a vector of uncorrelated

white noise sources ξ(t), i.e.,

E

[
ξ(t1)ξT (t2)

]
= Iδ(t1 − t2)

where E [·] denotes the probabilistic expectation operator and I is p×p identity matrix. We

now find the expression of the autocorrelation matrix

K(t) = E

[
w(t)wT (t)

]
of the solution of (3.3) for K(0) = 0. We have

K(t) = E

[
w(t)wT (t)

]
= E

[∫ t

0
Φ(t, s1)D(xs(s1))ξ(s1)ds1

∫ t

0
ξT (s2)DT (xs(s2))ΦT (t, s2)ds2

]
=
∫ t

0

∫ t

0
Φ(t, s1)D(xs(s1))E

[
ξ(s1)ξT (s2)

]
DT (xs(s2))ΦT (t, s2)ds1ds2

=
∫ t

0

∫ t

0
Φ(t, s1)D(xs(s1))δ(s1 − s2)DT (xs(s2))ΦT (t, s2)ds1ds2

i.e.,

K(t) =
∫ t

0
Φ(t, s)D(xs(s))DT (xs(s))Φ(t, s)Tds (3.7)

If we substitute

Φ(t, s) =
n∑
i=1

exp (µi(t− s))ui(t)vTi (s)
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in (3.7) we obtain

K(t) =
n∑
i=1

n∑
j=1

ui(t)uTj (t)
[∫ t

0
exp((µi + µj)t)vTi (s)D(xs(s))DT (xs(s))vj(s)ds

]

Since exp(µ1T ) = 1, the term in the summation above for i = j = 1 is given by

u1(t)uT1 (t)
[∫ t

0
vT1 (s)D(xs(s))DT (xs(s))v1(s)ds

]
The integrand vT1 (s)D(xs(s))DT (xs(s))v1(s) is a nonnegative scalar that is periodic in s

sinceD(xs(s))DT (xs(s)) is a positive semi-definite matrix. This scalar has a positive average

value, hence this term grows unbounded with t. Thus, the assumption that the deviation

w(t) stays small is also invalid for the stochastic perturbation case, because the variances

of the entries of w(t) can grow unbounded. The notion of “staying small” is quite different

for a stochastic process than the one for a deterministic function. For instance, a Gaussian

random variable can take arbitrarily large values with nonzero probability even when its

variance is “small”. We say that a stochastic process is “bounded” when its variance is

bounded, even though some of its sample paths (representing a nonzero probability) can

grow unbounded.

3.3 Nonlinear Perturbation Analysis for Phase Deviation

As seen in the previous section, traditional perturbation techniques do not suffice

for analyzing oscillators. In this section, we develop a novel nonlinear perturbation analysis

suitable for oscillators. Before we present the mathematical details we will explain the

intuition behind our approach. Consider the unperturbed oscillator output which describes

a stable limit cycle. When a perturbation is applied to the oscillator, this periodicity is

lost. For stable oscillators, however, the perturbed trajectory remains within a small band

around the unperturbed trajectory as shown in Figure 3.2.

The proximity of the perturbed and unperturbed trajectories in the phase plane

does not imply that the time-domain waveforms are also close to each other. At a given

time t, the unperturbed oscillator output xs(t) and the perturbed oscillator output z(t),

can be far from each other as illustrated in Figure 3.2. This further indicates that the

linear perturbation analysis which concludes that the deviation w(t) = z(t) − xs(t) grows

unbounded is incorrect, since w(t) is bounded by the diameter of the limit cycle. This
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xs(t+ α(t))

Figure 3.2: Limit cycle and excursions due to perturbations

also suggests that the perturbed oscillator response does remain close to the unperturbed

response which has been suitably time shifted (α(t) in Figure 3.2). Hence the perturbed

oscillator response can be decomposed in two components, time shift along the limit cycle

xs(t + α(t)) and deviation away from the limit cycle y(t). In our approach, we find a

nonlinear differential equation governing the phase shift α(t) such that the deviation away

from the limit cycle, y(t) = z(t) − xs(t + α(t)) stays small and bounded for all times. We

call y(t) orbital or amplitude deviation and xs(t+ α(t)), phase deviation.

The new analysis proceeds along the following lines:

1. We rewrite (3.2) with the (small) perturbation D(x)b(t) split into two small parts

b1(x, t) and b̃(x, t):

ẋ = f(x) + b1(x, t) + b̃(x, t) (3.8)

2. We choose the first perturbation term b1(x, t) in such a way that its effect is to create

only phase errors to the unperturbed solution. In other words, we show that the
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equation

ẋ = f(x) + b1(x, t) (3.9)

is solved by

xp(t) = xs(t+ α(t))

for a certain function α(t), called the phase error. It will be seen that α(t) can grow

unboundedly large with time even though the perturbation b1(x, t) remains small.

3. We then treat the remaining term b̃(x, t) as a small perturbation to (3.9), and perform

a consistent traditional perturbation analysis in which the resultant deviations from

xp(t) remain small. I.e., we show that

z(t) = xs(t+ α(t)) + y(t)

solves (3.8) for a certain y(t) that remains small for all t. y(t) will be called the

orbital deviation. It should be pointed out that we will indeed perform a linearized

perturbation analysis for the orbital deviation y(t). However in this case we prove

that this linear analysis is correct and consistent by showing that the orbital deviation

indeed stays small for small perturbations. In the traditional linear perturbation

analysis presented in Section 3.2.2, the response deviation for the system does not

stay small for small perturbations, hence is not valid. Even though the perturbation

analysis for the orbital deviation is linear, we derive a nonlinear equation for the

phase deviation, hence we perform a nonlinear perturbation analysis for the overall

deviation, i.e., the phase deviation and the orbital deviation.

We start by defining α(t) concretely through a differential equation.

Definition 3.4 Let α(t) be defined by

dα(t)
dt

= vT1 (t+ α(t))D
(
xs(t+ α(t))

)
b(t) α(0) = 0 (3.10)

where v1(t) is the Floquet basis vector as defined in Section 3.2.2.

Remark 3.7 The existence and uniqueness theorem for ordinary differential equations

guarantees that α(t) exists and is unique.
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Remark 3.8 α(t) can grow unbounded even if b(t) remains small. For example, consider

the case where b(t) is a small positive constant ε � 1, D ≡ 1, and v1(t) is a constant k.

Then α(t) = kεt.

Having defined α(t), we are in a position to split D(x)b(t) into b1(x, t) and b̃(x, t).

We consider the bi-orthogonal Floquet eigenvectors {ui(t)} and {vi(t)}. Since {ui(t)} are

linearly independent for all t, they span the n-dimensional space for all t. In particular they

span this space for time t+α(t). We find the projection of the perturbation term D(x)b(t)

along the directions {ui(t + α(t))}. We call b1(x, t), the component along the direction

u1(t+ α(t)).

Definition 3.5 Let

b1(x, t) = c1(x, t)u1(t+ α(t)) (3.11)

and

b̃(x, t) = D(x)b(t)− b1(x, t)

=
n∑
i=2

ci(x, t)ui(t+ α(t))
(3.12)

where the scalars ci(x, t) are given by

ci(x, t) = vTi (t+ α(t))D(x)b(t)

Lemma 3.3 xp(t) = xs(t+ α(t)) solves (3.9) (which is repeated here)

ẋ = f(x) + b1(x, t)

Proof: Substituting xs(t+ α(t)) in (3.9) and using ẋs(t) = u1(t) we obtain

ẋs(t+ α(t))(1 + α̇(t)) = f
(
xs(t+ α(t))

)
+ vT1 (t+ α(t))D

(
xs(t+ α(t))

)
b(t)u1(t+ α(t))

Since xs(t) satisfies ẋ = f(x) for all time, in particular time t+ α(t), the above expression

simplifies to

α̇(t)u1(t+ α(t)) = vT1 (t+ α(t))D
(
xs(t+ α(t))

)
b(t)u1(t+ α(t))
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or

α̇(t) = vT1 (t+ α(t))D
(
xs(t+ α(t))

)
b(t)

α(t) and c1(t) are scalars while u1(t) and v1(t) are vectors. In the above reduction we have

used the fact that for any t, all the entries of ẋs(t) and hence u1(t) cannot be simultaneously

zero otherwise the oscillator will cease to oscillate.

With Lemma 3.3, we have shown that the b1(x, t) component causes deviations only

along the limit cycle, i.e., phase deviations. Next, we show that the remaining perturbation

component b̃(x, t) perturbs xp(t) only by a small amount y(t), provided b(t) is small. We

first make the following useful observation.

Lemma 3.4 For b(t) sufficiently small, the mapping t 7→ t+ α(t) is invertible.

Proof: It suffices to show that s(t) = t+α(t) is strictly monotonic. The time derivative of

this function is 1 + α̇(t). Now

α̇(t) = vT1 (t+ α(t))D
(
xs(t+ α(t))

)
b(t)

The terms vT1 (·) and D(xs(·)) are both bounded because they are periodic with t. Hence

|α̇(t)| can be made less than 1 if b(t) is small enough. Since the derivative of the mapping

will then be strictly greater than 0, the mapping will be invertible.

Definition 3.6 Let b(t) be small enough that s(t) = t+α(t) is invertible. Then define b̂(·)
by:

b̂(s(t)) = b(t)

Definition 3.7 Define

y(t) =
n∑
i=2

ui(s)
∫ s

0
exp (µi(s− r))vTi (r)D(xs(r))b̂(r)dr

where s = t+ α(t).

Remark 3.9 In the above definition of y(t) the index of the summation starts from 2. Since

| exp (µiT )| < 1, i ≥ 2 (due to asymptotic orbital stability), this implies that y(t) is within a

constant factor of b(t), hence small and bounded for all t.
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Theorem 3.5 If b(t) is small (implying that y(t) in Definition 3.7 is also small), then

z(t) = xp(t) + y(t)

solves (3.8) to first order in y(t).

Proof: Consider (3.9) perturbed by b̃(x, t) to obtain (3.8). Assume the solution to be

z(t) = xp(t) + y(t). Then we have:

ẋp(t) + ẏ(t) = f (xp(t) + y(t)) + b1(xp(t) + y(t), t) + b̃(xp(t) + y(t), t)

Ignoring higher order terms in b(t) and y(t), and using Lemma 3.3 we have

ẏ(t) ≈ ∂f

∂x

∣∣∣∣
xp(t)

y(t) + b̃(xp(t), t)

or equivalently

ẏ(t) ≈ J(t+ α(t))y(t) + b̃
(
xs(t+ α(t)), t

)
with

J(x) =
∂f

∂x

∣∣∣∣
xs(t)

Now we define s(t) = t+ α(t), and apply Lemma 3.4 to invert s(t) in order to define

ŷ(s) = y(t) (3.13)

and

b̂(xs(s(t)), s(t)) = b̃
(
xs(s(t)), t

)
= D

(
xs(s(t))

)
b(t) = D

(
xs(s(t))

)
b̂(s(t)) (3.14)

Now we substitute z(t) = y(t) + xp(t) in (3.2) and come up with a differential

equation for y(t). We again assume that ||y(t)|| � ||xp(t)||. We observe that

ẋs(t+ α(t))(1 + α̇(t)) + ẏ(t) = f(xp(t) + y(t)) +D(xs(t+ α(t)) + y(t))b(t)

≈ f(xp(t)) +
∂f(x)
∂x

∣∣∣∣
xs(t+α(t))

y(t)

+D
(
xs(t+ α(t))

)
b(t) +

∂D(x)
∂x

∣∣∣∣
xs(t+α(t))

y(t)b(t)

(3.15)
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Since
∂D

∂x

∣∣∣∣
xs(t+α(t))

y(t)b(t)

is linear in both y(t) and b(t), it can be written as M
(
xs(t+α(t)), b(t)

)
y(t) for some M(·).

Moreover, since M(·) is linear in b(t), it is small when b(t) is small. Specifically, we can

make M
(
xs(t+α(t)), b(t)

)
� ∂f

∂x

(
xs(t+α(t))

)
and hence this term can be ignored in (3.15)

which is rewritten as
dy(t)

dt
=
∂f(x)
∂x

∣∣∣∣
xp(t)

y(t) +D
(
xs(t+ α(t))

)
b(t)

− vT1 (t+ α(t))D
(
xs(t+ α(t))

)
b(t)u1(t+ α(t))

⇒ dy(t)
dt

=
∂f(x)
∂x

∣∣∣∣
xp(t)

y(t) + b̃
(
xs(t+ α(t)), t

)
⇒ dŷ(s)

ds

(
1 +

dα
dt

)
=
∂f(x)
∂x

∣∣∣∣
xs(s)

ŷ(s) + b̂(xs(s), s)

From (3.10), we conclude that α̇ is bounded to within a constant multiple of b(t),

hence |α̇| � 1 if |b(t)| � 1. Hence we can approximate 1 + α̇ by 1 to obtain
dŷ(s)

ds
≈ J(xs(s))ŷ(s) + b̂(xs(s), s)

The above equation is of the same form as (3.3), hence its solution is of the form

ŷ(s) =
n∑
i=1

ui(s)
∫ s

0
exp (µi(s− r))vTi (r)b̂(xs(r), r)dr

Consider the i = 1 term of the above expression. Since µ1 = 0, the integrand equals the

vT1 (r)b̂(xs(r), r). From its definition in (3.14), it is clear that b̂, expressed in the basis

{ui(·)}, contains no u1 component. Therefore, by bi-orthogonality of {ui(·)} and {vi(·)},
vT1 (r)b̂(xs(r), r) is identically zero, hence the i = 1 term vanishes. The expression for y(t)

then becomes

y(t) = ŷ(t̂) =
n∑
i=2

ui(s)
∫ s

0
exp (µi(s− r))vTi (r)b̂(xs(r), r)dr

or equivalently

y(t) =
n∑
i=2

ui(s)
∫ t̂

0
exp (µi(t̂− r))vTi (r)D(xs(r))b̂(r)dr

Hence we see that the perturbed oscillator output can be decomposed into a phase

deviation term xs(t+α(t)) and the amplitude deviation term y(t). We will use these results

to develop phase noise characterization for oscillators.
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3.4 Example

We conclude this chapter by demonstrating our perturbation analysis technique.

We perform a perturbation analysis of probably the most celebrated oscillator in literature;

the van der Pol oscillator [vdP22]. The reason for this choice is that we can analytically

compute the approximate response of the free running and forced (which in our case would

be perturbed) van der Pol oscillator. We need this to compute the Floquet eigenvectors

needed for our analysis. This example is somewhat contrived since this oscillator is tra-

ditionally analyzed by treating the weak nonlinearity as a perturbation term. In our case

however, we treat the forcing term as the perturbation term.

3.4.1 The van der Pol Oscillator

The van der Pol oscillator equation is given by

ẍ+ µ(x2 − 1)ẋ+ ω2
0x = 0

We use the Lindstedt-Poincaré method to calculate the response of the oscillator [Hag81,

NM79]. In order to calculate the angular frequency ω, we introduce normalized time τ = ωt.

Then the above equation changes to

ω2x′′ + µω(x2 − 1)x′ + ω2
0x = 0 (3.16)

where the primes indicate derivative with respect to τ . We assume that ω and x(τ) can be

expanded in terms of the power series of µ, i.e.,

ω = ω0 + µω1 + µ2ω2 + µ3ω3 + . . .

x(τ) = x0(τ) + µx1(τ) + µ2x2(τ) + µ3x3(τ) + . . .
(3.17)

Substituting this in (3.16) we have

[ω2
0 + 2µω0ω1 + µ2(ω2

1 + 2ω0ω1) + µ3(2ω1ω2 + 2ω0ω3) + . . . ](x′′0 + µx′′1 + µ2x′′2 + . . . )

+ µ(ω0 + µω1 + µ3ω3 + µ2ω2 + . . . )[x2
0 − 1 + 2µx0x1 + µ2(x2

1 + 2x0x2) + µ3(2x1x2

+ 2x0x3) + . . . ](x′0 + µx′1 + µ2x′2 + µ3x′3) + ω2
0(x0 + µx1 + µ2x2 + µ3x3 + . . . ) = 0
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Collecting the coefficients of various powers of µ and equating them to zero we have

µ0 : ω2
0x
′′
0 + ω2

0x0 = 0 (3.18)

µ1 : ω2
0x
′′
1 + 2ω0ω1x

′′
0 + ω0(x2

0 − 1)x′0 + ω2
0x1 = 0 (3.19)

µ2 :
ω2

0x
′′
2 + 2ω0ω1x

′′
1 + (ω2

1 + 2ω0ω2)x′′0 + ω0(x2
0 − 1)x′1 + 2ω0x0x1x

′
0

+ω1(x2
0 − 1)x′0 + ω2

0x2 = 0
(3.20)

µ3 :

ω2
0x
′′
3 + 2ω0ω1x

′′
2 + (ω2

1 + 2ω0ω2)x′′1 + (2ω1ω2 + 2ω0ω3)x′′0 + ω0(x2
0 − 1)x′2

+2ω0x0x1x
′
1 + ω0(x2

1 + 2x0x2)x′0 + ω1(x2
0 − 1)x′1 + 2ω1x0x1x

′
0

+ω2(x2
0 − 1)x′0 + ω2

0x3 = 0

(3.21)

(3.18) has a general solution of the form

x0(τ) = A0 cos τ +B0 sin τ

where A0 and B0 are arbitrary constants. Since (3.16) is autonomous and since only the

periodic solution is of interest, we choose x′(0) = 0, and satisfy this condition by choosing

x′i(0) = 0 for all i. This implies B0 = 0 and

x0(τ) = A0 cos τ (3.22)

Rearranging (3.19), we have

x′′1 + x1 = −2
ω1

ω0
x′′0 −

1
ω0

(x2
0 − 1)x′0

Substituting the value of x0 from (3.22) in the above equation we have

x′′1 + x1 = 2A0
ω1

ω0
cos τ +

1
ω0

(A2
0 cos2 τ − 1)A0 sin τ

= 2A0
ω1

ω0
cos τ +

A0

ω0

(
A2

0

4
− 1
)

sin τ +
A3

0

4ω0
sin 3τ

For the above equation to have periodic solution, the coefficients of sin τ and cos τ should

be zero, i.e.,

2A0
ω1

ω0
= 0 and

A0

ω0

(
1− 1

4
A2

0

)
= 0

which has a nontrivial solution A0 = 2 and ω1 = 0. I.e., (3.22) becomes

x0(τ) = 2 cos τ (3.23)
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and equation for x1 becomes

x′′1 + x1 =
2
ω0

sin 3τ

The above equation has a general solution of the form

x1(τ) = A1 cos τ +B1 sin τ − 1
4ω0

sin 3τ

where A1 and B1 are constants yet to be determined. Requiring x′1(0) = 0 we obtain

B1 = 3/(4ω0), i.e.,

x1(τ) = A1 cos τ +
3

4ω0
sin τ − 1

4ω0
sin 3τ (3.24)

Using the fact that ω1 = 0 and the form of x0(τ) and x1(τ) ((3.23) and (3.24)), (3.20) is

rewritten as

x′′2 + x2 = −2
ω2

ω0
x′′0 −

1
ω0

(x2
0 − 1)x′1 −

2
ω0
x0x1x

′
0

=
(

4ω2

ω0
+

1
4ω2

0

)
cos τ +

2A1

ω0
sin τ +

3A1

ω0
sin 3τ − 3

2ω2
0

cos 3τ +
5

4ω2
0

cos 5τ

The assumed periodicity of the solution requires that the coefficients of cos τ and sin τ be

zero, i.e., ω2 = −1/(16ω0) and A1 = 0. Hence the equation governing x2 becomes

x′′2 + x2 = − 3
2ω2

0

cos 3τ +
5

4ω2
0

cos 5τ

which has a solution

x2(τ) = A2 cos τ +B2 sin τ +
3

16ω2
0

cos 3τ − 5
96ω2

0

cos 5τ

where A2 and B2 are constants yet to be determined. Since x′2(0) = 0, B2 = 0.

Using ω1 = 0 and ω2 = −1/(16ω0), (3.21) is rewritten as

x′′3 + x3 =
1

8ω2
0

x′′1 − 2
ω3

ω0
x′′0 −

1
ω0

(x2
0 − 1)x′2 −

2
ω0
x0x1x

′
1 −

1
ω0

(x2
1 + 2x0x2)x′0

+
1

16ω3
0

(x2
0 − 1)x′0

=
(

1
4ω3

0

+
2A2

ω0

)
sin τ +

4ω3

ω0
cos τ +

(
3A2

ω0
− 9

32ω3
0

)
sin 3τ +

35
24ω3

0

sin 5τ

− 7
12ω3

0

sin 7τ

The coefficients of sin τ and cos τ are zero hence A2 = −1/(8ω2
0) and ω3 = 0.
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Hence we conclude that

ω = ω0

(
1− µ2

16ω2
0

)
+ . . . (3.25)

and the solution x(τ) of (3.16) is

x(τ) =
(

2− µ2

8ω2
0

)
cos τ +

3µ
4ω0

sin τ − µ

4ω0
sin 3τ +

5µ2

16ω2
0

cos 3τ − 5µ2

96ω2
0

cos 5τ + . . .

(3.26)

Assuming that the nonlinearity is small, i.e., µ is small, terms of the order of µ3

and above have been neglected in the above expansion.

3.4.2 Forced van der Pol Oscillator Equation

Next we find the solution of the forced van der Pol oscillator. We assume that this

oscillator is forced by a small forcing signal K cos γt where γ and ω are incommensurable

and that K � 1. Then the forced van der Pol oscillator equation becomes

ẍ+ µ(x2 − 1)ẋ+ ω2
0x+K cos γt = 0

Introducing τ = ωt we rewrite the above equation as

ω2x′′ + µω(x2 − 1)x′ + ω2
0x+K cosβτ = 0 (3.27)

where β = γ
ω . Assuming the same form of ω and x(τ) as in (3.17), substituting it in (3.27)

and equating the coefficients of various powers of µ we find that the equations governing

xi, i > 0 are the same as (3.19)–(3.21). However, since the solution of the equation for x0

changes with the introduction of the perturbation term, xi(τ)s also need to recomputed.

The equation for x0 changes to

ω2
0x
′′
0 + ω2

0x0 +K cosβτ = 0

which has a solution

x0(τ) = C0 cos τ +D0 sin τ +
K

ω2
0(β2 − 1)

cosβτ

where C0 and D0 are constants yet to be determined. Requiring as before that x′i(0) = 0

we have D0 = 0.
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The equation governing x1(τ) is written as

x′′1 + x1 = −2
ω1

ω0
x′′0 −

1
ω0

(x2
0 − 1)x′0

=
2C0ω1

ω0
cos τ +

(
−C0

ω0
+
C3

0

4ω0
+

K2C0

2ω5
0(β2 − 1)2

)
sin τ +

C3
0

4ω0
sin 3τ

+
2Kβ2ω1

ω3
0(β2 − 1)

cosβτ +
Kβ

ω3
0(β2 − 1)

(
−1 +

C2
0

2
+

K2

4ω4
0(β2 − 1)2

)
sinβτ

+
K2C0(2β + 1)
4ω5

0(β2 − 1)2
sin(2β + 1)τ +

K2D0(2β − 1)
4ω5

0(β2 − 1)2
sin(2β − 1)τ

+
K3β

4ω7
0(β2 − 1)3

sin 3βτ +
C2

0K(β − 2)
4ω3

0(β2 − 1)
sin(β − 2)τ +

C2
0K(β + 2)

4ω3
0(β2 − 1)

sin(2 + β)τ

In the above expansion we have used the fact that β and 1 are incommensurable and hence

no terms involving sine and cosine of βτ , or any multiples thereof, contribute to cos τ or

sin τ . Requiring that the coefficients of cos τ and sin τ vanish, we have ω1 = 0 and

C0 = 2

√
1− K2

2ω4
0(β2 − 1)2

(3.28)

Even though we assumed K � 1, in general we cannot ignore the K2 term in (3.28) since

K/(β2 − 1) need not necessarily be small. The equation for x1 is given by

x′′1 + x1 =
C3

0

4ω0
sin 3τ +

Kβ

ω3
0(β2 − 1)

(
1− 3K2

4ω4
0(β2 − 1)2

)
sinβτ +

K3β

4ω7
0(β2 − 1)3

sin 3βτ

+
K2C0(2β + 1)
4ω5

0(β2 − 1)2
sin(2β + 1)τ +

K2C0(2β − 1)
4ω5

0(β2 − 1)2
sin(2β − 1)τ

+
C2

0K(β − 2)
4ω3

0(β2 − 1)
sin(β − 2)τ +

C2
0K(β + 2)

4ω3
0(β2 − 1)

sin(2 + β)τ

The solution to this equation is given by

x1 = C1 cos τ +D1 sin τ − C3
0

32ω0
sin 3τ − Kβ

ω3
0(β2 − 1)2

(
1− 3K2

4ω4
0(β2 − 1)2

)
sinβτ

− K3β

4ω7
0(β2 − 1)3(9β2 − 1)

sin 3βτ − K2C0(2β + 1)
16ω5

0(β2 − 1)2β(β + 1)
sin(2β + 1)τ

− K2C0(2β − 1)
16ω5

0(β2 − 1)2β(β − 1)
sin(2β − 1)τ − C2

0K(β − 2)
4ω3

0(β2 − 1)(β−)(β − 1)
sin(β − 2)τ

− C2
0K(β + 2)

4ω3
0(β2 − 1)(β + 3)(β + 1)

sin(2 + β)τ

where C1 and D1 are constants yet to be determined. Requiring that x′1(0) = 0, we have

D1 =
3C3

0

32ω0
+

Kβ2

ω3
0(β2 − 1)2

+
K2C0(4β − 3)
8ω5

0(β2 − 1)3
+

C2
0Kβ(β2 − 5)

2ω3
0(β2 − 1)2(β2 − 9)

(3.29)
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The equation governing x2 is written as

x′′2 + x2 = −2
ω2

ω0
x′′0 −

1
ω0

(x2
0 − 1)x′1 −

2
ω0
x0x1x

′
0

= C1

(
2
ω0

+
K2

ω5
0(β2 − 1)2

)
sin τ −

[
4β12ω8

0 + 64ω9
0ω2β

12 − 896ω9
0ω2β

10− 56β10ω8
0

+ 220β8ω8
0 − 4K2β8ω4

0 + 3520ω9
0ω2β

8 − 16K2ω4
0β

6 − 400ω8
0β

6 − 6400ω9
0ω2β

6

+K4β4 + 380ω8
0β

4 + 200K2ω4
0 + 6080ω9

0ω2β
4 + 21K4β2 − 2944ω9

0ω2β
2

− 184ω8
0β

2 − 336K2ω4
0β

2 + 156K2ω4
0 + 36ω8

0 − 78K4 + 576ω9
0ω2

]
C0

32(β2 − 1)(β2 − 1)4
cos τ + . . .

In the last expansion, only the coefficients of sin τ and cos τ have been retained. Since these

coefficients should be zero, we conclude that C1 = 0 and

ω2 = − 1
16ω0

− K2(β4 + 4β2 − 39)
16ω5

0(β2 − 9)(β2 − 1)3
+

K4(β4 + 21β2 − 78)
64ω9

0(β2 − 9)(β2 − 1)5

Hence the response of the forced van der Pol oscillator is given by

x(τ) = C0 cos τ + µD1 sin τ − µC3
0

32ω0
sin 3τ − µKβ

ω3
0(β2 − 1)2

(
1− 3K2

4ω4
0(β2 − 1)2

)
sinβτ

− µK3β

4ω7
0(β2 − 1)3(9β2 − 1)

sin 3βτ − µK2C0(2β + 1)
16ω5

0(β2 − 1)2β(β + 1)
sin(2β + 1)τ

− µK2C0(2β − 1)
16ω5

0(β2 − 1)2β(β − 1)
sin(2β − 1)τ − µC2

0K(β − 2)
4ω3

0(β2 − 1)(β − 3)(β − 1)
sin(β − 2)τ

− µC2
0K(β + 2)

4ω3
0(β2 − 1)(β + 3)(β + 1)

sin(2 + β)τ

(3.30)

where C0 and D1 are defined by (3.28) and (3.29) and

ω = ω0 −
µ2

16ω0
− µ2K2(β4 + 4β2 − 39)

16ω5
0(β2 − 9)(β2 − 1)3

+
µ2K4(β4 + 21β2 − 78)
64ω9

0(β2 − 9)(β2 − 1)5

We now carry out a perturbation analysis of the forced van der Pol oscillator and obtain

the phase error term α(t) and compare the phase shifted steady-state solution with (3.30).

3.4.3 Perturbation Analysis of the Forced van der Pol Oscillator

In order to perform a perturbation analysis of the van der Pol oscillator as described

in Section 3.3, we rewrite (3.16) in form (3.1) by introducing two variables, y1(τ) = x(τ)
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and y2(τ) = x′(τ) as

y′ =

y′1
y′2

 =

 y2

−µ
ω (y2

1 − 1)y2 −
ω2

0
ω2 y1


The steady-state solution of this equation can obtained from (3.26) asy1(τ)

y2(τ)

 =

 (2− µ2

8ω2
0

)
cos τ + 3µ

4ω0
sin τ − µ

4ω0
sin 3τ + 3µ2

16ω2
0

cos 3τ − 5µ2

96ω2
0

cos 5τ + . . .

−
(

2− µ2

8ω2
0

)
sin τ + 3µ

4ω0
cos τ − 3µ

4ω0
cos 3τ − 9µ2

16ω2
0

sin 3τ + 25µ2

96ω2
0

sin 5τ + . . .


(3.31)

This solution is periodic (in τ) with period 2π. The Jacobian for this system of equations

is given by

J(τ) =

 0 1

−2µωy1y2 −
ω2

0
ω2 −µ

ω (y2
1 − 1)


Since y1(τ) and y2(τ) are periodic, J(τ) is also periodic. To compute v1(τ) (see Remark 3.6),

we need to find the solution of

v′ = −JT (τ)v

from τ = 0 to τ = 2π subject to the initial condition v1(0) such that vT1 (0)u1(0) = 1. v1(0)

is obtained by finding the eigenvector of ΦT (2π, 0) corresponding to the eigenvalue 1, where

Φ(τ, σ) is the state transition matrix of the system of equations

u′ = J(τ)u (3.32)

which has one of the solutions as u1(τ) = y′(τ). We first make the following useful obser-

vations.

Lemma 3.6 Let

W (τ, σ) = det Φ(τ, σ)

If W (σ, σ) 6= 0 then

W (τ, σ) = W (σ, σ) exp
(∫ τ

σ
trJ(t)dt

)
where trJ(t) denotes the trace of the matrix J(t).
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Proof: [Gri90]

Lemma 3.7 Let B be defined as in Section 3.2.1, i.e.,

B = Φ−1(τ, σ)Φ(τ + 2π, σ)

Then B is given by

detB = exp
(∫ 2π

0
trJ(τ)dτ

)
(3.33)

Proof: [Gri90]

Let Φ(τ, 0) be given by

Φ(τ, 0) =

φ11(τ) φ12(τ)

φ21(τ) φ22(τ)


where φ11(τ)

φ21(τ)

 and

φ12(τ)

φ22(τ)


are linearly independent solution of (3.32) such that φ11(0) = 1, φ21(0) = 0, φ12(0) = 0 and

φ22(0) = 1. Therefore, the matrix B is given by

B =

φ11(2π) φ12(2π)

φ21(2π) φ22(2π)


The characteristic multipliers ρ of (3.32) are the eigenvalues of B and hence are given by

ρ2 − (φ11(2π) + φ22(2π))ρ+ detB = 0

By Lemma 3.7 we have

detB = exp
(∫ 2π

0
trJ(τ)dτ

)
= exp

(∫ 2π

0
−µ
ω

(y2
1 − 1)dτ

)
= exp

[
−πµ
ω

(
4 +

µ2

2ω2
0

+
9µ2

16ω2
0

+
µ2

16ω2
0

− 2
)]

= exp

[
−2µπ
ω0

(
1 +

9µ2

16ω2
0

)(
1− µ2

16ω2
0

)−1
]

= exp
[
−2µπ
ω0

(
1 +

5µ2

8ω2
0

)]
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where we have neglected the terms corresponding to µ4. Since (3.16) has a periodic solution,

the time derivative of the steady-state solution is a solution for (3.32) and 1 is a characteristic

multiplier. Also since y′1(0) = 0, we have

ρ2 = 1 and ρ1 = exp
[
−πµ
ω0

(
2 +

5µ2

4ω2
0

)]
For positive µ and ω, ρ1 < 1 and hence the oscillator is asymptotically orbitally stable.

Since y′1(0) = 0, and y′(τ) is a periodic solution of (3.32) with period 2π, φ12(2π) =

0 and φ22(2π) = 1. Moreover since

φ11(2π) + φ22(2π) = ρ1 + ρ2

we have

φ11(2π) = exp
[
−πµ
ω0

(
2 +

5µ2

4ω2
0

)]
= ρ1

Hence B is of the form

B =

φ11(2π) 0

φ21(2π) 1

 =

 φ11(2π)−1√
(φ11(2π)−1)2+φ2

21(2π)
0

φ21(2π)√
(φ11(2π)−1)2+φ2

21(2π)
1


φ11(2π) 0

0 1

√(φ11(2π)−1)2+φ2
22(2π)

φ11(2π)−1 0

− φ21(2π)
φ11(2π)−1 1


and

v1(0) =
1

−2− 25µ2

96ω2
0

− φ21(2π)
φ11(2π)−1

1


We will not explicitly determine the first component of v1(0) but obtain it by asserting the

periodicity of the solutions of v′ = −JT (τ)v. This equation is rewritten asv′11

v′21

 =

 0 2µωy1y2 + ω2
0
ω2

−1 µ
ω (y2

1 − 1)

v11

v21


or

v′11 =
(

2
µ

ω
y1y2 +

ω2
0

ω2

)
v21 (3.34)

v′21 = −v11 +
µ

ω
(y2

1 − 1)v21 (3.35)

Differentiating (3.35) and substituting for v′11 from (3.34) we have

v′′21 = −v′11 +
µ

ω
(y2

1 − 1)v′21 + 2
µ

ω
y1y
′
1v21

= −2
µ

ω
y1y2v21 −

ω2
0

ω2
v21 +

µ

ω
(y2

1 − 1)v′21 + 2
µ

ω
y1y2v21
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i.e.,

ω2v′′21 − µω(y2
1 − 1)v′21 + ω2

0v21 = 0 (3.36)

We know that this equation has a periodic solution with period 2π since (3.16) describes an

asymptotically orbitally stable oscillator. We assume that the solution of (3.36) is of the

form

v21(τ) = v21,0(τ) + µv21,1(τ) + µ2v21,2(τ) + µ3v21,3(τ) + . . .

Substituting this expression and the value of y1(τ) in (3.36) we have

ω2
0

(
1− µ2

8ω2
0

)
(v′′21,0 + µv′′21,1 + µ2v′′21,2 + µ3v′′21,3)− µω0

(
1− µ2

16ω2
0

)(
4 cos2 τ − 1

+
3µ
ω0

sin τ cos τ − µ

ω0
sin 3τ cos τ − µ2

2ω2
0

cos2 τ +
9µ2

16ω2
0

sin2 τ +
µ2

16ω2
0

sin2 3τ

− 3µ2

8ω2
0

sin τ sin 3τ +
3µ2

4ω2
0

cos τ cos 3τ − 5µ2

24ω2
0

cos τ cos 5τ
)

(v′21,0 + µv′21,1 + µ2v′21,2

+ µ3v′21,3) + ω2
0(v21,0 + µv21,1 + µ2v21,2 + µ3v21,3) = 0

In the above expansion, only terms up to the power of µ3 have been considered. Equating

the coefficient of µ0 to zero we have

ω2
0v
′′
21,0 + ω2

0v21,0 = 0

which has a solution

v21,0(τ) = A0 cos τ +B0 sin τ

where A0 and B0 are constants. Since u(0)vT (0) = 1 and from (3.31) we know that

u(0) =

y′1(0)

y′2(0)

 =

 0

−2− 25µ2

96ω2
0


Therefore

v21(0) =
1

−2− 25µ2

96ω2
0

≈ −1
2

(
1− 25µ2

192ω2
0

)

and we have v21,0(0) = −1/2 and v21,1(0) = 0 and

v21,2(0) =
25

384ω2
0
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This implies A0 = −1/2. Equating the coefficients of µ to zero we have

ω2
0v
′′
21,1 − ω0(4 cos2 τ − 1)v′21,0 + ω2

0v21,1 = 0

or equivalently

v′′21,1 + v21,1 =
1

2ω0
sin 3τ − 2B0

ω0
cos τ − B0

ω0
cos 3τ

For this equation to have a periodic solution the coefficient of cos τ term should be zero,

i.e., B0 = 0. The equation governing v21,1 becomes

v′′21,1 + v21,1 =
1

2ω0
sin 3τ

which has a solution

v21,1(τ) = A1 cos τ +B1 sin τ − 1
16ω0

sin 3τ

where A1 and B1 are constants yet to be determined. Requiring that v21,1(τ) = 0, we have

A1 = 0. Equating the coefficient of µ2 to zero we have

ω2
0v
′′
21,2 −

1
8
v′′21,0 + ω2

0v21,2 − (3 sin τ cos τ − sin 3τ cos τ)v′21,0 − ω0(4 cos2 τ − 1)v′21,1 = 0

or equivalently

v′′21,2 + v21,2 =
1

16ω2
0

cos τ +
1
ω0

(4 cos2 τ − 1)
(
B1 cos τ − 3

16ω0
cos 3τ

)
+

1
2ω2

0

cos τ sin τ(3 sin τ − sin 3τ)

=
(

2B1

ω0
+

1
8ω2

0

)
cos τ +

(
B1

ω0
− 9

16ω2
0

)
cos 3τ − 1

16ω2
0

cos 5τ

Since the coefficient of cos τ should be zero for v21(τ) to have a periodic solution, B1 =

−1/(16ω0) and the above equation reduces to

v′′21,2 + v21,2 = − 5
8ω2

0

cos 3τ − 1
16ω2

0

cos 5τ

which has a solution

v21,2(τ) = A2 cos τ +B2 sin τ +
5

64ω2
0

cos 3τ +
1

384ω2
0

cos 5τ

Requiring that v21,2(0) = 25/(384ω2
0) we have A2 = −1/(64ω2

0). Equating the coefficient of

µ3 to zero equating the coefficient of cos τ to zero we have B2 = 0. Hence v21(τ) is given by

v21(τ) = −
(

1
2

+
µ2

64ω2
0

)
cos τ − µ

16ω0
sin τ − µ

16ω0
sin 3τ +

5µ2

64ω2
0

cos 3τ +
µ2

384ω2
0

cos 5τ
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Figure 3.3: Phase deviation α(τ) of the forced van der Pol oscillator

For the forced van der Pol oscillator, we have the forcing term as the perturbation

term for the purpose our analysis. From (3.10) we have

α′ = vT1 (τ + α(τ))D(xs(τ + α(τ))b(τ)

=
[
v11(τ + α(τ)) v21(τ + α(τ))

] 0

−K cosβτ


= −Kv21(τ + α(τ)) cosβτ

The variation of α(τ) for ω0 = 1, µ = 0.2, β = π/3 and K = 0.1 is shown in

Figure 3.3. We see that this phase deviation keeps increasing without bounds. Figure 3.4

shows the forced oscillator response z(τ) and the steady-state response phase shifted by the

amount α(τ). We see that the two waveforms differ in amplitude but not in phase even for

large τ .
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Figure 3.4: Exact (z(τ)) and phase shifted (xs(τ + α(τ))) response of the forced van der
Pol oscillator
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Chapter 4

Noise Analysis of Stable Oscillators

In Chapter 3 we developed a new perturbation analysis technique suitable for

stable oscillators. We showed that it is not mathematically consistent to view the perturbed

oscillator response as the sum of pure tones (unperturbed oscillator response) and a small

deviation. Rather, the perturbed oscillator output should be viewed as a sum of two signals:

unperturbed oscillator output phase shifted by α(t) along the limit cycle (Definition 3.4)

and a small deviation away from the limit cycle. In case of stochastic perturbations, the

oscillator output is a stochastic process which can also be viewed as a sum of two stochastic

processes: phase noise and amplitude noise process. Since phase noise is the dominant

effect in the oscillator response we will not concentrate on amplitude noise at present. We

begin by obtaining a stochastic characterization of the phase deviation α(t) which we use

to obtain the time domain and frequency domain characterization of the output of noisy

oscillator. We give efficient numerical techniques, both in time and frequency domain for

characterization of the output of a noisy oscillator. We conclude this chapter with some

examples of electrical circuits which have been analyzed with this technique.

4.1 Stochastic Characterization of Phase Deviation

In the previous chapter we saw that an oscillatory system of equation

ẋ = f(x)

describes an asymptotically orbitally stable limit cycle and has a T -periodic steady-state

solution xs(t). When this system of equations is perturbed by a small perturbation term
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D(x)b(t), the resulting oscillator output can be approximated by phase shifting the unper-

turbed response by an amount α(t) given by

dα(t)
dt

= vT1 (t+ α(t))D
(
xs(t+ α(t))

)
b(t)

We now characterize the phase deviation α when the perturbation b(t) is a vector

of uncorrelated white noise sources ξ(t), i.e.,

dα(t)
dt

= vT1 (t+ α(t))D
(
xs(t+ α(t))

)
ξ(t) (4.1)

The extension to correlated noise sources is trivial. We consider uncorrelated noise sources

for notational simplicity. Moreover, various noise sources in electronic devices usually have

independent physical origin, and hence they are modelled as uncorrelated stochastic pro-

cesses. Since the input to this equation is now a stochastic process, the output α(t) is

also a stochastic process and we need to treat (3.10) as a stochastic differential equa-

tion [Øks98, Arn74, Gar83] since the rules of ordinary calculus are no longer applicable.

The stochastic process α is a family {α(t) : t ∈ R+} of random variables indexed

by time t and taking values in R. Evaluation of the random variable α(t) at some time

t yields a number in R, and an evaluation of α for all t ∈ R+ is called a realization or

sample path of the stochastic process α. The “complete” collection of the sample paths of

the stochastic process α is called the ensemble. The α(t)s (for different values of t) are not

independent in general. If t = [t1, t2, . . . , tn] is a vector taking values in R+, then the vector

[α(t1), α(t2), . . . , α(tn)]

has the joint distribution function Fd(η, t) : Rn → [0, 1] given by

Fd(η, t) = P [α(t1) ≤ η1, . . . , α(tn) ≤ ηn]

where P [·] denotes the probability measure. The collection {F (η, t)}, as t ranges over all

vectors of members of R+ of any finite length, is called the collection of finite-dimensional

distributions (FDDs) of α. In general, the knowledge of the FDDs of a process α does not

yield “complete” information about the properties of its sample paths [GS92]. Nevertheless,

the FDDs provide more than adequate information to calculate the second-order (e.g.,

spectral) properties of a stochastic process, since they capture the correlation information

between α(t1) and α(t2) for all t1, t2 ∈ R+.

In this section, we will employ the following procedure to find an adequate prob-

abilistic characterization of the phase deviation α for our purposes:
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1. We first calculate the time-varying probability density function (PDF) pα(η, t) of α

defined as

pα(η, t) =
∂P [α(t) ≤ η]

∂η
t ≥ 0

and show that it becomes the PDF of a Gaussian random variable asymptotically

with t. A Gaussian PDF is completely characterized by the mean and the variance of

the random variable. We show that, asymptotically with t, α(t) becomes a Gaussian

random variable with a constant (as a function of t) mean m and a variance that is

linearly increasing with time, i.e., ct for some constants m and c. The fact that α(t) is

a Gaussian random variable for every t does not imply that α is a Gaussian stochastic

process. α is a Gaussian process if its FDDs are multivariate Gaussian distributions.

Individually Gaussian random variables are not necessarily jointly Gaussian. In this

step, we only calculate the time-varying PDF of α(t) which is only a partial charac-

terization of its FDDs [GS92].

2. The time-varying PDF pα(η, t) does not provide any correlation information between

α(t) and α(t+ τ) that is needed for the evaluation of its spectral characteristics. We

then calculate this correlation to be

E [α(t)α(t+ τ)] = m2 + cmin(t, t+ τ)

3. We then show that α(t1) and α(t2) become jointly Gaussian asymptotically with time,

which does not follow immediately from the fact that they are individually Gaussian.

Starting with the stochastic differential equation (3.10) for α, one can derive a

partial differential equation, known as the Fokker-Planck equation [Gar83, Ris96], for the

time-varying PDF pα(η, t). We outline this derivation next.

4.1.1 Kramers-Moyal Expansion and Fokker-Planck Equation

The probability density functions pα(η, t+ ∆t) and pα(η, t) are related by

pα(η, t+ ∆t) =
∫
p(η, t+ ∆t|η̄, t)pα(η̄, t)dη̄
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where p(η, t + ∆t|η̄, t) is the transition probability density function. We express p(η, t +

∆t|η̄, t) in terms of its moments. The ith moment of p(η, t+ ∆t|η̄, t) is given by

Mi(η̄, t,∆t) = E

[
(α(t+ ∆t)− α(t))i

]∣∣
α(t)=η̄

=
∫

(η − η̄)ip(η, t+ ∆t|η̄, t)dη

The characteristic function of p(η, t+ ∆t|η̄, t) is given by

C(ω, η̄, t,∆t) =
∫ ∞
−∞

exp(ω(η − η̄))p(η, t+ ∆t|η̄, t)dη

= 1 +
∞∑
i=1

(ω)iMi(η̄, t,∆t)
i!

The probability density function can thus be expressed in terms of its moments as

p(η, t+ ∆t|η̄, t) =
1

2π

∫ ∞
−∞

exp(−ω(η − η̄))C(ω, η̄, t,∆t)dω

=
1

2π

∫ ∞
−∞

exp(−ω(η − η̄))

(
1 +

∞∑
i=1

(ω)iMi(η̄, t,∆t)
i!

)
dω

(4.2)

For small ∆t the moments can be expanded in a Taylor series as

Mi(η̄, t,∆t)
i!

= D(i)(η̄, t)∆t+O
(
(∆t)2

)
where D(i)(η̄, t) are called the Kramers-Moyal expansion coefficients and are given by

D(i)(η̄, t) =
1
i!

lim
∆t→0

E

[
(α(t+ ∆t)− α(t))i

]
∆t

∣∣∣∣∣
α(t)=η̄

(4.3)

Hence (4.2) can be re-expressed as

p(η, t+ ∆t|η̄, t) =
1

2π

∫ ∞
−∞

exp(−ω(η − η̄))

[
1 +

∞∑
i=1

(ω)i
(
D(i)(η̄, t)∆t+O((∆t)2)

)]
dω

and pα(η, t+ ∆t) is given by

pα(η, t+ ∆t) =
∫
p(η, t+ ∆t|η̄, t)pα(η̄, t)dη̄

=
∫

1
2π

∫ ∞
−∞

exp(−ω(η − η̄))

[
1 +

∞∑
i=1

(ω)i
(
D(i)(η̄, t)∆t+O((∆t)2)

)]
dωpα(η̄, t)dη̄

=
1

2π

∫ ∞
−∞

exp(−ωη)
∫

exp(ωη̄)

[
1 +

∞∑
i=1

(ω)i
(
D(i)(η̄, t)∆t+O((∆t)2)

)]
dη̄pα(η̄, t)dω

(4.4)
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The first term of the summation in (4.4) is

1
2π

∫ ∞
−∞

exp(−ωη)
∫

exp(ωη̄)pα(η̄, t)dη̄dω

The inner integral is

F(pα(η, t))

while the outer integral is

F−1(F(pα(η, t)))

where F(f) represents the Fourier transform of f and F−1 represents the inverse Fourier

transform. Hence

1
2π

∫ ∞
−∞

exp(−ωη)
∫

exp(ωη̄)pα(η̄, t)dη̄dω = pα(η, t)

Taking this term to the left hand side of (4.4), dividing throughout with ∆t and taking the

limit as ∆t→ 0, we obtain

∂pα(η, t)
∂t

= lim
∆t→0

pα(η, t+ ∆t)− pα(η, t)
∆t

=
∞∑
i=1

∫ ∞
−∞

1
2π

exp(−ωη)(ω)i
∫

exp(ωη̄)D(i)(η̄, t)pα(η̄, t)dη̄dω

Yet again, the inner integral in the summation is

F(D(i)(η, t)pα(η, t))

and the outer integral is

F−1((ω)iF
(
D(i)(η, t)pα(η, t))

)
which is the ith derivative of (−1)iD(i)(η, t)pα(η, t) with respect to η. Hence we obtain

∂pα(η, t)
∂t

=
∞∑
i=1

∂i

∂ηi
(−1)iD(i)(η, t)pα(η, t) (4.5)

where D(i)(η, t) satisfy (4.3).

Let the random process α(t) satisfy the following nonlinear differential equation

α̇ = h(α, t) + gT (α, t)ξ(t) (4.6)
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where ξ(t) is a vector of uncorrelated zero mean Gaussian white noise processes. By inte-

grating both sides from t to t+ ∆t the above equation can be written in equivalent integral

from as

α(t+ ∆t)− α(t) =
∫ t+∆t

t

(
h(α(t1), t1) + gT (α(t1), t1)ξ(t1)

)
dt1 (4.7)

Expanding h and g in Taylor series we obtain

h(α(t1), t1) = h(η, t1) + h′(η, t1)(α(t1)− η) + . . .

and

gT (α(t1), t1) = gT (η, t1) + gT
′
(η, t1)(α(t1)− η) + . . .

where

h′(η, t1) ,
∂h(η, t1)
∂η

=
∂h(α(t1), t1)
∂α(t1)

∣∣∣∣
α(t)=η

Substituting this in (4.7) we obtain

α(t+ ∆t)− α(t) =
∫ t+∆t

t
h(η, t1)dt1 +

∫ t+∆t

t
h′(η, t1)(α(t1)− α(t))dt1 + . . .

+
∫ t+∆t

t
gT (η, t1)ξ(t1)dt1 +

∫ t+∆t

t
(α(t1)− α(t))gT

′
(η, t1)ξ(t1)dt1 + . . .

For α(t1)−α(t) in the integrand on the right hand side we re-substitute the same expression

as of α(t+ ∆t)− α(t) in the above equation to obtain

α(t+ ∆t)− α(t) =
∫ t+∆t

t
h(η, t1)dt1 +

∫ t+∆t

t
h′(η, t1)

∫ t1

t
h(η, t2)dt2dt1

+
∫ t+∆t

t
h′(η, t1)

∫ t1

t
gT (η, t2)ξ(t2)dt2dt1 + . . .

+
∫ t+∆t

t
gT (η, t1)ξ(t1)dt1 +

∫ t+∆t

t

∫ t1

t
h(η, t2)gT

′
(η, t1)ξ(t1)dt2dt1

+
∫ t+∆t

t

∫ t1

t
gT (η, t2)ξ(t2)ξT (t1)g′(η, t1)dt2dt1 + . . .

(4.8)

Here we have used the fact that gT
′
(η, t1)ξ(t1) = ξT (t1)g′(η, t1). By repeated iteration, only

the white noise sources and the known functions g(η, t) and h(η, t) remain on the right hand

side (since that this computation is being performed for a given η). Hence this expression
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can be used to evaluate D(i)s. Taking the expected value of (4.8) on both sides and using

E [ξ(t)] = 0] and E
[
ξ(t)ξT (t1)

]
= Iδ(t − t1) where I is the identity matrix and δ(t) is the

unit impulse we obtain

E [α(t+ ∆t)− α(t)]|α(t)=η =
∫ t+∆t

t
h(η, t1)dt1 +

∫ t+∆t

t
h′(η, t1)

∫ t1

t
h(η, t2)dt2dt1 + . . .

+
∫ t+∆t

t

∫ t1

t
gT (η, t2)δ(t2 − t1)Ig′(η, t1)dt2dt1 + . . .

In evaluating the last integral we have to find the value of
∫ 0
−t δ(∆t)d∆t. A delta function can

be defined as the limit of a rectangle of width ε and height 1/ε in the interval [−λε, (1−λ)ε]

as ε→ 0. For any value of λ in the interval [0, 1], in the limit ε→ 0, the rectangle tends to

a delta function. However, the integral
∫ 0
−t δ(∆t)d∆t will differ depending on which value

of λ is chosen. A physical interpretation would be to take λ = 0.5 which corresponds to

Stratonovich’s definition of the stochastic integral (Section A.2). This states that, in order

to evaluate a stochastic integral of the form∫ T

S
f(t)ξ(t)dt =

∫ T

S
f(t)dB(t)

in the interval [S, T ] (where B(t) is the Brownian motion process) as a limit of
n∑
j=0

f(t∗j )[B(tj+1)−B(tj)] t∗j ∈ [tj , tj+1]

as n→∞, one should choose t∗j as the mid-point of the interval [tj , tj+1]. Unlike the case of

an ordinary Riemann-Stieljes integral, the choice of t∗j makes a difference in the evaluation

of the limit [Øks98], thereby subjecting the stochastic integral to multiple interpretations.

Another interpretation is to take t∗j as the left end point tj of [tj , tj+1] which corresponds

to Itô’s definition of the stochastic integral (also known as Itô integral) and λ = 0. This

property of the Itô integral of “not looking into the future” (more formally, the Itô integrals

are martingales, see Appendix A Definition A.7) simplifies proofs immensely and hence is

preferred in the literature. We will postpone the selection of λ value as of now and assume

that
∫ 0
−t δ(∆t)d∆t = λ. Therefore∫ t1

t
gT (η, t2)δ(t2 − t1)Idt2 = gT (η, t1)

∫ t1

t
δ(t2 − t1)dt2 = λgT (η, t1)

and hence

E [α(t+ ∆t)− α(t)]|α(t)=η =
∫ t+∆t

t
h(η, t1)dt1 +

∫ t+∆t

t
h′(η, t1)

∫ t1

t
h(η, t2)dt2dt1 + . . .

+ λ

∫ t+∆t

t
gT (η, t1)g′(η, t1)dt1 + . . .
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Dividing both sides by ∆t and taking the limit ∆t→ 0 we obtain

D(1) = h(η, t) + λgT (η, t)g′(η, t)

All the other terms in the expansion involve double or more integrals. These contribute

terms in E [α(t+ ∆t)− α(t)] which are O((∆t)2) or higher which vanish as ∆t → 0. We

can use similar arguments to show that

D(2)(η, t) =
1
2

lim
∆t→0

∫ t+∆t

t

∫ t+∆t

t
g(η, t1)g(η, t2)δ(t1 − t2)dt1dt2 =

1
2
gT (η, t)g(η, t)

and that D(i) = 0 for i > 2. Hence the differential equation governing the probability

density function pα(η) can be written as

∂pα(η, t)
∂t

= − ∂

∂η

(
h(η, t)pα(η, t) + λpα(η, t)

∂gT (η, t)
∂η

g(η, t)
)

+
1
2
∂2

∂η2

(
gT (η, t)g(η, t)pα(η, t)

)
(3.10) is in the same form as (4.6) except that h(η, t) is zero, gT (η, t) = vT1 (t+η(t))D

(
xs(t+

η(t))
)

and ξ(t) = b(t). Hence the corresponding Fokker-Planck equation for α can be written

as

∂pα(η, t)
∂t

= − ∂

∂η

(
λpα(η, t)

∂gT (η, t)
∂η

g(η, t)
)

+
1
2
∂2

∂η2

(
gT (η, t)g(η, t)pα(η, t)

)
where

gT (η, t) = vT (η + t) = vT1 (t+ η(t))D
(
xs(t+ η(t))

)
4.1.2 Solution of the Phase Deviation Equation

The Fokker-Planck equation for α(t) takes the form

∂pα(η, t)
∂t

= − ∂

∂η

(
λpα(η, t)

∂vT (t+ η)
∂η

v(t+ η)
)

+
1
2
∂2

∂η2

(
vT (t+ η)v(t+ η)pα(η, t)

)
(4.9)

where

vT (t) = vT1 (t)D(xs(t))

and 0 ≤ λ ≤ 1 depends on the definition of the stochastic integral [Gar83, Øks98] used

to interpret the stochastic differential equation in (4.1). We would like to solve (4.9) for
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pα(η, t). It turns out that pα(η, t) becomes a Gaussian PDF asymptotically with linearly

increasing variance. We show this by first solving for the characteristic function F (ω, t) of

α(t), which is defined by

F (ω, t) = E [exp (ωα(t))] =
∫ ∞
−∞

exp (ωη) pα(η, t)dη

Since both vT1 (·) and D(xs(·)) are T -periodic in their arguments, vT (·) is also periodic in

its argument with period T . Hence we can expand vT (t) into its Fourier series:

vT (t) =
∞∑

i=−∞
V T
i exp(iω0t) ω0 =

2π
T

Lemma 4.1 The characteristic function of α(t), F (ω, t), satisfies

∂F (ω, t)
∂t

=
∞∑

i=−∞

∞∑
k=−∞

V T
i V

∗
k exp(ω0(i− k)t)

(
−λω0iω −

1
2
ω2

)
F (ω0(i− k) + ω, t)

(4.10)

where ∗ denotes complex conjugation.

Proof: Let h(η) be a smooth function. For notational simplicity we will drop the explicit

dependence of pα(η, t), h(η) and vT (t + η) on η and t from now on. Then from (4.9) we

have ∫ ∞
−∞

∂pα
∂t

hdη =
∫ ∞
−∞
− ∂

∂η

(
λpα

∂vT

∂η
v

)
hdη +

∫ ∞
−∞

1
2
∂2
(
vT vpα

)
∂η2

hdη

The term on the left hand side is the time derivative of E [h(α(t))]. Integrating the first

term on the right hand side by parts we get∫ ∞
−∞
− ∂

∂η

(
λpα

∂vT

∂η
v

)
hdη = − λpα

∂vT

∂η
vh

∣∣∣∣∞
−∞

+
∫ ∞
−∞

λ
dh
dη
pα
∂vT

∂η
vdη

The first term above, on the right hand side, is zero at both the limits, because the PDF of

a well-defined random variable should be zero at ±∞. The second term can be written as

an expectation, i.e., ∫ ∞
−∞

λ
dh
dη
pα
∂vT

∂η
vdη = E

[
λ

dh
dα

∂vT

∂α
v

]



CHAPTER 4. NOISE ANALYSIS OF STABLE OSCILLATORS 60

Similarly (using integration by parts twice) it can be shown that∫ ∞
−∞

1
2
∂2
(
vT vpα

)
∂α2

hdη =
1
2
E

[
d2h

dα2
vT v

]
Hence

dE [h]
dt

= E

[
λ

dh
dα

∂vT

∂α
v

]
+

1
2
E

[
d2h

dα2
vT v

]
We now substitute h(α) = exp(ωα) and the Fourier series representation of v to obtain

a differential equation for the characteristic function. The left hand side term is the time

derivative of the characteristic function F (ω, t) of α(t).

∂F (ω, t)
∂t

= E

[
ωλ

∂vT

∂α
v exp(ωα) +

1
2

(ω)2vT v exp(ωα)
]

=
∞∑

i=−∞

∞∑
k=−∞

V T
i V

∗
k exp(ω0(i− k)t)

E

[(
−λω0iω −

1
2
ω2

)
exp(ω0(i− k)α+ ωα)

]
=

∞∑
i=−∞

∞∑
k=−∞

V T
i V

∗
k exp(ω0(i− k)t)

(
−λω0iω −

1
2
ω2

)
F (ω0(i− k) + ω, t)

Theorem 4.2 The differential equation for F (ω, t), (4.10) has a solution that becomes the

characteristic function of a Gaussian random variable asymptotically with time and

lim
t→∞

F (ω, t) = exp
(
ωµ(t)− ω2σ2(t)

2

)
(4.11)

solves (4.10), where µ(t) = m is a constant, and σ2(t) = ct where

c =
1
T

∫ T

0
vT (t)v(t)dt. (4.12)

The variance of this Gaussian random variable increases linearly with time, exactly as in a

Wiener process.

Proof: The characteristic function of a Gaussian random variable with mean µ(t) and

variance σ2(t) is given by exp(ωµ(t)− 1/2ω2σ2(t)) [GS92]. Substituting this expression in

(4.10) for the characteristic function we obtain(
ω

dµ
dt
− ω2

2
dσ2

dt

)
exp

(
ωµ− 1

2
ω2σ2

)
=

∞∑
i=−∞

∞∑
k=−∞

V T
i V

∗
k exp(ω0(i− k)t)

(
−λω0iω −

1
2
ω2

)
exp
(
(ω + ω0(i− k))µ

)
exp

(
−1

2
(ω + ω0(i− k))2σ2

)
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where we dropped the explicit dependence of µ(t) and σ2(t) on t. This equation is rewritten

as(
ω

dµ
dt
− ω2

2
dσ2

dt

)
=

∞∑
i=−∞

∞∑
k=−∞

V T
i V

∗
k exp(ω0(i− k)(t+ µ))

(
−λω0iω −

1
2
ω2

)
exp(−ωω0(i− k)σ2) exp

(
−1

2
ω2

0(i− k)2σ2

) (4.13)

This equation should be valid for all values of ω. Hence the coefficients of the same powers

of ω on both sides should be equal. Expanding exp(−ωω0(i − k)σ2) in a power series and

equating the coefficients of ω on both sides we obtain


dµ
dt

=
∞∑

i=−∞

∞∑
k=−∞

V T
i V

∗
k exp(ω0(i− k)t) exp(ω0(i− k)µ) exp

(
−1

2
ω2

0(i− k)2σ2

)
(−λω0i)

or

dµ
dt

=
∞∑

i=−∞

∞∑
k=−∞

λω0iV
T
i V

∗
k exp(ω0(i− k)t) exp(ω0(i− k)µ) exp

(
−1

2
ω2

0(i− k)2σ2

)
(4.14)

For large t and hence large σ2 (to be verified, see below), exp(−1/2ω2
0(i− k)2σ2) becomes

vanishingly small for all i 6= k. For i = k (4.14) becomes

dµ
dt

=
∞∑

i=−∞
λω0iV

T
i V

∗
i

=
λ

T

∫ T

0

dvT (t)
dt

v(t)dt

=
λ

2T

∫ T

0

dvT (t)v(t)
dt

dt

=
λ

2T
vT (t)v(t)

∣∣T
0

= 0

In evaluating the above integral we used the fact that v(t) and hence vT (t)v(t) is T -periodic.

Hence asymptotically, the mean µ(t) becomes a constant.

Equating the coefficients of ω2 on both sides of (4.13) we obtain

dσ2

dt
=

∞∑
i=−∞

∞∑
k=−∞

(1− 2λω2
0i(i− k)σ2)V T

i V
∗
k exp(ω0(i− k)t) exp(ω0(i− k)µ)

exp
(
−1

2
ω2

0(i− k)2σ2

) (4.15)
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Using the same arguments as above we conclude that for large t, only the i = k terms

contribute to the summation. Thus

dσ2

dt
=

∞∑
i=−∞

V T
i V

∗
i

=
1
T

∫ T

0
vT (t)v(t)dt = c

which is the time average of vT (t)v(t). This shows that asymptotically the variance is

growing linearly with t (which verifies our assumption above that it becomes large for large

t) and the slope is the time average of vT (t)v(t). The differential equations (4.14) and

(4.15) for σ2(t) and µ(t) form a pair of coupled differential equations and can be solved

numerically to obtain the final value m to which µ(t) settles.

Now, we examine the coefficients of ωn in (4.13) for n > 2. Equating the coefficients

of ωn, n > 2 on both sides of (4.13), we obtain

0 =
∞∑

i=−∞

∞∑
k=−∞

(
−λω0i

(−ω0(i− k)σ2)n−1

(n− 1)!
− 1

2
(−ω0(i− k)σ2)n−2

(n− 2)!

)
V T
i V

∗
k

exp(ω0(i− k)t) exp(ω0(i− k)µ) exp
(
−1

2
ω2

0(i− k)2σ2

) (4.16)

For large t, σ2(t) becomes large (increasing linearly with t), hence exp(−1/2ω2
0(i − k)2σ2)

becomes vanishingly small for all i 6= k. For i = k, the right hand side of the above equation

is identically zero. Hence, (4.16) becomes consistent asymptotically in time with µ(t) = m

and σ2(t) = ct. Thus, the characteristic function of the Gaussian distribution with mean

µ(t) = m and variance σ2(t) = ct asymptotically satisfies (4.10).

Lemma 4.3 The second order statistics of α are governed by

E [α(t)α(t+ τ)] =

 E

[
α2(t)

]
if τ ≥ 0

E

[
α2(t+ τ)

]
if τ < 0

Proof: The proof is trivial if we interpret (3.10) using Itô’s definition of the stochastic

integral [Arn74, Øks98] (corresponding to λ = 0 in (4.9)). Using the integral form of (3.10)

that defines α, one can write for τ ≥ 0.

α(t+ τ) = α(t) + (α(t+ τ)− α(t))

= α(t) + ζ(t, τ)

where ζ(t, τ) is uncorrelated with α(t).
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For general λ we observe that given τ ≥ 0,

E [α(t)α(t+ τ)] = E

[∫ t

0

∫ t+τ

0
vT (t1 + α(t1))ξ(t1)vT (t2 + α(t2))ξ(t2)dt2dt1

]
= E

[∫ t

0

∫ t

0
vT (t1 + α(t1))ξ(t1)vT (t2 + α(t2))ξ(t2)dt1dt2

]
+ E

[∫ t

0

∫ t+τ

t
vT (t1 + α(t1))v(t2 + α(t2))ξT (t1)ξ(t2)dt2dt1

]
= E

[
α2(t)

]
+ E

[∫ t

0

∫ t+τ

t
vT (t1 + α(t1))v(t2 + α(t2))ξT (t1)ξ(t2)dt2dt1

]
= E

[
α2(t)

]
+
∫ t

0

∫ t+τ

t
E

[
vT (t1 + α(t1))v(t2 + α(t2))ξT (t1)ξ(t2)

]
dt2dt1

(4.17)

We define r12 = vT (t1 + α(t1))v(t2 + α(t2)) as a random process which is correlated with

both ξ(t1) and ξ(t2). However, v is periodic in it’s argument hence we can find a scalar M

such that −M ≤ r12 ≤ M . We use this fact to bound the above expectation. We define

pR12,Ξ1,Ξ2(r12, ξ1, ξ2) as the joint probability density function of the three random variables

r12, ξ1 , ξ(t1) and ξ2 , ξ(t2). Using this we obtain

E

[
r12ξ

T
1 ξ2

]
=
∫∫∫

r12ξ
T
1 ξ2pR12,Ξ1,Ξ2(r12, ξ1, ξ2)dr12dξ1dξ2

Since −M ≤ r12 ≤M , we have

−M
∫∫∫

ξT1 ξ2pR12,Ξ1,Ξ2(r12, ξ1, ξ2)dr12dξ1dξ2 ≤ E
[
r12ξ

T
1 ξ2

]
≤

M

∫∫∫
ξT1 ξ2pR12,Ξ1,Ξ2(r12, ξ1, ξ2)dr12dξ1dξ2

or

−M
∫∫

ξT1 ξ2pΞ1,Ξ2(ξ1, ξ2)dξ1dξ2 ≤ E
[
r12ξ

T
1 ξ2

]
≤

M

∫∫
ξT1 ξ2pΞ1,Ξ2(ξ1, ξ2)dξ1dξ2

or

−Mnδ(t1 − t2) ≤
∫∫∫

r12ξ
T
1 ξ2pR12,Ξ1,Ξ2(r12, ξ1, ξ2)dr12dξ1dξ2 ≤Mnδ(t1 − t2)

where n is the size of ξ(t1) and ξ(t2). Hence

−Mn

∫ t

0

∫ t+τ

t
δ(t1 − t2)dt2dt1 ≤

∫ t

0

∫ t+τ

t
E

[
vT (t1 + α(t1))v(t2 + α(t2))ξT (t1)ξ(t2)

]
dt2dt1

≤Mn

∫ t

0

∫ t+τ

t
δ(t1 − t2)dt2dt1
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Evaluation of the above integrals also depends on the particular definition of δ function

being used. Let us define f1(t) as a rectangular box of height 1/ε between [−λε, (1 − λ)ε]

and zero elsewhere. For any 0 ≤ λ ≤ 1, as ε → 0, f1(t) → δ(t). We evaluate the above

integral using this f1(t) and later take the limit ε→ 0. In the above integral, t2 varies from

t to t+ τ and t1 varies from 0 to t.∫ t

0

∫ t+τ

t
δ(t1 − t2)dt2dt1 = lim

ε→0

∫ t

0

∫ t+τ

t
f1(t1 − t2)dt2dt1

= lim
ε→0

∫ t

0
f2(t1)dt1

Where

f1(t2) =


0 t2 < −λε
1
ε −λε ≤ t2 ≤ (1− λ)ε

0 t2 > (1− λ)ε

and

f2(t1) =



0 t1 ≤ t− ε(1− λ)
t1−t+ε(1−λ)

ε t− ε(1− λ) ≤ t1 ≤ t+ λε

1 t+ λε ≤ t1 ≤ t+ τ − ε(1− λ)
t+τ−t1−ελ

ε t+ τ − ε(1− λ) ≤ t1 ≤ t+ τ + λε

0 t+ τ + λε ≤ t1

Therefore ∫ t

0

∫ t+τ

t
δ(t1 − t2)dt2dt1 = lim

ε→0

∫ t

0
f2(t1)dt1

= lim
ε→0

1
2
ε(1− λ)2

= 0

Hence the second integral in (4.17) is identically zero and E [α(t)α(t+ τ)] = E

[
α2(t)

]
.

Corollary 4.4 Asymptotically with t

E [α(t)α(t+ τ)] = m2 + cmin(t, t+ τ)

Proof: Follows trivially from Lemma 4.3

Definition 4.1 Two real valued random variables Ψ1 and Ψ2 are called jointly Gaussian

if for all a1, a2 ∈ R, the real random variable a1Ψ1 + a2Ψ2 is Gaussian.
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Theorem 4.5 Asymptotically with time, α(t1) and α(t2) become jointly Gaussian.

Sketch of Proof: The proof is trivial if we interpret (3.10) using Itô’s definition of the

stochastic integral [Arn74] (corresponding to λ = 0 in (4.9)), as in the proof of Lemma 4.3.

The proof is more involved for 0 < λ ≤ 1. In this case, we prove this result by showing

that the cumulants of a1α(t1) + a2α(t2) (for any a1, a2 ∈ R) vanish for order higher than 2.

The cumulants of a random variable Ψ are defined as the coefficients in the Taylor series

expansion of its cumulant generating function which is, in turn, defined by

Kψ = logE [exp (θΨ)] =
∞∑
i=1

1
i!
ki(Ψ)θi

where ki(Ψ) is the ith order cumulant [GS92]. A random variable is Gaussian if and only if

its cumulants of order higher than 2 vanish [Gar83]. In the proof, we also use the fact that

α(t1) and α(t2) become individually Gaussian asymptotically with t.

The stochastic characterization of the phase deviation α that we obtained in this

section can be summarized by Lemma 4.3, Corollary 4.4 and Theorem 4.5. These do

not completely specify the FDDs of α as a stochastic process. However, they provide

adequate information for a practical characterization of the effect of phase deviation α on

the signal generated by an autonomous oscillator, e.g., its spectral properties, as we will see

in Section 4.2 and Section 4.3.

4.2 Spectrum of Oscillator Output with Phase Noise

Having obtained the asymptotic stochastic characterization of α, we now compute

the power spectral density (PSD) of xs(t+α(t)) where xs(t) is the steady-state response of

(3.1). We first obtain an expression for the nonstationary autocorrelation function R(t, τ)

of xs(t + α(t)). Next, we demonstrate that the autocorrelation becomes independent of

t asymptotically. This implies our main result, that the autocorrelation of the oscillator

output with phase noise contains no nontrivial cyclostationary components. This confirms

the intuitive expectation that a noisy autonomous system cannot have periodic cyclosta-

tionary variations because it has no perfect time reference. Finally, we show that the PSD

of the stationary component is a summation of Lorentzian spectra, and that a single scalar

constant, namely c in (4.12), is sufficient to characterize it.
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We start by calculating the autocorrelation function of xs(t+ α(t)), given by

R(t, τ) = E [xs(t+ α(t))x∗s(t+ τ + α(t+ τ))] (4.18)

Definition 4.2 Let Xi to be the Fourier coefficients of xs(t):

xs(t) =
∞∑

i=−∞
Xi exp (iω0t)

The following simple Lemma establishes the basic form of the autocorrelation:

Lemma 4.6 The autocorrelation of the oscillator output xs(t+ α(t)) is given by

R(t, τ) =
∞∑

i=−∞

∞∑
k=−∞

XiX
∗
k exp ((i− k)ω0t) exp (−kω0τ)E [exp (ω0βik(t, τ))] (4.19)

where

βik(t, τ) = iα(t)− kα(t+ τ)

and ω0 = 1/T .

Proof: Follows directly from (4.18) and Definition 4.2.

To evaluate the expectation in the above Lemma, it is useful to first consider the

statistics of βik(t, τ).

Lemma 4.7 The statistics of βi,k(t, τ) satisfy the following equations:

lim
t→∞

E [βik(t, τ)] = (i− k)m (4.20)

lim
t→∞

E

[
(βik(t, τ))2

]
− (E [βik(t, τ)])2 = (i− k)2ct+ k2cτ − 2ikcmin(0, τ) (4.21)

where m and c are defined in Theorem 4.2. Also, βik(t, τ) becomes Gaussian asymptotically

with t.

Proof: From Theorem 4.2 we observe that

lim
t→∞

E [βik(t, τ)] = i lim
t→∞

E [α(t)]− k lim
t→∞

E [α(t+ τ)] = (i− k)m
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Using Corollary 4.4 we have

lim
t→∞

E

[
β2
ik(t, τ)

]
= i2 lim

t→∞
E

[
α2(t)

]
+ k2 lim

t→∞
E

[
α2(t+ τ)

]
− 2ik lim

t→∞
E [α(t)α(t+ τ)]

= i2(m2 + ct) + k2(m2 + c(t+ τ))− 2ik(m2 + cmin(t, t+ τ))

= (i− k)2(m2 + ct) + k2cτ − 2ikcmin(0, τ)

This implies that

lim
t→∞

E

[
(βik(t, τ))2

]
− (E [βik(t, τ)])2 = (i− k)2ct+ k2cτ − 2ikcmin(0, τ)

The fact that βik(t, τ) is asymptotically Gaussian follows directly from Theo-

rem 4.5.

Using the asymptotically Gaussian nature of βik(t, τ), we are now able to obtain

a form for the expectation in (4.19).

Lemma 4.8 If c > 0, the characteristic function of βik(t, τ) is asymptotically independent

of t and has the following form:

lim
t→∞

E [exp (ω0βik(t, τ))] =

0 if i 6= k

exp (−1
2ω

2
0k

2c|τ |) if i = k
(4.22)

Proof: Using Lemma 4.7 and the form of the characteristic function of a Gaussian random

variable [GS92] we have

lim
t→∞

E [exp (ω0βik(t, τ))] = exp(ω0(i− k)m)

exp
(
−1

2
ω2

0((i− k)2ct+ k2cτ − 2ikcmin(0, τ))
)

Taking the asymptotic limit of this expression, we observe that only for i = k the above

limit has a nontrivial value.

Using the second order statistics of βi,k(t, τ) we can now obtain the second order

statistics of xs(t+ α(t)) as follows:

Lemma 4.9 The autocorrelation R(t, τ) given by (4.19) satisfies

lim
t→∞

R(t, τ) =
∞∑

i=−∞
XiX

∗
i exp (−iω0τ) exp

(
−1

2
ω2

0i
2c|τ |

)
(4.23)

Proof: The result is obtained by substituting (4.22) in (4.19).

The spectrum of xs(t+ α(t)) can now be determined as follows:
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Theorem 4.10 The spectrum of xs(t+α(t)) is determined by the asymptotic behaviour of

R(t, τ) as t→∞. All nontrivial cyclostationary components are zero, while the stationary

component of the spectrum is given by:

S(ω) =
∞∑

i=−∞
XiX

∗
i

ω2
0i

2c
1
4ω

4
0i

4c2 + (ω + iω0)2
(4.24)

There is also a term X0X
∗
0 δ(ω) due to the DC part of xs(t), which is omitted in (4.24).

Proof: It can be shown that the cyclostationary component [Gar90] of the autocorrelation

at any frequency ωcyc is given by:

Rωcyc(τ) = lim
T→∞

1
T

∫ T

0
R(t, τ) exp (ωcyct) dt

This expression is determined by the asymptotic form of R(t, τ) as a function of t, given

in (4.23). Because this becomes independent of t, the above limit is identically zero for all

ωcyc 6= 0, whereas for ωcyc = 0 (the stationary component), it reduces to (4.23). The result

is obtained by taking the Fourier transform of (4.23).

Hence we conclude that the output of a noisy oscillator xs(t + α(t)) is a large

stochastic process which is wide-sense stationary. The power spectral density of the output

consists of a series of Lorentzians centered around the harmonics of the oscillator.

These results have important implications. The noisy oscillator output cannot be

viewed as a deterministic periodic signal along with additive noise. We conclude that it

should be viewed as a sum of two stochastic processes: a large signal output process with

stochastic phase error which behaves like Brownian motion and a small amplitude noise

process. Among other implications, this requires us to revisit the noise analysis techniques

for nonautonomous circuits which we motivate and present in the next two chapters.

The Lorentzian shape of the output spectrum implies that the power spectral

density at the carrier frequency and its harmonics has a finite value. Integrating the power

spectral density we observe that∫ ∞
−∞

S(ω)dω =
∫ ∞
−∞

∞∑
i=−∞

XiX
∗
i

ω2
0i

2c
1
4ω

4
0i

4c2 + (ω + iω0)2
dω

=
∞∑

i=−∞
XiX

∗
i

i.e., the total carrier power is preserved despite spectral spreading due to noise. This

result is physically consistent since adding a stochastic phase error α(t) to the oscillator
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Figure 4.1: Power spectral density of noisy oscillator output

steady-state response should not change the total integrated power. Previous analyses based

on linear time-invariant (LTI) or linear time-varying (LTV) concepts erroneously predict

infinite noise power density at the carrier, as well as infinite total integrated power. That

the oscillator output is stationary is surprising at first sight, since oscillators are nonlinear

systems with periodic swings, hence it might be expected that output noise power would

change periodically as in forced systems. However, it must be remembered that while forced

systems are supplied with an external time reference (through the forcing), oscillators are

not. Cyclostationarity in the oscillator’s output would, by definition, imply a perfect time

reference. Hence the stationarity result reflects the fundamental fact that noisy autonomous

systems cannot provide a perfect time reference.

The power spectral density as calculated in (4.24) is shown in Figure 4.1 for ω0 =

1×108 rad/sec and c = 1×10−15 sec. It consists of peaks at the harmonics of the oscillator

which rapidly decay away from the harmonics. Figure 4.2 shows the power spectral density

as a function of offset frequency around the first harmonic. We observe that the PSD does
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Figure 4.2: Power spectral density around the first harmonic

not blow up to infinity at ∆ω → 0 but flattens out to a finite value.

4.3 Phase Noise Characterization for Oscillator

In this section, we discuss several popular characterizations of phase noise that are

used in the design of electronic oscillators, and how they can easily be obtained from the

stochastic characterization we obtained in Section 4.1 and Section 4.2.

4.3.1 Single-Sided Spectral Density and Total Power

The PSD S(ω) in (4.24) (defined for −∞ < ω < ∞, hence called a double-sided

density) is a real and even function of ω, because the periodic steady-state xs(t) is real

hence its Fourier series coefficients Xi in Definition 4.2 satisfy Xi = X∗−i. The single-sided

spectral density (defined for 0 ≤ f <∞) is given by

Sss(f) = 2S(2πf) = 2
∞∑

i=−∞
XiX

∗
i

f2
0 i

2c

π2f4
0 i

4c2 + (f + if0)2
(4.25)
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where we substituted ω = 2πf and ω0 = 2πf0. The total power (i.e., the integral of the

PSD over the range of the frequencies it is defined for) in Sss(f) is the same as in S(2πf),

which is

Ptot = Total power in Sss(f) =
∫ ∞

0
Sss(f)df =

∞∑
i=1

2 |Xi|2 (4.26)

The total power in the periodic signal xs(t) (without phase noise) is also equal to the

expression in (4.26) (excluding the power in the DC part), as can be easily seen from the

Fourier expansion in Definition 4.2.

The phase deviation α(t) does not change the total power in the periodic signal

xs(t), but it alters the power density in frequency, i.e., the power spectral density. For the

perfect periodic signal xs(t), the power spectral density has δ functions located at discrete

frequencies (i.e., the harmonics). The phase deviation α(t) spreads the power in these δ

functions in the form given in (4.25), which can be experimentally observed with a spectrum

analyzer.

4.3.2 Spectrum in dBm/Hz

For electrical oscillators, the state variable in the oscillator that is observed as the

output is usually a voltage or a current. The spectrum in (4.25) is expressed as a function

of frequency (f in Hz), then the PSD is in units of volts2/Hz and amps2/Hz for a voltage

and a current state variable respectively. Then, the spectral density of the expected power

dissipated in a 1Ω resistor (with the voltage (current) output of the oscillator as the voltage

across (current through) the resistor) is equal to the PSD in (4.25) (in watts/Hz), which is

usually expressed in dBw/Hz as defined by

SdBw(f) = 10 log10 (Sss(f) in watts/Hz) (4.27)

This expected power is the same as the time-average power, assuming that the stochastic

process xs(t+α(t)) is ergodic [Gar90]. If Sss(f) is in miliwatts/Hz, then the PSD in dBm/Hz

is given by

SdBm(f) = 10 log10 (Sss(f) miliwatts/Hz) (4.28)

4.3.3 Single-Sideband Phase Noise Spectrum in dBc/Hz

In practice, we are usually interested in the PSD around the first harmonic, i.e.,

Sss(f) for f around f0. The single-sideband phase noise L(fm) (in dBc/Hz) that is very
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widely used in practice is defined as

L(fm) = 10 log10

(
Sss(fo + fm)

2|X1|2

)
(4.29)

For “small” values of c, and for 0 ≤ fm � f0, (4.29) can be approximated as

L(fm) ≈ 10 log10

(
f2

0 c

π2f4
0 c

2 + f2
m

)
(4.30)

Furthermore, for πf2
0 c� fm � f0, L(fm) can be approximated by

L(fm) ≈ 10 log10

((
f0

fm

)2

c

)
(4.31)

Notice that the approximation of L(fm) in (4.31) blows up as fm → 0. For 0 ≤ fm < πf2
0 c,

(4.31) is not accurate, in which case the approximation in (4.30) should be used.

4.3.4 Timing Jitter

In some applications, such as clock generation and recovery, one is interested

in a characterization of the phase/time deviation α(t) itself rather than the spectrum of

xs(t+α(t)) that was calculated in Section 4.2. In these applications, an oscillator generates

a square-wave like waveform to be used as a clock. The effect of the phase deviation α(t)

on such a waveform is to create uncertainty jitter in the zero-crossing or transition times.

In Section 4.1, we found out that α(t) (for an autonomous oscillator) becomes a Gaussian

random variable with a linearly increasing variance

σ2(t) = ct

Let us take one of the transitions (i.e., edges) of a clock signal as a reference (i.e., trigger)

transition and synchronize it with t = 0. If the clock signal is perfectly periodic, then one

will see transitions exactly at tk = kT , k = 1, 2, . . . where T is the period. For a clock signal

with a phase deviation α(t) that has a linearly increasing variance as above, the timing of

the kth transition tk will have a variance (i.e., mean-square error)

E

[
(tk − kT )2

]
= ckT (4.32)

The spectral dispersion caused by α(t) in an oscillation signal can be observed with a

spectrum analyzer. Similarly, one can observe the timing jitter caused by α(t) using a
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sampling oscilloscope. McNeill [McN97] experimentally observed the linearly increasing

variance for the timing of the transitions of a clock signal generated by an autonomous

oscillator, as predicted by our theory. Moreover, c (in sec2Hz) in (4.32) exactly quantifies

the rate of increase of timing jitter with respect to a reference transition. Another useful

figure of merit is the cycle-to-cycle timing jitter, i.e., the timing jitter in one clock cycle,

which has a variance cT .

4.4 Noise Source Contribution

The scalar constant c appears in all of the characterizations we discussed above.

It is given by

c =
1
T

∫ T

0
vT1 (τ)D(xs(τ))DT (xs(τ))v1(τ)dτ (4.33)

where D(·) : Rn → R
n×p represents the modulation of the intensities of the noise sources

with the large-signal state. (4.33) can be rewritten as

c =
p∑
i=1

1
T

∫ T

0
[vT1 (τ)Di(τ)]2 dτ =

p∑
i=1

ci

where p is the number of the noise sources, i.e., the column dimension of D(xs(·)), and

Di(·) is the ith column of D(xs(·)) which maps the ith noise source to the equations of the

system. Hence,

ci =
1
T

∫ T

0
[vT1 (τ)Di(τ)]2dτ

represents the contribution of the ith noise source to c. Thus, the ratio

ci
c =

∑p
i=1 ci

(4.34)

can be used as a figure of merit representing the contribution of the ith noise source to

phase noise/timing jitter.

One can also define

c(k)
s =

1
T

∫ T

0
[vT1 (τ) ek]2dτ (4.35)

(where 1 ≤ k ≤ n and ek is the kth unit vector) as the phase noise/timing jitter sensitivity

of the kth equation (i.e., node), because ek represents a unit intensity noise source added to

the kth equation (i.e., connected to the kth node) in (3.1).
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4.5 Numerical Techniques for Phase Noise Characterization

From Section 4.1, Section 4.2 and Section 4.3 we observe that for various phase

noise characterizations of an oscillator, one needs to calculate the steady-state periodic

solution xs(t), and the periodic vector v1(t) in (4.33). xs(t) is available from the steady-

state analysis of the circuit. We outline two methods, one in time domain and one in

frequency domain, for computing the periodic vector v1(t).

4.5.1 Time Domain Technique

The procedure for calculating v1(t) in the time domain is as follows:

1. The large signal periodic steady-state solution xs(t) is computed for 0 ≤ t ≤ T by

numerically integrating (3.1), either using transient simulation or possibly using a

technique such as the shooting method [KWSV90] to directly compute the steady-

state response of the oscillator.

2. The state transition matrix Φ(T, 0) is computed (see Section 3.2.1) by numerically

integrating

Ẏ = J(t)Y Y (0) = In

from 0 to T , where the Jacobian J(t) is defined in (3.3). We recall that

Φ(T, 0) = Y (T )

3. u1(0) is computed using

u1(0) = ẋs(0)

u1(0) is an eigenvector of Φ(T, 0) corresponding to the eigenvalue 1.

4. v1(0) is an eigenvector of ΦT (T, 0) corresponding to the eigenvalue 1. To compute

v1(0), first compute an eigenvector of ΦT (T, 0) corresponding to the eigenvalue 1,

then scale this eigenvector so that

v1(0)Tu1(0) = 1 (4.36)

is satisfied.
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5. The periodic vector v1(t) is computed for 0 ≤ t ≤ T by numerically solving the adjoint

system

ẏ = −JT (t)y (4.37)

using v1(0) = v1(T ) as the initial condition. v1(t) is a periodic steady-state solution of

(4.37) corresponding to the Floquet exponent that is equal to 0, i.e., µ1 = 0. Since J

is the Jacobian of an asymptotically orbitally stable oscillator, it is not possible to cal-

culate v1(t) by numerically integrating (4.37) forward in time, because the numerical

errors in computing the solution and the numerical errors in the initial condition v1(0)

will excite the modes of the solution of (4.37) that grow without bound. However,

one can integrate (4.37) backwards in time with the “initial” condition v1(T ) = v1(0)

to calculate v1(t) for 0 ≤ t ≤ T in a numerically stable way.

6. Then, c is calculated using (4.33).

We implemented the above algorithm partly in Spice and partly in Matlab.

Transient simulation of the oscillator circuit is performed in Spice till steady-state is

reached. The circuit is then simulated for one period with very small time step. The

circuit matrices that are generated during this step are handed over to Matlab where

noise analysis is performed. In implementing the above algorithm, one can increase the

efficiency by saving LU factored matrices that needs to be calculated in Step 2 and reuse

them in Step 5. If the periodic steady-state xs(t) of the oscillator is calculated using the

shooting method [KWSV90] in Step 1, then the state transition matrix Φ(T, 0) of the lin-

ear time varying system, obtained by linearizing the nonlinear oscillator circuit around the

periodic steady-state, is already available. It can be shown that the Jacobian of the non-

linear system of equations that is solved in the shooting method, using Newton’s method

to calculate the initial condition that results in the periodic steady-state solution, is equal

to Φ(T, 0)− I [AT72a, AT72b].

Moreover, one can avoid calculating Φ(T, 0) explicitly, and use iterative methods

both for the shooting method, and at Step 4 to calculate the eigenvector of ΦT (T, 0) that

corresponds to the eigenvalue 1. For high-Q oscillators, the iterative methods can run into

problems, because Φ(T, 0) may have several other eigenvalues which are close to 1. In our

implementation, we explicitly calculate Φ(T, 0) and perform a full eigenvalue/eigenvector

calculation. We select all the eigenvectors corresponding the eigenvalues which are close to
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1 and use the following relation to determine the correct eigenvalue

vi(0)Tu1(0) = vi(0)ẋs(0)

=

 1 i = 1

0 i 6= 1

We first calculate ẋs(t) from the steady-state response of the oscillator. We then calcu-

late the inner product with vi(0)’s whose corresponding eigenvalues are close to 1. Due

to numerical errors in determining the period and integration, the inner product is not

exactly zero but the desired eigenvalue is easily identified. Full eigenvector/eigenvalue de-

composition also allows us to investigate the properties of the state transition matrix for

various oscillator circuits. Even with a full eigenvalue/eigenvector calculation for Φ(T, 0),

the phase noise characterization algorithm discussed above is still very efficient. The phase

noise characterization comes almost for free once the periodic steady-state solution xs(t) is

computed.

4.5.2 Frequency Domain Technique

Here we outline how we can calculate v1(t) using a frequency domain technique

such as harmonic balance. We consider (3.4)

ẇ = J(t)w

This describes a linear periodic time varying system of equation and represents an LPTV

transfer function h(t, s) = Φ(t, s) where Φ(t, s) is the state transition matrix of ẇ = Jw.

h(t, s) is periodic in both it’s arguments with period T , i.e.,

h(t+ T, s+ T ) = h(t, s)

The periodicity of h implies that it can be expanded in a Fourier series [RFL98]

h(t, s) =
∞∑

i=−∞
hi(t− s) exp(iω0t) ω0 =

2π
T

(4.38)

hi are referred to as harmonic impulse response of the LPTV system. The Fourier transform

of hi, Hi(ω) is defined as

Hi(ω) =
∫ ∞
−∞

hi(t) exp(−ωt)dt (4.39)

A harmonic balance technique for solving ẋ = f(x) typically yields a harmonic balance

conversion matrix which is defined as follows.
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Definition 4.3 ([RFL98]) The harmonic balance conversion matrix is defined in terms

of His as

H(ω) =



...
...

...
...

...

· · · H0(ω + 2ω0) H1(ω + ω0) H2(ω) H3(ω − ω0) H4(ω − 2ω0) · · ·
· · · H−1(ω + 2ω0) H0(ω + ω0) H1(ω) H2(ω − ω0) H3(ω − 2ω0) · · ·
· · · H−2(ω + 2ω0) H−1(ω + ω0) H0(ω) H1(ω − ω0) H2(ω − 2ω0) · · ·
· · · H−3(ω + 2ω0) H−2(ω + ω0) H−1(ω) H0(ω − ω0) H1(ω − 2ω0) · · ·
· · · H−4(ω + 2ω0) H−3(ω + ω0) H−2(ω) H−1(ω − ω0) H0(ω − 2ω0) · · ·

...
...

...
...

...


Definition 4.4 We define the matrices Ui and Vi to be the Fourier components of U(t)

and V (t), i.e.,

U(t) =
∞∑

i=−∞
Uie

ω0it (4.40)

V (t) =
∞∑

i=−∞
Vie

ω0it (4.41)

Definition 4.5 We define the block-Toeplitz matrices U and V as follows:

U =



. . .

U0 U1 U2 . . . . . .

U−1 U0 U1 U2 . . .

U−2 U−1 U0 U1 U2

. . . U−2 U−1 U0 U1

. . . . . . U−2 U−1 U0

. . .


(4.42)

V =



. . .

V0 V1 V2 . . . . . .

V−1 V0 V1 V2 . . .

V−2 V−1 V0 V1 V2

. . . V−2 V−1 V0 V1

. . . . . . V−2 V−1 V0

. . .


(4.43)
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Lemma 4.11 U and V are both invertible, since

UV =



. . .

I

I

I

I

I

. . .


Proof: Follows from the bi-orthonormality of U(t) and V (t).

Definition 4.6 Let

Dk(ω) =


(ω + kω0)− µ0

. . .

(ω + kω0)− µn


We note that Dk is strictly diagonal.

Remark 4.1 We observe that Dk(ω) is singular for ω = −kω0, if the oscillator is asymp-

totically orbitally stable.

Definition 4.7 Let

D(ω) =



. . .

D2(ω)

D1(ω)

D0(ω)

D−1(ω)

D−2(ω)
. . .


D is also strictly diagonal.

Remark 4.2 D(ω) is singular for ω = kω0, k ∈ Z if the oscillator is asymptotically or-

bitally stable.
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Theorem 4.12 The frequency-domain conversion matrix H(ω) of the oscillator is related

to U , D(ω) and V by:

H(ω) = UD−1(ω)V

Proof: We know that the transfer function h(t, s) is the state transition matrix Φ(t, s).

Hence for τ > 0

Φ(t, t− τ) = U(t) exp(Dτ)V (t− τ)

=
∞∑

k=−∞

∞∑
l=−∞

Uk exp(Dτ)Vl exp(ω0(kt+ lt− lτ))

The coefficient of exp(ω0it) in the above expression is given by

hi(τ) =
∞∑

k=−∞
Uk exp(Dτ)Vi−k exp(−ω0(i− k)τ)

and hence

Hi(ω) =
∫ ∞
−∞

∞∑
k=−∞

Uk exp(Dτ)Vi−k exp(−ω0(i− k)τ) exp(ωτ)dτ

= −
∞∑

k=−∞
Uk[D − (ω0(i− k)− ω)I]−1Vi−k

where we have used the fact that φ(t, t − τ) is defined for τ ≥ 0 only. The result follows

immediately from the above form of Hi(ω).

Theorem 4.13 H−1(0) is a singular matrix (with rank-deficiency one) and the null space

of its transpose is spanned by the Fourier components of v1(t), i.e.,

ker
(
H−T (0)

)
=
[
1 0 · · · 0

] [
· · · V−2 V−1 V0 V1 V2 · · ·

]
=
[
· · · V T

1,−2 V T
1,−1 V T

1,0 V T
1,1 V T

1,2 · · ·
]

where V1,i are the Fourier coefficients of k vT1 (t), for some nonzero scalar k, i.e.,

kvT1 (t) =
∞∑

i=−∞
V T

1,i e
ω0it

Sketch of Proof: The proof follows from the fact that v1(t) is the eigenvector of ΦT (t, 0)

corresponding to eigenvalue 1.

H−T (0) is simply the transpose of the Harmonic Balance Jacobian matrix of the

oscillator at solution. Its null space can be found efficiently even for large circuits by using
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Figure 4.3: Oscillator with a band-pass filter and a comparator

iterative linear algebra techniques [RFL98]. Hence a scaled version of vT1 (t) can be found

easily. The scaling constant k can be found by applying vT1 (t)u1(t) = 1, u1(t) having first

been obtained by differentiating the large-signal steady-state solution of the oscillator.

4.6 Examples

We apply these characterization techniques to electrical oscillators. There are three

distinct kinds of electrical oscillators with three very different oscillation mechanisms. The

LC oscillator consists of a unstable feedback amplifier with frequency selection provided by

the LC tank circuit. A ring oscillator consists of a number of delay stages connected in

a ring. The frequency of oscillation is set by the number of stages and the delay of each

stage. A relaxation oscillator uses regenerative switching to produce the output waveform.

The signal generation mechanism for all these oscillators is very different but our analysis

is valid for all these oscillators.

4.6.1 Generic Oscillator

This oscillator (Figure 4.3) consists of a Tow-Thomas second-order bandpass filter

and a comparator [DTS98a]. If the OpAmps are considered to be ideal, it can be shown

that this oscillator is equivalent (in the sense of the differential equations that describe

it) to a parallel RLC circuit in parallel with a nonlinear voltage-controlled current source
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Figure 4.4: Phase noise characterization for the generic oscillator
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(or equivalently a series RLC circuit in series with a nonlinear current-controlled voltage

source) as in Figure 4.3. In [DTS98a], authors bread-boarded this circuit with an external

white noise source (intensity of which was chosen such that its effect is much larger than

the other internal noise sources), and measured the PSD of the output with a spectrum

analyzer. For Q = 1 and fo = 6.66 KHz, we performed a phase noise characterization

of this oscillator using the numerical methods in Section 4.5, and computed the periodic

oscillation waveform xs(t) for the output and c = 7.56×10−8 sec2Hz. Figure 4.4(a) shows the

PSD of the oscillator output computed using (4.25), and Figure 4.4(b) shows the spectrum

analyzer measurement. Figure 4.4(c) shows an expanded version of the PSD around the

first harmonic. The single-sideband phase noise spectrum using both (4.30) and (4.31) is

in Figure 4.4(d). (4.31) can not predict the PSD accurately below the cut-off frequency

fc = πf2
0 c = 10.56 Hz (marked with a ∗ in Figure 4.4(d)) of the Lorentzian. The oscillator

model that was simulated has two state variables and a single stationary noise source.

Figure 4.4(e) shows a plot of the periodic nonnegative scalar

vT1 (t)D(xs(t))DT (xs(t))v1(t) = (vT1 (t)D)2

where D is independent of t since the noise source is stationary. c is the time average of

this scalar that is periodic in time.

4.6.2 LC Tank Oscillator

A Colpitt’s oscillator with an off-chip inductor is shown in Figure 4.5. This os-

cillator is designed to oscillate at 1.05 GHz. We computed c = 9.00 × 10−19 sec2Hz which

corresponds to L(fm) = −100 dBc/Hz at fm = 100 KHz using (4.31). The simplified cir-

cuit had 11 state variables and 8 noise sources. We generated a noise source contribution

report (Table 4.1) and found that 85% of the contribution to c is from the noise in base

spreading resistor rb of the transistor. A decrease in this value (due to sizing of transistor)

by a factor of 5 causes the value of c to be reduced to 4.38 × 10−19 sec2Hz. We also plot

vT1 (t)D(xs(t))DT (xs(t))v1(t) as a function of time for one period of oscillation(Figure 4.6).

We see that this value peaks at a time equal to half the period of oscillation. This also is

useful feedback to the designers as it can be used to further improve the noise performance

of this oscillator.

A simplified schematic of a 4.7 GHz oscillator with on-chip inductor is shown in

Figure 4.7 [Kin98]. This oscillator is fabricated in a standard digital 0.35 µ CMOS process
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and uses transistor parasitics for tank capacitors in the oscillator. We computed c = 5.12×
10−19 sec2Hz which corresponds to L(fm) = −89.3 dBc/Hz at fm = 100 KHz using (4.31).

The author in [Kin98] reported a measured value of −90 dBc/Hz at 100KHz offset. There

were 20 state variables and 28 noise sources in the simulated circuit. We generated a noise

source contribution report for this oscillator using (4.34), which is shown in Table 4.2. We

find that apart from the transistors, M1 and M2, inductor losses also contribute significantly

towards oscillator phase noise. v1(t)D(xs(t))TD(xs(t))vT1 (t) is plotted as a function of time

in Figure 4.8.

4.6.3 Ring Oscillator

The ring oscillator circuit is a three stage oscillator with fully differential ECL

buffer delay cells (differential pairs followed by emitter followers) as shown in Figure 4.9

[McN97]. [McN97] and [WKG94] use analytical techniques to characterize the timing jit-

ter/phase noise performance of ring oscillators with ECL type delay cells. [McN97] does

the analysis for a bipolar ring oscillator, and [WKG94] does it for a CMOS one. Since they

use analytical techniques, they use a simplified model of the circuit and make several ap-

proximations in their analysis. [McN97] and [WKG94] use time domain Monte Carlo noise

simulations to verify the results of their analytical results. They obtain qualitative and some

quantitative results, and offer guidelines for the design of low phase noise ring oscillators

with ECL type delay cells. However, their results are only valid for their specific oscillator

circuits. We compare their results with the results we obtain for the above ring oscillator

using the general phase noise characterization methodology we have proposed which makes

it possible to analyze a complicated oscillator circuit without simplifications. We performed

several phase noise characterizations of the bipolar ring oscillator. The circuit consists of 91

Noise ci
c

Source rb = 25 Ω rb = 5 Ω
Q1 Base resistor 85.4% 59.8%

RL 10.4% 26.4%
Rs 3.5% 12.3%

Others 0.7% 1.5%

Table 4.1: Noise source contribution for the Colpitt’s oscillator for two different base resis-
tance values
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Noise sources of ci
c=
∑p
i=1 ci

× 100

M1 and M2 57.6 %
Inductor losses 38.5 %

Others 3.9 %

Table 4.2: Noise Source Contribution for oscillator with on-chip inductor
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Figure 4.8: vT1 (t)D(xs(t))DT (xs(t))v1(t) for oscillator with on-chip inductor

state variables and 121 noise sources. The results are shown in Table 4.3, where Rc is the

collector load resistance for the differential pair (DP) in the delay cell, rb is the zero bias

base resistance for the BJTs in the DP, IEE is the tail bias current for the DP, and fo is

the oscillation frequency for the three stage ring oscillator. The changes in Rc and rb affect

the oscillation frequency, unlike the changes in IEE . Figure 4.10 shows a plot of (2πfo)2 c

versus IEE using the data from Table 4.3. This prediction of the dependence of phase

noise/timing jitter performance on the tail bias current is in agreement with the analysis

and experimental results presented in [McN97] and [WKG94] for ring oscillators with ECL

type delay cells. Larger values for (2πfo)2 c indicate worse phase noise performance.

4.6.4 Relaxation Oscillator

The relaxation oscillator is a VCO that is based on the emitter-coupled multi-

vibrator circuit [GM93]. [AM83] analyzes the process of jitter production for this circuit

by describing the circuit behaviour with a single first-order stochastic differential equation

based on a simplified model for the circuit, and lumping all of the noise sources into a

single stationary current noise source. [AM83] arrives at intuitive qualitative results for
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Rc rb IEE fo c
(Ω) (Ω) (µA) (MHz) (sec2.Hz× 10−15)
500 58 331 167.7 0.269
2000 58 331 74 0.149
500 1650 331 94.6 0.686
500 58 450 169.5 0.182
500 58 600 169.7 0.151
500 58 715 167.7 0.142

Table 4.3: Phase noise characterization of the ring oscillator

low jitter relaxation oscillator design. A relaxation oscillator operates in a highly nonlinear

fashion due to regenerative switchings. The analysis of the process of jitter production is

not analytically tractable without reverting to simplifications.

For this oscillator, using the numerical methods described in Section 4.5, we obtain

fo = 0.89 MHz (2πfo)2c = 0.83 rad2Hz

which corresponds to
√
cT

T
= 153.2 ppm RMS

cycle-to-cycle timing jitter, where ppm is parts per million and RMS is root-mean-square.

This circuit contained 37 noise sources and 47 state variables.
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Chapter 5

Noise Analysis of Nonautonomous

Circuits

In the previous chapter we developed a noise simulation and characterization

technique for oscillators. We found that a mathematically consistent way of representing

the output of a noisy oscillator is to view it as a sum of two stochastic processes: a small

amplitude noise process and a large signal output process which is the noiseless oscillator

response phase shifted by a Brownian motion process. This new way of characterizing the

oscillator output has far reaching impact on the methodology of performing noise simulation

for circuits driven by these oscillators. The “traditional” approach for this is to view the

oscillator output as a deterministic signal with some additive noise, classified as phase noise

and amplitude noise. Therefore, for traditional noise analysis of nonautonomous circuits,

it is assumed that the input signal noise can be viewed as a circuit noise source. Since the

circuit is driven by a periodic input signal, the circuit response is also periodic. Traditional

noise analysis techniques linearize the circuit equations around the periodic response and

solve the resulting linear periodic time varying (LPTV) system of equations. Since the

circuit is driven by a large periodic signal, the circuit noise statistics and the output noise

statistics are also periodically time varying.

However, given our new way of characterizing the oscillator output, we need to

reexamine the noise analysis methodology for nonautonomous circuits as well. The principal

difference is that the circuit is driven by a large signal wide-sense stationary stochastic

process instead of a deterministic periodic signal. In this chapter we address the problem
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of noise analysis for nonautonomous circuits driven by a periodic input signal which has

phase noise. We first briefly describe the traditional noise analysis techniques for circuits

in presence of deterministic periodic signals. We then analyze a noiseless nonlinear circuit

which is driven by a periodic input signal with phase noise and show that general noise

analysis is an extension of this case. We then suggest modifications to the existing noise

analysis techniques, both in time and frequency domain. We conclude this chapter with

some examples.

5.1 Mathematical Preliminaries

The dynamics of a unperturbed nonautonomous system can be described by the

following system of differential equations

ẋ = f(x) + b0(t) (5.1)

where x ∈ Rn is a vector of state variables, f(x) : Rn → R
n and b0(t) : R→ R

n is determin-

istic T -periodic input. We make a distinction between forced and nonautonomous circuits.

A nonautonomous circuit is one which does not produce any output of interest without

an input stimulus. A forced circuit, on the other hand, has a large forcing input signal.

However, the equations of a forced circuit can also be oscillatory and then the response

of the system is a forced oscillation. In the following exposition, we are interested only in

nonautonomous circuits. For sake of simplicity, we use the state equation formulation to

describe the system. These results and techniques can be extended to the mixed differential-

algebraic equation formulation (for instance, as in modified nodal analysis (MNA)) of the

form dq(x)
dt + f(x) = 0 in a straightforward manner. We assume that this equation satisfies

the Cauchy-Peano existence and uniqueness theorem for the initial value problem [Gri90].

We further assume that the system is stable in the sense that in the absence of b0(t), the

steady-state solution of this equation is 0. We assume that the steady-state solution of this

system (in presence of b0(t)) is given by xs(t), which is also periodic with period T . This

assumption is justified for almost all nonautonomous RF components except for frequency

dividers where the output is periodic with a larger period T ′. The analysis we present here

is therefore not immediately applicable for frequency dividers.

We are interested in the response of this system in the presence of noise, both

in the form of circuit intrinsic noise D(x)ξ(t) and phase noise in the input signal of the
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form b0(t + α(t)). D(·) : Rn → R
n×p describes the connectivity and modulation of the

circuit noise sources, ξ(·) : R → R
p are circuit white noise sources and α(·) : R → R is

the phase deviation process of the input signal which is a scaled Brownian motion process,

i.e., of the form
√
cB(t) where c is the rate of increase of the variance (see Section 4.4 and

(4.33)). Hence the behaviour of the nonautonomous circuit along with noise is governed by

the following differential equation.

ẋ = f(x) + b0(t+ α(t)) +D(x)ξ(t) (5.2)

Since α(t) and ξ(t) are stochastic processes, x(t) in general will also be a stochastic process

and the above equation should be treated as a stochastic differential equation. One approach

of solving this would be to construct a Fokker-Planck equation as we did in Chapter 4 for

(4.1). (4.1) is a stochastic differential equation of one variable α(t). For x(t) we need to

find the Fokker-Planck equation governing the joint probability density function of all n

components of x(t). This analysis becomes intractable very quickly. Instead, we rewrite

(5.2) in the following form

dx = f(x)dt+ b0(t+ α(t))dt+D(x)dBp(t) (5.3)

where Bp(t) is a p-dimensional Brownian motion independent of α(t).

(5.3) is not in the standard stochastic differential equation form. For this we define

x1(t) = x(t) and x2 = cB(t) where B(t) is a Brownian motion process uncorrelated with

any of the components of Bp(t). Using this we rewrite (5.3) asẋ1(t)

ẋ2(t)

 =

f(x1) + b0(t+ x2(t))

0

dt+

D(x1)dBp(t)
√
cdB(t)


However, it turns out that solving (5.3) directly is easier.

5.2 Cyclostationary Approach

We begin with a brief description of classical cyclostationary noise analysis. We

consider (5.3) but with ideal periodic input signal b0(t), i.e.,

dx = f(x)dt+ b0(t)dt+D(x)dBp(t) (5.4)
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The traditional approach assumes that the perturbed response of this system is xs(t) + y(t)

where y(t) is the small stochastic deviation of the response of the system. Substituting this

in (5.4) we have

dxs(t) + dy(t) = f(xs(t) + y(t))dt+ b0(t)dt+D (xs(t) + y(t)) dBp(t)

Linearizing f(xs(t) + y(t)) around xs(t), ignoring y(t) in the argument of B(·) and using

that fact that xs(t) satisfies (5.1), the above equation reduces to

dy(t) ≈ df
dx

∣∣∣∣
xs(t)

y(t)dt+D(xs(t))dBp(t) (5.5)

where

df
dx

∣∣∣∣
xs(t)

= J(t)

is the Jacobian of f(x) evaluated at xs(t). Since xs(t) is T -periodic, it follows that J(t) is

also T -periodic. Hence (5.5) describes a linear periodic time-varying system of equations

governing y(t). Since the input signal b0(t) is T -periodic, the modulation term D(xs(t))

is also periodic and hence circuit noise sources statistics are cyclostationary. This means

that the deviation process y(t) is also cyclostationary. The time-varying statistics of y(t)

are usually computed by considering the periodic time-varying noise as an input to a linear

periodically time-varying system corresponding to

dy
dt

= J(t)y

which is computed directly from the steady-state response of the circuit [TKW96, RFL98].

5.3 Response of a Noiseless Circuit to Input Signal Phase

Noise

We now introduce our approach to solving (5.3). To illustrate the basic principles

of our approach we will assume that the nonlinear circuit itself is noiseless, i.e., D(x) = 0.

We will relax this assumption later. As indicated earlier, the additive amplitude noise

component of the input signal can also be absorbed in the circuit equations so we will only

consider an input signal which has phase deviation but no amplitude noise, i.e., of the form

b0(t+ α(t)). Hence (5.2) reduces to

ẋ = f(x) + b0(t+ α(t))
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or equivalently,

dx = f(x)dt+ b0(t+ α(t))dt (5.6)

where, as before, α(t) =
√
cB(t). Assuming that c is small, i.e., the input signal phase noise

is small and the system is stable, the response of the system can be assumed to be of the

form

xs(t+ α(t)) + y1(t)

where y1(t) is assumed to be small. By choosing the response to be of this form, we are

assuming that the circuit is able to follow any variations in input frequency. This is a valid

assumption if input signal phase noise (i.e., c) is assumed to be small which means that the

variation in frequency is small. Further we assume that the circuit is nonautonomous. For

practical circuits, there will also be a small change in the amplitude of the response with

the frequency variation which we absorb in y1(t). We will substitute this form of solution

in (5.6) and solve for y1(t). We first make the following useful observations.

Definition 5.1 Let

s(t) = t+ α(t) (5.7)

Definition 5.2 (One-dimensional Itô Process [Øks98]) A one-dimensional Itô pro-

cess is a stochastic process X(t), on the underlying probability space, of the form

X(t) = X(0) +
∫ t

0
u(τ, ω)dτ +

∫ t

0
u(τ, ω)dB(τ) (5.8)

where ω ∈ Ω and Ω is the sample space of the underlying probability space and u(t, ω) and

v(t, ω) are stochastic processes. Further v is such that v ∈ WH and

P

[∫ t

0
v(τ, ω)2dτ <∞ ∀t ≥ 0

]
= 1

(See Appendix A Definition A.8 for the definition of WH). We also assume that u is Ht-
adapted (see Appendix A Definition A.3) and

P

[∫ t

0
|u(τ, ω)|dτ <∞ ∀t ≥ 0

]
= 1

Here Ht is an increasing family of σ-algebras such that B(t) is a martingale (see Appendix A

Definition A.7) with respect to Ht.
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Lemma 5.1 s(t) as defined in (5.7) is an Itô process.

Proof: We have

ds(t) = dt+ dα(t)

= dt+
√
cdB(t)

According to (5.8), u(t, ω) ≡ 1 and v(t, ω) ≡
√
c trivially satisfy the conditions of Defini-

tion 5.2.

The advantage of proving s(t) to be an Itô process is that we can use the following

result to evaluate dxs(t+ α(t)).

Lemma 5.2 (The Itô Formula [Øks98]) Let X(t) be an Itô process given by

dX(t) = udt+ udB(t)

Let g(t, x) be twice continuously differentiable on R+ × R. Then

Y (t) = g(t,X(t))

is also an Itô process and

dY (t) =
∂g

∂t
(t,X(t))dt+

∂g

∂x
(t,X(t))dX(t) +

1
2
∂2g

∂x2
(t,X(t))(dX(t))2

where

(dX(t))2 = dX(t)dX(t)

is computed according to the rules

dtdt = dtdB(t) = 0

and

dB(t)dB(t) = dt

We assume that xs(t) is twice differentiable with respect to its argument. Let

ẋs(t) =
dxs
dt

(t)

and

ẍs(t) =
d2xs
dt2

(t)
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Then using the result of Lemma 5.2 we have

dxs(t+ α(t)) = dxs(s(t))

= ẋs(s(t))ds(t) +
1
2
ẍs(s(t))[ds(t)]2

= ẋs(s(t))
(
dt+

√
cdB(t)

)
+

1
2
ẍs(s(t))

(
dt+

√
cdB(t)

)2
=
(
ẋs(s(t)) +

c

2
ẍs(s(t))

)
dt+

√
cẋs(s(t))dB(t)

The term c
2 ẍs(s(t))dt in the above expansion is due to the fact that dB(t) is of

the order of
√

dt. Substituting this expression in (5.6) and linearizing f(x) around xs(s(t))

we obtain

dy1(t) + ẋs(s(t))(dt+
√
cdB(t)) +

c

2
ẍs(s(t))dt ≈ f

(
xs(s(t))

)
dt+

df
dx

∣∣∣∣
xs(s(t))

y1(t)dt

+ b0(s(t))dt

Since xs(t) is the steady-state solution of (5.1),

dxs
dt

(s(t)) = f
(
xs(s(t))

)
+ b0(s(t))

and hence

dy1(t) = J(s(t))y1(t)dt+M1(s(t))dB(t) +M2(s(t))dt (5.9)

where M1(t) = −
√
cẋs(t) and M2(t) = −0.5cẍs(t) are also T -periodic.

Remark 5.1

• The term M1(s(t))dB(t) represents a white noise source modulated by the time deriva-

tive of the steady-state response of the nonlinear circuit. This means that phase noise

in the input signal also appears as a circuit white noise source and contributes to

time-varying wide-band noise at the output of the circuit.

• The periodic coefficients J , M1 and M2 are evaluated at s(t) = t+ α(t) and not at t.

• (5.9) is a stochastic differential equation which is linear in y1(t) and the terms

M1(s(t))dB(t) and M2(s(t))dt

represent two inputs to this linear system. Hence y1(t) can be represented as y11(t) +

y12(t) where y11(t) satisfies

dy11(t) = J(s(t))y11(t)dt+M1(s(t))dB(t) (5.10)
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and y12(t) satisfies

dy12(t) = J(s(t))y12(t)dt+M2(s(t))dt (5.11)

To solve (5.10) we make the following useful observations:

Definition 5.3 Define U(t) as

U(t) =
√
cB(t) mod T

Lemma 5.3 The solution of (5.10) is the same as the solution of

dy11(t) = J(t+ U(t))y11(t)dt+M1(t+ U(t))dB(t)

Proof: Follows from the fact that J(t) and M1(t) are T -periodic.

Lemma 5.4 Asymptotically U(t) is a random process which is uniformly distributed be-

tween 0 and T for every t.

Sketch of Proof: This follows from the fact that the variance of a Brownian motion grows

unbounded with t.

Definition 5.4 Define r = t+ U(t) and z11(r) = y11(t).

Then using the fact that c is small and Lemma 5.4, it follows that (5.10) is equiv-

alent to the following equation

dz11(r) = J(r)z11(r)dr +M1(r)dB(r)

This equation is in the exact same form as (5.5). Using the same arguments as in Section 5.2

we can conclude that z11(r) is a cyclostationary process. Moreover, since J(·) is the Jacobian

of a stable system, if M1(r)w(r) is small, z11(r) is small for all r. Hence the above analysis

is consistent.

Using the fact that y11(t) = z11(r) = z11(t+U(t)) and U(t) is uniformly distributed

between 0 and T for all t, we conclude that

Theorem 5.5

• y11(t) is wide-sense stationary
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• The autocorrelation E
[
y11(t)yT11(t+ τ)

]
, where y11(t) is the solution of

dy11(t) = J(t+ α(t))y11(t)dt+M1(t+ α(t))dB(t)

is the stationary component of E
[
z11(t)zT11(t+ τ)

]
where z11(t) is the solution of

dz11 = J(t)z11(t)dt+M1(t)dB(t)

Proof: [Pap91]

Hence we can compute y11(t) by considering the stationary component of z11(r)

which can be computed using existing noise analysis techniques for nonautonomous circuits.

Next we consider (5.11). Defining z12(s(t)) = y12(t) as for z11(s(t)) we conclude

that z12(s) satisfies the following differential equation

dz12 = J(s)z12(s)ds+M2(s)ds

The above equation is linear in z12(s) with a deterministic periodic input M2(s) (in the

argument s). If c is small, M2(s) will be small and the response z12(s) will also be small

and periodic. Hence the solution of (5.11) is of the form

y12(t) = z12(t+ α(t))

where z12 is periodic in it’s argument. This term is the small amplitude variation term

that we had indicated when we chose the particular form of the solution of (5.9). Using

similar arguments as in Section 4.2 we conclude that y12(t) = z12(t+ α(t)) is a wide-sense

stationary stochastic process with a noise spectrum which is very similar to the spectrum

of xs(t+α(t)) except that it is much smaller in magnitude. Hence this typically contributes

to noise power outside the frequency band of interest.

5.4 Extension to General Noise Analysis

We now extend this result to the general noise analysis case where we also consider

circuit noise sources. We now consider (5.3)

dx = f(x)dt+ b0(t+ α(t))dt+D(x)dBp(t)

We assume that the response of the circuit is of the form

xs(t+ α(t)) + y0(t)
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Proceeding exactly as in Section 5.3, we conclude that y0(t) = y01(t) + y02(t) where y01(t)

satisfies

dy01(t) = J(s(t))y01(t)dt+M1(s(t))dB(t) +M0(s(t))dBp(t) (5.12)

where B(t) and Bp(t) are uncorrelated and M0(t) = D(xs(t)). y02(t) is still given by (5.11).

(5.12) can be rewritten as

dy01(t) = J(s(t))y01(t)dt+M(s(t))dBp+1(t)

where

M(t) =
[
M1(t) M0(t)

]
and

Bp+1(t) =

B(t)

Bp(t)


Hence it follows that

Corollary 5.6

• y01(t) is wide-sense stationary

• The autocorrelation E
[
y01(t)yT01(t+ τ)

]
, where y01(t) is the solution of

dy01(t) = J(t+ α(t))y01(t)dt+M(t+ α(t))dBp+1(t)

is the stationary component of E
[
z01(t)zT01(t+ τ)

]
where z01(t) is the solution of

dz01 = J(t)z01(t)dt+M(t)dBp+1(t) (5.13)

Therefore, we conclude that the output of a nonautonomous circuit driven by a oscillatory

(periodic) signal with Brownian motion phase deviation α(t) is given by

xs(t+ α(t)) + y01(t) + y02(t)

xs(t + α(t)) is the steady-state response of the circuit phase shifted by α(t) and y02(t) ≡
z02(t + α(t)) is an additional small amplitude variation. Both xs(t) and z02(t) are deter-

ministic, periodic functions but xs(t + α(t)) and y02(t) are stochastic processes since α(t)
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is Brownian motion. The spectrum of both these processes consists of Lorentzians centered

around the frequency of oscillation of the input signal. On the other hand y01(t) is a small

wide-band amplitude noise process which is evaluated using (5.12).

The fact that the output noise of the nonautonomous circuit is stationary is sur-

prising at first glance. If the input signal is perfectly periodic then the output noise is

indeed cyclostationary. However, in presence of a noisy input signal, which, by definition

cannot provide perfectly periodic time reference, the output noise cannot be cyclostation-

ary. Another way of intuitively understanding this result is to view the nonautonomous

circuit as a part of the oscillator circuit which is generating the periodic input waveform.

Then the analysis which we presented in Chapter 4 is valid for this composite oscillator

circuit as well. Hence the output noise for this circuit has to be wide-sense stationary. For

the case of oscillator output noise, we were interested in the noise spectral density close to

the frequency of oscillation where the phase noise term dominates. For the case of nonau-

tonomous circuits, we are usually interested in noise spectral density well away from the

frequency of oscillation and hence we need to compute the amplitude noise. We revisit this

fact in more detail in Section 5.6.

Remark 5.2

The above analysis makes the assumption that the input signal phase noise are

uncorrelated with the circuit noise sources and noise coming from any other input port.

Consider the case when the LNA in the receiver path is driven by a small desired signal

and a large blocker. The blocker acts as an LO for the nonlinearities present in the LNA.

Hence the LNA output consists of a large in-band blocker along with LNA output noise

which is correlated to the blocker. Noise analysis of subsequent blocks will have to take this

correlation into account until the in-band power of the blocker drops below the noise floor.

This problem can be finessed by analyzing the cascade of circuit blocks till the in-band power

of the blocker is negligible. This does increase the circuit size but if efficient algorithms

coupled with iterative linear solvers are used, the running time increases almost linearly

(actually O(n log n)).

5.5 Amplitude Noise Characterization of Oscillators

The analysis presented in Section 5.4 can be used to evaluate amplitude noise

response of oscillators as well. From Section 3.3 the deviation away from the limit cycle
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(y(t)) is given by

dy
dt

= J(t+ α(t))y(t) + b̃(xs(t+ α(t)), t) (5.14)

where

b̃(x, t) =
n∑
i=2

ci(x, t)ui(t+ α(t))

and

ci(x, t) = vTi (t+ α(t))D(x)b(t)

α(t) is the phase deviation of the oscillator response and is governed by the following

differential equation:

dα
dt

= vT1 (t+ α(t))D
(
xs(t+ α(t))

)
b(t) α(0) = 0

Here {ui(t)} and {vi(t)} are bi-orthonormal Floquet basis vectors, which span the n-

dimensional space at every t. Therefore, (5.14) can be rewritten as

dy
dt

= J(t+ α(t))y(t) +
n∑
i=2

ui(t+ α(t))vTi (t+ α(t))D
(
xs(t+ α(t))

)
b(t)

For white noise perturbations ξ(t) = b(t), this equation is rewritten as

dy = J(t+ α(t))y(t)dt+
n∑
i=2

Moi(t+ α(t))dBp(t)

where

Moi(t) = ui(t)vTi (t)D(xs(t))

and we have written dBp(t) instead of ξ(t)dt. This equation is in the same form as (5.12).

Hence we can solve this equation using the analysis presented in Section 5.4. We can

also conclude that the amplitude noise process of a noisy oscillator output is also a wide-

sense stationary process. Amplitude noise power spectral density is typically much smaller

compared to the noise spectral density of the large signal oscillator output xs(t+ α(t)) for

frequency ranges of interest and hence is typically not considered.
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fRF

fLO

fIF = |fRF − fLO|

Figure 5.1: Block diagram of a mixer with input and output signal frequencies

5.6 Modification to Existing Noise Analysis Techniques

As pointed out in Section 5.4, the output of a nonautonomous circuit is given by

xs(t+ α(t)) + y01(t) + y02(t)

The spectrum of xs(t+α(t))+y02(t) consists of Lorentzians centered around the harmonics

of the frequency of the input signal. The noise power spectral density rapidly diminishes

away from these harmonics. For typical application of these circuits, we are interested in

the noise power spectral density well away from the frequency of the large input signal.

Consider a mixer driven by a large LO signal with frequency fLO (Figure 5.1). The RF

signal frequency is usually present in a small frequency band centered around frequency

fRF . The output (IF) signal is centered around a frequency |fRF − fLO|. The IF signal

frequency is typically much smaller than either RF or LO (typically 1
4 or 1

5 of fLO). Around

the IF frequency, the power spectral density of xs(t + α(t)) + y02(t) is of the order of X2
1c

which is much smaller than the noise spectral density of y01(t). Hence we will only describe

techniques for solving (5.12) for y01(t). As pointed out in Corollary 5.6, the autocorrelation

E

[
y01(t)yT01(t+ τ)

]
is given by the stationary component of E

[
z01(t)zT01(t+ τ)

]
where z01(t)

is governed by (5.13). This equation is very similar to (5.4) hence we concluded that for

evaluating (5.12) we can still use the existing noise simulation algorithms. However we need

the following modifications:

• We need to add another noise source to the noise equations corresponding to the

phase to wide-band amplitude noise conversion of the input signal phase noise by the

nonlinear system. For this we first need to perform noise analysis of the oscillator to

determine the phase noise performance of the input signal.

• We only need to consider the stationary component of the cyclostationary noise statis-
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tics computed by the algorithm.

We now briefly outline two noise simulation algorithms, one in time domain [TKW96] and

one in frequency domain [RFL98] which are suited for this purpose. For both these analyses

we assume that the equations governing the unperturbed (noiseless) circuit response are

given by

dq(x)
dt

+ f(x) + b0(t) = 0

The periodic steady-state solution of this system of equations is xs(t). The equations

governing the circuit response with perturbation (noise) are given by

dq(x)
dt

+ f(x) + b0(t) +D(x)b(t) = 0 (5.15)

where q(·), f(·) : Rn → R
n and b0(t), D(x) are b(t) are as defined in Section 5.1. The

solution of (5.15) is of the form xs(t) + y(t) where y(t), as usual, is the small deviation

of the solution around the large unperturbed steady-state solution. Substituting this in

(5.15), linearizing around the xs(t) and using the fact that xs(t) satisfies the unperturbed

system of equations we obtain the following linear periodic time varying (LPTV) system of

equations for y(t):

d
dt

(
dq(x)

dx

∣∣∣∣
xs(t)

y(t)

)
+

df(x)
dx

∣∣∣∣
xs(t)

y(t) +D(xs(t))b(t) = 0 (5.16)

For periodic deterministic perturbation b(t) (of angular frequency ω), it follows from the

theory of LPTV system of equations that the response y(t) will be of the form

y(t) =
∞∑

k=−∞
Yk exp((ω + kω0)t)

where ω0 = 1/T . This implies that

y(t+ T ) = y(t) exp(ωT )

For white noise perturbation b(t) = ξ(t), the output y(t) will be stochastic process whose

statistics vary periodically with time. To solve (5.16), we need to find the LPTV transfer

function and compute the output noise power.
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5.6.1 Time-Domain Technique

The approach described in [TKW96] solves (5.16) in time domain. For one period

T , time is discretized inm steps and (5.16) is solved using a linear multi-step method, such as

Backward Euler. At the ith Backward Euler step, the equation for ỹ(ti), the approximation

to y(t) at time ti is given by(
1
hi

dq
dx

∣∣∣∣
xs(ti)

+
df
dx

∣∣∣∣
xs(ti)

)
ỹ(ti)−

1
hi

dq
dx

∣∣∣∣
xs(ti−1)

ỹ(ti−1) +D(xs(ti))b(ti) = 0

where hi = ti − ti−1. The above equation represents a sequence of m equations. These m

equations are rewritten in matrix form as
C1
h1

+ G1 −Cmα(ω)
h1

−C1
h1

C2
h2

+ G2

. . . . . .

−Cm−1

hm
Cm
hm

+ Gm




ỹ(t1)

ỹ(t2)
...

ỹ(tm)

 =


−D(xs(t1))b(t1)

−D(xs(t2))b(t2)
...

−D(xs(tm))b(tm)


where α(ω) = exp(ωT ),

Ci =
dq
dx

∣∣∣∣
xs(ti)

and

Gi =
df
dx

∣∣∣∣
xs(ti)

The coefficient matrix is written as a sum of two terms, as follows
C1
h1

+ G1 −Cmα(ω)
h1

−C1
h1

C2
h2

+ G2

. . . . . .

−Cm−1

hm
Cm
hm

+ Gm

 =


C1
h1

+ G1

−C1
h1

C2
h2

+ G2

. . . . . .

−Cm−1

hm
Cm
hm

+ Gm


︸ ︷︷ ︸

,L

+


0 −Cm

h1

0 0
. . . . . .

0 0


︸ ︷︷ ︸

,B

α(ω)

and the matrix equation is rewritten as

(I + α(ω)L−1B)


ỹ(t1)

ỹ(t2)
...

ỹ(tm)

 = −L−1


D(xs(t1))b(t1)

D(xs(t2))b(t2)
...

D(xs(tm))b(tm)


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The above system of equation is efficiently solved using a preconditioned Krylov sub-space

method with L−1 as a preconditioner. Since L is a block lower bi-diagonal matrix, and each

of the blocks are sparse (they are derived from the circuit matrix), multiplication by L−1,

i.e., solution of Lx = y, can be performed very efficiently.

5.6.2 Frequency-Domain Technique

We now describe a harmonic balance based technique for solving (5.16) [RFL98].

This equation is rewritten in the following form

C(t)ẏ +G(t)y +A(t)b(t) = 0 (5.17)

where

C(t) =
dq
dx

∣∣∣∣
xs(t)

G(t) =
df
dx

∣∣∣∣
xs(t)

+
d
dt

(
dq
dx

∣∣∣∣
xs(t)

)

and

A(t) = D(xs(t))

Since (5.17) is linear in y(t), let the corresponding linear time varying transfer function be

h(t2, t1). The output y(t) is written in terms of input b(t) as

y(t2) =
∫ ∞
−∞

h(t2, t1)b(t1)dt1 (5.18)

5.6.2.1 Noise Propagation Through Linear Time-Varying System

We first computer the output noise power spectral density in terms of input noise

power spectral density when noise propagates through a linear periodically time varying

(LPTV) system.

Since C(t) and G(t) are T -periodic, the linear time varying transfer function

h(t2, t1) can be expressed as (4.38) and (4.39) which are repeated here:

h(t2, t1) =
∞∑

i=−∞
hi(t2 − t1) exp(iω0t2)
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and

Hi(ω) =
∫ ∞
−∞

hi(t) exp(−ωt)dt

Using (4.38) and (4.39) it follows that the transfer function h(t2, t1) can be written as

h(t2, t1) =
1

2π

∞∑
i=−∞

∫ ∞
−∞

Hi(ω) exp[ω(t2 − t1)] exp(iω0t2)dω

Since y(t) and b(t) are, in general, stochastic processes whose statistics vary with time, the

autocorrelation function for these processes is defined as

Rpp(t1, t2) = E

[
p(t1)pT (t2)

]
and the power spectral density is defined as the two-dimensional Fourier transform of the

autocorrelation function as

Spp(ω1, ω2) =
∫ ∞
−∞

∫ ∞
−∞

Rpp exp[−(ω1t1 + ω2t2)]dt1dt2 (5.19)

From (5.18) it follows that the autocorrelation function of the output noise process

is related to the input noise process as

Ryy(t1, t2) = E

[
y(t1)yT (t2)

]
= E

[∫ ∞
−∞

∫ ∞
−∞

h(t1, s1)b(s1)bT (s2)hT (t2, s2)ds1ds2

]
=
∫ ∞
−∞

∫ ∞
−∞

h(t1, s1)Rbb(s1, s2)hT (t2, s2)ds1ds2

(5.20)

Combining (5.19), (5.18), (4.38) and (4.39) we have

Syy(ω1, ω2) =

∞∫∫∫∫
−∞

h(t1, s1)Rbb(s1, s2)hT (t2, s2) exp[−(ω1t1 + ω2t2)]dt1dt2ds1ds2

=
1

16π4

∫∫∫ ∞∫∫
−∞

∫∫∫ ∞∑
i=−∞

∞∑
k=−∞

Hi(ω3) exp[ω3(t1 − s1)] exp(iω0t1)Sbb(ω5, ω6)

exp[(ω5s1 + ω6s2)]HT
k (ω4) exp[ω4(t2 − s2)]

exp(kω0t2) exp[−(ω1t1 + ω2t2)]dt1dt2ds1ds2

dω3dω4dω5dω6

=
1

16π4

∫∫∫ ∞∫∫
−∞

∫∫∫ ∞∑
i=−∞

∞∑
k=−∞

Hi(ω3)Sbb(ω5, ω6)HT
k (ω4) exp[(ω5 − ω3)s1]

exp[(ω3 + iω0 − ω1)t1 + (ω4 + kω0 − ω2)t2]

exp[(ω6 − ω4)s2]dt1dt2ds1ds2dω3dω4dω5dω6
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Using the identity

1
2π

∫ ∞
−∞

exp(ωt)dt = δ(ω)

we have

Syy(ω1, ω2) =

∞∫∫∫∫
−∞

∞∑
i=−∞

∞∑
k=−∞

Hi(ω3)Sbb(ω5, ω6)HT
k (ω4)δ(ω3 + iω0 − ω1)δ(ω5 − ω3)

δ(ω4 + kω0 − ω2)δ(ω6 − ω4)dt1dt2ds1ds2

=
∞∑

i=−∞

∞∑
k=−∞

Hi(ω1 − iω0)Sbb(ω1 − iω0, ω2 − kω0)HT
k (ω2 − kω0)

(5.21)

Since both input and output noise are assumed to be cyclostationary, the auto-

correlation Ryy(t1, t2) can be expressed as a Fourier series as

Ryy(t1, t2) =
∞∑

i=−∞
Ryy,i(t2 − t1) exp(iω0t2)

The one-dimensional Fourier transform of Ryy,i(t) is referred to the harmonic power spectral

density (HSPD) [RFL98] and is defined as

Syy,i(ω) =
∫ ∞
−∞

Ryy,i(t) exp(−ωt)dt

The original two-dimensional power spectral density Spp(ω1, ω2) can be related to the har-

monic power spectral density as follows:

Spp(ω1, ω2) =
∫ ∞
−∞

∫ ∞
−∞

Rpp(t1, t2) exp[−(ω1t1 + ω2t2)]dt1dt2

=
∫ ∞
−∞

∫ ∞
−∞

∞∑
i=−∞

Rppi(t2 − t1) exp(iω0t2) exp[−(ω1t1 + ω2t2)]dωdt1dt2

=
1

2π

∞∫∫∫
−∞

∞∑
i=−∞

Sppi(ω) exp[(ω + iω0 − ω2)t2] exp[−(ω + ω1)t1]dωdt1dt2

= 2π
∫ ∞
−∞

∞∑
i=−∞

Sppi(ω)δ(ω + iω0 − ω2)δ(−ω − ω1)dω

= 2π
∞∑

i=−∞
Sppi(−ω1)δ(−ω1 + iω0 − ω2)

(5.22)
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From (5.21) and (5.22) the output noise HSPD’s can be related to the input noise

HSPD’s as follows:

Syyl(−ω) =
∞∑

i=−∞

∞∑
k=−∞

Hi(ω − iω0)Sbbk(−ω + iω0)HT
l−(i+k)[−ω + (i+ k)ω0]

(see Section 4.5.2). The above relation is rewritten in matrix form as [RFL98]

Syy(ω) = H(ω)Sbb(ω)H∗(ω) (5.23)

where H is the harmonic balance conversion matrix (see Definition 4.3 in Section 4.5.2),

Sbb(ω)=



...
...

...
...

...

· · · Sbb,0(−ω+2ω0) Sbb,1(−ω+2ω0) Sbb,2(−ω+2ω0) Sbb,3(−ω+2ω0) Sbb,4(−ω+2ω0) · · ·
· · · Sbb,0(−ω+ω0) Sbb,1(−ω+ω0) Sbb,2(−ω+ω0) Sbb,3(−ω+ω0) Sbb,4(−ω+ω0) · · ·
· · · Sbb,0(−ω) Sbb,1(−ω) Sbb,2(−ω) Sbb,3(−ω) Sbb,4(−ω) · · ·
· · · Sbb,0(−ω−ω0) Sbb,1(−ω−ω0) Sbb,2(−ω−ω0) Sbb,3(−ω−ω0) Sbb,4(−ω−ω0) · · ·
· · · Sbb,0(−ω−2ω0) Sbb,1(−ω−2ω0) Sbb,2(−ω−2ω0) Sbb,3(−ω−2ω0) Sbb,4(−ω−2ω0) · · ·

...
...

...
...

...


and similarly

Syy(ω)=



...
...

...
...

...

· · · Syy,0(−ω+2ω0) Syy,1(−ω+2ω0) Syy,2(−ω+2ω0) Syy,3(−ω+2ω0) Syy,4(−ω+2ω0) · · ·
· · · Syy,0(−ω+ω0) Syy,1(−ω+ω0) Syy,2(−ω+ω0) Syy,3(−ω+ω0) Syy,4(−ω+ω0) · · ·
· · · Syy,0(−ω) Syy,1(−ω) Syy,2(−ω) Syy,3(−ω) Syy,4(−ω) · · ·
· · · Syy,0(−ω−ω0) Syy,1(−ω−ω0) Syy,2(−ω−ω0) Syy,3(−ω−ω0) Syy,4(−ω−ω0) · · ·
· · · Syy,0(−ω−2ω0) Syy,1(−ω−2ω0) Syy,2(−ω−2ω0) Syy,3(−ω−2ω0) Syy,4(−ω−2ω0) · · ·

...
...

...
...

...


The output PSD’s evaluated at ω are given by the central block row of Syy. The HSPD’s

of the self- and cross-powers of the pth output are available in the pth row of this block.

This can be obtained by post-multiplying the transpose of (5.23) by a unit block vector E0

followed by the pth unit vector ep as

H̄(ω)STbb(ω)HT (ω)E0ep
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5.6.2.2 Evaluation of System Transfer Function

We now express the LPTV transfer function h(t2, t1) in terms of parameters of

(5.17).

Since C(t) and G(t) in (5.17) are T -periodic, they can be expanded in Fourier

series as

C(t) =
∞∑

i=−∞
Ci exp(iω0t)

and

G(t) =
∞∑

i=−∞
Gi exp(iω0t)

For the purpose of this analysis we assume that b(t) is a deterministic signal whose Fourier

Transform B(ω) exists and is given by

B(ω) =
∫ ∞
−∞

b(t) exp(−ωt)dt

Since h(t2, t1) is the linear transfer function corresponding to (5.17), we have

y(t2) =
∫ ∞
−∞

h(t2, t1)b(t1)dt1

=
1

4π2

∞∫∫∫
−∞

∞∑
i=−∞

Hi(ω1) exp[ω1(t2 − t1)] exp(iω0t2)B(ω2) exp(ω2t1)dω1dω2dt1

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

∞∑
i=−∞

Hi(ω1) exp[(ω1 + iω0)t2]B(ω2)δ(ω2 − ω1)dω1dω2

=
1

2π

∞∑
i=−∞

∫ ∞
−∞

Hi(ω)B(ω) exp[(ω + iω0)t2]dω

This implies that the Fourier transform of y(t) is given by

Y (ω) =
∞∑

i=−∞
Hi(ω − iω0)B(ω − iω0) (5.24)

(5.17) is rewritten as

1
2π

∫ ∞
−∞

∞∑
i=−∞

Ci exp(iω0t)ωY (ω) exp(ωt)dω

+
1

2π

∫ ∞
−∞

∞∑
i=−∞

Gi exp(iω0t)Y (ω) exp(ωt)dω +
1

2π

∫ ∞
−∞

AB(ω) exp(ωt)dω = 0
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Fourier transform of the above expression is given by

∞∑
i=−∞

Ci(ω − iω0)Y (ω − iω0) +
∞∑

i=−∞
GiY (ω − iω0) +AB(ω) = 0

Substituting the value of Y (ω) from (5.24) in the above expression we have

∞∑
i=−∞

∞∑
k=−∞

Ci(ω − iω0)Hk(ω − (i+ k)ω0)B(ω − (i+ k)ω0)

+
∞∑

i=−∞

∞∑
k=−∞

GiHk(ω − (i+ k)ω0)B(ω − (i+ k)ω0) +AB(ω) = 0

Since the above expression is valid for every B(ω), it must be necessary that for i+ k = 0

∞∑
i=−∞

(ω − iω0)CiH−i(ω) +
∞∑

i=−∞
GiH−i(ω) +A = 0 (5.25)

and for i+ k = l 6= 0 we have

∞∑
i=−∞

(ω − iω0)CiHl−i(ω − lω0) +
∞∑

i=−∞
GiHl−i(ω − lω0) = 0 (5.26)

Collocating the terms in (5.25) at frequencies ω − lω0 for l ∈ Z we have

∞∑
i=−∞

[ω − (i+ l)ω0]CiH−i(ω − lω0) +
∞∑

i=−∞
GiH−i(ω − lω0) +A = 0 (5.27)

(5.27) and (5.26) can written compactly as

J (ω)H = −A

where

J (ω) = G + Ω(ω)C

G =



...
...

...
...

...

· · · G0 G−1 G−2 G−3 G−4 · · ·
· · · G1 G0 G−1 G−2 G−3 · · ·
· · · G2 G1 G0 G−1 G−2 · · ·
· · · G3 G2 G1 G0 G−1 · · ·
· · · G4 G3 G2 G1 G0 · · ·

...
...

...
...

...


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C =



...
...

...
...

...

· · · C0 C−1 C−2 C−3 C−4 · · ·
· · · C1 C0 C−1 C−2 C−3 · · ·
· · · C2 C1 C0 C−1 C−2 · · ·
· · · C3 C2 C1 C0 C−1 · · ·
· · · C4 C3 C2 C1 C0 · · ·

...
...

...
...

...



A =



...
...

...
...

...

· · · A0 A−1 A−2 A−3 A−4 · · ·
· · · A1 A0 A−1 A−2 A−3 · · ·
· · · A2 A1 A0 A−1 A−2 · · ·
· · · A3 A2 A1 A0 A−1 · · ·
· · · A4 A3 A2 A1 A0 · · ·

...
...

...
...

...



Ω(ω) =



. . .

(ω − ω0)I

ωI

(ω + ω0)I
. . .


and H(ω) is the harmonic balance conversion matrix as in Definition 4.3.

In an actual calculation, the infinite matrices need to be truncated to a finite

number of harmonics. [RFL98] make the observation that, in order to compute the output

noise statistics in (5.23) the (finite) block Toeplitz structure of C and G can be approxi-

mated by a block circulant structure without loss of accuracy. Then the circulant matrix

can be expressed as products of sparse block diagonal matrices, permutations and Fourier

transforms. Hence matrix vector product can be computed very efficiently (O(mn log n) m:

number of harmonics and n: circuit size) and iterative linear algebra techniques with appro-

priate preconditioning can be used to compute expressions of the type H(ω)x = J −1(ω)Ax
in an efficient manner.
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Figure 5.2: Four Diode Mixer

5.7 Examples

The noise simulation algorithm is implemented in Matlab. We use the time do-

main technique presented in Section 4.5.1 for performing noise simulation for oscillators and

the harmonic balance based technique presented in [RFL98] to perform the noise analysis

of the nonautonomous portions of the circuit. The steady-state response of the circuit and

the Jacobians are computed by performing transient simulations in Spice and later handed

over to Matlab.

We illustrate our technique using a passive mixer and an active mixer. Consider

the oscillator shown in Figure 4.5. The basic configuration is a Colpitt’s oscillator. The

circuit oscillates at 2.2 GHz. This circuit has 11 state variables and 8 noise sources. c was

computed to be 3.19× 10−19 sec which corresponds to relative noise power of 98.1 dBc/Hz

below the carrier at an offset frequency of 100 kHz. We use this oscillator to generate the

2.2 GHz local oscillator (LO) signal for both the mixers.

5.7.1 Passive Mixer

The schematic of the four-diode passive mixer is shown in Figure 5.2. For the

purpose of this analysis the chokes are assumed to be ideal. The mixer circuit has 21

state variables along with 10 noise sources (excluding the one added for the oscillator noise

contribution). The RF signal is assumed to come from a 50 Ω port at 2.4 GHz. The

noise figure of this mixer at the IF port at 200 MHz, without the contribution of the LO
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Figure 5.3: Increase of mixer noise figure with phase noise of the local oscillator (LO) signal
for the passive mixer with 2% offset in the center tap of the output inductor

phase noise, was computed to be 13.3 dB. In this analysis, fifteen significant harmonics were

considered. Including the effect of LO phase noise, the noise figure remains unchanged. The

Matlab implementation of the noise analysis took ten seconds on a 600 MHz Digital Alpha

workstation.

It is observed that as the input signal phase noise is increased, the noise at the

output node is not affected. This is explained by the perfect symmetry of the circuit. Since

the circuit is symmetric, the white noise source due to input signal phase noise appears as

a common mode signal to the output of this circuit and hence does not affect the noise at

the output node of the circuit. It should be noted that input signal phase noise does affect

the noise at other nodes of the circuit. However, in a realistic scenario, perfect symmetry

cannot be achieved. To simulate the real scenario, a 2% offset in the center tap of the

output transformer was artificially introduced.

Figure 5.3 shows the increase in noise figure (from the noiseless oscillator case)

as a function of c for the passive mixer with a 2% offset in the center tap of the output

transformer. This increase is negligible for c < 1× 10−19 sec but as c increases beyond this

value, the noise figure degrades rapidly. This cross-over point is the value of c where the
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Figure 5.4: Gilbert cell based mixer

input signal phase noise starts dominating over the circuit noise. This also suggests that

for this particular mixer, it is an overkill for the LO to have phase noise performance better

than 113.2 dBc/Hz at 100 kHz offset.

5.7.2 Active Mixer

The schematic of the active mixer is shown in Figure 5.4. The inductors are

implemented on chip and hence contain significant number of parasitic elements. The mixer

circuit has 53 state variables along with 46 noise sources (excluding the one added for the

oscillator noise contribution). The RF signal is assumed to come from a 50 Ω port at 2.4

GHz. The noise figure of this mixer at the IF port at 200MHz, without the contribution of

the LO phase, noise was computed to be 7 dB. In this analysis, fifteen significant harmonics

were considered. Including the effect of LO phase noise, the noise figure stays almost the

same. The noise analysis for this circuit took thirty seconds on a 600 MHz DEC alpha
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Figure 5.5: Increase of mixer noise figure with phase noise of the local oscillator (LO) signal
for the Gilbert cell mixer

station.

Figure 5.5 shows the increase in noise figure (from the noiseless oscillator case) as

a function of c for this circuit. This increase is negligible for c < 1 × 10−17 sec but as c

increases beyond this value, the noise figure degrades rapidly. This cross-over point is the

value of c where the input signal phase noise starts dominating over the circuit noise. This

also suggests that for this particular mixer, it is an overkill for the LO to have phase noise

performance better than 83 dBc/Hz at 100 kHz offset. We observe that using an active

mixer instead of a passive mixer not only reduces the overall noise figure but also is less

sensitive to the LO phase noise. Using an active mixer eases the noise specifications of the

oscillator which generates the LO.

This technique, as presented here can only handle white noise sources. However

for noise with long-term correlations, i.e., flicker noise, the steps outlines above are not

rigorously justified. [DLSV96] used the modulated stationary noise model to analyze flicker

noise. However, the asymptotic arguments in this formulation need to be carefully examined

before these results can be carried over to the flicker noise case as well.
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Chapter 6

Noise Analysis of Circuits with

Multitone Inputs

In the previous chapter, we developed a noise simulation algorithm for nonau-

tonomous circuits which takes into account the effect of input signal phase noise as well.

We showed that, for a nonautonomous circuit driven by a large periodic input signal cor-

rupted by Brownian motion phase deviation, output noise is stationary. We also showed

exactly how input signal phase noise contributed to wide band amplitude noise at the out-

put. In this chapter we extend the analysis to the case when the nonautonomous circuit is

subjected to more than one large periodic excitations. In this case, the circuit response is

quasi-periodic.

This analysis is desirable in many RF circuits. For the mixer shown in Figure 5.1

let the signal at the RF port to be a sum to two periodic signals of frequency fRF and

fBLOCK , where fRF is the frequency of the desired signal that is downconverted to fIF

and fBLOCK is the frequency of a signal that occupies an adjacent band (this signal is

typically called blocker or jammer). In an ideal mixer, fBLOCK would be downconverted

to |fBLOCK − fLO| which would be out of the frequency band to interest and hence would

be filtered out1. However, for a nonideal mixer, the inband noise performance is affected

by the blocker in the following ways:

• If the blocker signal is large, it can drive the small-signal preamplifier stages and the
1This would not be the case if fBLOCK = 2fLO − fRF , i.e., the blocker is at the image frequency for this

mixer. There are mixers which are specifically designed to suppress this image signal (called image reject
mixers). For simplicity we assume that the blocker is far away from the image frequency.
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mixer into gain compression. This results in a drop in receiver conversion gain and

hence a decrease in the overall signal to noise ratio.

• The blocker acts as a second LO to the nonlinear circuit and therefore translates

additional low frequency circuit noise to IF at the output. For instance, a blocker

10 MHz away from the fRF mixes with circuit noise at 10 MHz which appears as

additional noise at fIF at the output [FHM97].

• Due to phase noise in blocker, there is finite noise power at frequency fRF due to the

presence of the blocker. This increases the output noise.

• Additionally finite noise power of the local oscillator at the blocker frequency gets

downconverted to base band.

In this chapter we attempt to quantify this increase in output noise power due to the presence

of a blocker. We first derive the spectrum of the output of a memoryless nonlinearity

driven by two large periodic signals with uncorrelated phase noise. We also review existing

techniques for simulating nonlinear circuits driven by multitone excitations on which we will

base our noise analysis technique. We present numerical techniques for efficiently computing

this noise response and conclude this chapter by applying our numerical techniques to

compute the noise performance of the two mixers described in Section 5.7 in presence of

blockers.

6.1 Mathematical Preliminaries

The dynamics of a unperturbed nonautonomous system can be described by the

following system of differential equations

ẋ = f(x) + b1(t) + b2(t) (6.1)

where x ∈ Rn is a vector of state variables, f(x) : Rn → R
n and b1(t), b2(t) : R → R

n are

deterministic periodic inputs with periods T1 and T2 respectively. We present our analysis

for the case where the nonautonomous circuit is driven by two large periodic signals. This

allows to introduce our technique for noise simulation of nonautonomous circuits driven by

multitone excitations while keeping the notation simple. The two-tone case is also of more

practical interest than the general multitone case. The extension to the general multitone
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case is tedious but straight forward. We assume that this equation satisfies the Cauchy-

Peano existence and uniqueness theorem for the initial value problem [Gri90]. We further

assume that the system is stable in the sense that in the absence of b1(t) and b2(t), the

steady-state solution of this equation is 0. We assume that the steady-state solution of this

system (in presence of b1(t) and b2(t)) is given by xs(t).

As before we are interested in the response of this system in the presence of noise,

both in the form of circuit intrinsic noise D(x)ξ(t) and phase noise in the input signals

of the form b1(t + α1(t)) and b2(t + α2(t)). D(·) : Rn → R
n×p describes the connectivity

and modulation of the circuit noise sources, ξ(·) : R → R
p are circuit white noise sources

and α1(·), α2(·) : R → R are the phase deviation process of the input signal which are

scaled Brownian motion processes, i.e., of the form
√
c1B1(t) and

√
c2B2(t) where c1 and

c2 are the respective rates of increase of the variance (see Section 4.4 and (4.33)). Hence

the behaviour of the nonautonomous circuit along with noise is governed by the following

differential equation.

ẋ = f(x) + b1(t+ α1(t)) + b2(t+ α2(t)) +D(x)ξ(t)

Since α1(t), α2(t) and ξ(t) are stochastic processes, x(t) in general will also be a stochastic

process and the above equation should be treated as a stochastic differential equation. We

rewrite this in the following form

dx = f(x)dt+ b1(t+ α1(t))dt+ b2(t+ α2(t))dt+D(x)dBp(t) (6.2)

where Bp(t) is a p-dimensional Brownian motion independent of α1(t) and α2(t).

6.2 Spectrum of Nonlinear Mixing of Two Tones

In this section we derive the spectrum of the output of a memoryless nonlinearity

with two large signal periodic inputs corrupted by Brownian motion phase noise. Let the

memoryless nonlinearity be of the form

f(t) = f(x1(t), x2(t))

We rewrite f(t) in its bivariate form [BWLBG96, Roy97, BWL97] as

f̂(t1, t2) = f(x1(t1), x2(t2))
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f(t) and f̂(t1, t2) satisfy the following relation

f̂(t, t) = f(t)

For noiseless inputs x1(t1) = b1(t1) and x2(t2) = b2(t2), let the bivariate form of the output

be given by

f̂(t1, t2) =
∞∑

i=−∞

∞∑
k=−∞

F (i, k) exp(ω1it1) exp(ω2kt2)

where

ω1 =
2π
T1

and ω2 =
2π
T2

In general F (i, k) will be functions of ω1 and ω2. The bivariate form of the output in

presence of input signal phase noise is given by

f̂(t1, t2) =
∞∑

i=−∞

∞∑
k=−∞

F (i, k) exp
(
ω1i(t1 + α1(t1))

)
exp
(
ω2k(t2 + α2(t2))

)
The output is now a stochastic process since α1(t) and α2(t) are stochastic processes. The

autocorrelation function of f(t) is given by

Rff (t, τ) = E [f(t)f∗(t+ τ)]

= E

[ ∞∑
i,k,l,m=−∞

F (i, k)F ∗(l,m) exp
(
ω1i(t+ α1(t))

)
exp
(
ω2k(t+ α2(t))

)
exp
(
−ω1l(t+ τ + α1(t+ τ))

)
exp
(
−ω2m(t+ τ + α2(t+ τ))

)]

=
∞∑

i,k,l,m=−∞
F (i, k)F ∗(l,m) exp

(
ω1(it1 − l(t+ τ))

)
exp
(
ω1(kt1 −m(t+ τ))

)
E

[
exp
(
ω1(iα1(t)− lα1(t+ τ))

)
exp
(
ω2(kα2(t)−mα2(t+ τ))

)]
Since α1(t) and α2(t) are independent processes, we have

Rff (t, τ) =
∞∑

i,k,l,m=−∞
F (i, k)F ∗(l,m) exp

(
ω1(it1 − l(t+ τ))

)
exp
(
ω1(kt1 −m(t+ τ))

)
E

[
exp
(
ω1(iα1(t)− lα1(t+ τ))

)]
E

[
exp
(
ω2(kα2(t)−mα2(t+ τ))

)]
Using similar arguments as in Section 4.2 we can conclude that since α1(t) and α2(t) are

Brownian motion processes, Rff (t, τ) has a nontrivial value only for i = l and k = m and
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asymptomatically

Rff (t, τ) =
∞∑

i=−∞

∞∑
k=−∞

F (i, k)F ∗(i, k) exp(−ω1iτ) exp(−ω2kτ) exp
(
−1

2
ω2

1i
2c1|τ |

)
exp

(
−1

2
ω2

2k
2c2|τ |

)
The autocorrelation function Rff (t, τ) is independent of t hence the output process is wide-

sense stationary. The power spectral density of the output process, which is Fourier trans-

form of this autocorrelation functions is given by

Sff (ω) =
∞∑

i=−∞

∞∑
k=−∞

F (i, k)F ∗(i, k)
ω2

1i
2c1 + ω2

2k
2c2

1
4(ω2

1i
2c1 + ω2

2k
2c2)2 + (ω + iω1 + kω2)2

(6.3)

From the above expression we conclude that the spectrum of the output consists of a series

of Lorentzian spectra centered around frequencies iω1 + kω2, i, k ∈ Z.

6.3 Multirate Analysis of Circuits with Multitone Excita-

tions

In this section we briefly review simulation techniques for computing the steady-

state response of a nonautonomous circuit driven by two-tone excitations. A näıve method

of computing the steady-state response of the circuit would be to use shooting or harmonic

balance method directly. This would imply that the circuit would be simulated for a time

which is of the order of the slowly varying signal while the time-steps need to be small enough

so as to follow the fast waveform. If the two signal frequencies are widely separated, the

simulation is very expensive. Multirate methods described in [BWLBG96, Roy97, BWL97]

circumvent this problem by constructing a partial differential equation with multiple time-

scales corresponding to the circuit equations. This partial differential equation can be

efficiently solved and the circuit response can be easily derived from the multirate solution.

We now give a brief review of these techniques. In the following we assume that the system

of nonlinear ordinary differential-algebraic equations governing the behaviour of the circuit

is given by

dq(x)
dt

+ f(x) + b1(t) + b2(t) = 0 (6.4)

where x(·) : R→ R
n is the vector of node voltages and some branch currents, q(·) : Rn → R

n

is the vector of charges and fluxes and f(·) : Rn → R
n is the vector of sums of currents
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entering each node and branch voltages, both depending on x(t). Furthermore, b1(·), b2(·) :

R→ R
n are the vector of input sources which are periodic with period T1 and T2 respectively

and, as before

ω1 =
2π
T1

and ω2 =
2π
T2

We also assume that ω1 and ω2 are incommensurable, i.e., for all i, k ∈ Z we have

iω1 + kω2 = 0 iff i = 0 and k = 0

This implies that functions of the kind

exp((iω1 + kω2)t)

are linearly independent for all i, k ∈ Z.

Since the circuit is nonautonomous, we can assume that the steady-state response

xs(t) is quasi-periodic and can be expressed as

xs(t) =
∞∑

i=−∞

∞∑
k=−∞

Xs(i, k) exp((iω1 + kω2)t) (6.5)

Let x̂s(t1, t2) be the bivariate form of xs(t), where, as before, x̂s and xs satisfy the following

relation

x̂s(t, t) = xs(t)

and let

b̂(t1, t2) = b1(t1) + b2(t2)

As a suitable generalization of (6.4) for two dimensional functions we consider the

following partial differential equation.

∂q(x̂(t1, t2))
∂t1

+
∂q(x̂(t1, t2))

∂t2
+ f(x̂(t1, t2)) + b̂(t1, t2) = 0 (6.6)

Considering this partial DAE only for solutions of the form (6.5) implicitly imposes the

following boundary conditions

x̂(0, t2) = x̂(T1, t2) (6.7)

x̂(t1, 0) = x̂(t1, T2) (6.8)

The following theorem, due to [BWLBG96, Roy97], relates the solution x̂s(t1, t2) of (6.6)

to the solution xs(t) of (6.4):
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Theorem 6.1 ([BWLBG96, Roy97]) The DAE (6.4) has a quasi-periodic solution xs(t)

iff the partial DAE (6.6) has a solution x̂s(t1, t2) of the form (6.5). The two solutions are

related by

xs(t) = x̂s(t, t)

for all t ∈ R.

(6.6) can be solved by the following three different classes of techniques

1. Equations in both time scales t1 and t2 can be solved in time domain [Roy97] either

by using multivariate finite difference time domain method or hierarchal shooting.

• In the multivariate finite difference time domain method the t1, t2 plane is suit-

ably gridded on the rectangle [0, T1]× [0, T2] resulting in a grid of size m1 ×m2.

The partial differential operators of (6.6) are discretized using a linear multistep

method and (6.6) is collocated on the grid. This leads to a set of nonlinear

algebraic equations in the unknowns which is solved using a Newton-Raphson

method. The collocation leads to a system of m = m1 × m2 equations. The

m1 +m2 extra unknowns which result from the discretization of the differential

operators at t1 = 0 and t2 = 0 are eliminated using the bi-periodic boundary

conditions (6.7) and (6.7). The resulting nonlinear system of equations is solved

using Newton-Raphson technique. The Jacobian of size (nm1m2)× (nm1m2) for

the linearized system is of the following p-cyclic form [Roy97]

D1 −Lm1

−L1 D2

−L2 D3

. . . . . .

−Ln1−1 Dn1


Each block (of size (nm2)×(nm2)) is itself an m2×m2 block matrix with p-cyclic

or diagonal structure. Each block is in turn a sparse matrix of size n, consisting

of circuit conductance and capacitance matrices. Hence the overall Jacobian is

extremely sparse and diagonally dominant hence easily amenable to solving using

iterative linear algebra techniques.
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• A hierarchal extension of the classical shooting algorithm can also be used for

solving (6.6). The bivariate functions x̂, b̂, q and f can be viewed as functions of

the single argument t1 that return values that are vector valued functions, i.e.,

the multivariate functions are maps from R → {h(·) : R → R
n} [Roy97]. Let

these maps be Q(t1), X(t1), F (t1) and B(t1); in other words, Q(t1) equals the

entire function q(t1, ·) for fixed t1. (6.6) can then be written formally as a DAE

in function-valued variables as

dQ(X)
dt1

+Dt2 [Q(X)] + F (X) +B(t1) = 0

where Dt2 is an operator that differentiates the function that it operates on. The

above equation can be discretized using Backward Euler (say) as

Q (X(t1i))−Q (X(t1i))
t1i − t1i−1

+Dt2 [Q(X)] + F (X) +B(t1) = 0

This equation can be solved for X (t1i) which represents the function x̂ (t1i , ·) at

a fixed t1 value. This equation is also a DAE and can be solved using shooting.

This inner loop DAE is solved for each time step of outer loop.

2. In the multivariate mixed frequency time method [BWL97, Roy97], x̂(t1, t2) and

b̂(t1, t2) are expanded as Fourier series in either one of the time scales, say t1. (6.6)

then reduces to

0 =
M∑

i=−M
iω1Qi(t2) exp(iω1t1) +

M∑
i=−M

iω1
∂Qi(t2)
∂t2

exp(iω1t1)

+
M∑

i=−M
Fi(t2) exp(iω1t1) +

M∑
i=−M

Bi(t2) exp(iω1t1)

Since exp(iω1t1) are linearly independent, the Fourier components in the above equa-

tion can be separated leading to [BWL97]

dQ̄(t2)
dt2

+ Ω1Q̄(t2) + F̄ (t2) + B̄(t2) = 0 (6.9)

where

Ω1 = ω1



M

M − 1
. . .

−M + 1

−M


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Q̄ =



QM

QM−1

...

Q−M+1

Q−M



F̄ =



FM

FM−1

...

F−M+1

F−M


and

B̄ =



BM

BM−1

...

B−M+1

B−M


(6.9) being a vector DAE can be solved in time domain using either finite difference

method or shooting.

3. Yet another method for solving (6.6) is to assume that x̂s(t1, t2) is of the form

x̂s(t1, t2) =
∞∑

i=−∞

∞∑
k=−∞

X̂s(i, k) exp((iω1t1 + kω2t2))

and solve for X̂s(i, k) directly [BWLBG96]. To this end we assume that the bivariate

versions of the waveforms x(t), f(x(t)) and q(x(t)) are of the form

ŷ(t1, t2) =
I∑

i=−I

K∑
k=−K

Ŷ (i, k) exp((iω1t1 + kω2t2))

where I and K are chosen such that the truncation error is sufficiently small. Now

ŷ(t1, t2) is restricted to the line [BWLBG96]

ỹ(t) = ŷ

(
t1 = t, t2 =

ω1

ω2

1
2K + 1

t

)
(6.10)
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Along this line

t2 =
ω1

ω2

1
2K + 1

t1

the function ỹ is periodic with period T0 = (2K+1)T1 and angular frequency ω0 = 2π
T0

.

Therefore

ỹ(t) =
I∑

i=−I

K∑
k=−K

Ŷ (i, k) exp
(


(
iω1t+ kω1

1
2K + 1

t

))

=
I∑

i=−I

K∑
k=−K

Ŷ (i, k) exp
(
(i(2K + 1) + k)ω0t

)
=

L∑
l=−L

Ỹ (l) exp(lω0t)

(6.11)

The two sets of coefficients Ŷ (i, k) and Ỹ (l) are related one-to-one by the following

mapping

Ŷ (i, k) = Ỹ (i(2K + 1) + k) (6.12)

and

Ỹ = Ŷ

(
i =

(l +K)− (l +K) mod (2K + 1)
2K + 1

, k = l − i(2K + 1)
)

(6.13)

The artificial spectrum is dense and equally spaced hence optimal for FFT operation.

This method transforms the quasi-periodic waveform x̂(t1, t2) into the periodic wave-

form x̃(t) using (6.13). The nonlinear relations f(x̂(t1, t2)) and q(x̂(t1, t2)) and its

partial derivatives are now evaluated along the line(
t1 = t, t2 =

ω1

ω2

1
2K + 1

t

)
and transformed into the frequency domain by a 1-dimensional FFT of size (2I+1)×
(2K + 1).

Figure 6.1 shows the output of the four diode mixer described in Section 5.7.1 with a

2.5 GHz 10 dBm RF tone and a 2.2 GHz LO signal. The output corresponds to the

following representation

x(t) =
I∑

i=−I

K∑
k=−K

X(i, k) exp[(iω1 + kω2)t]
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Figure 6.1: x(t) representation of the output of a four diode mixer

It consists of signals of various frequency mixes of the two large tones and requires

10000 sample points to represent it. Figure 6.2 shows the same output in the repre-

sentation x̃(t) described by (6.10). This requires only 225 points for representation.

Even though the resemblance to x(t) is minimal, this waveform captures all the har-

monic information of x(t). Moreover, x̃(t) is periodic allowing conventional harmonic

balance analysis to be used. If the frequency separation between the two tones is very

large or very small then the savings by using the quasi-periodic formulation are even

more dramatic.

6.4 Noise Analysis of Circuits Driven by Multitone Excita-

tions

We now describe our noise analysis technique for nonautonomous circuits driven

by two large signals with phase noise. We again assume that the noiseless steady-state
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Figure 6.2: x̃(t) representation of the output of a four diode mixer

solution of the circuit xs is of the form

xs(t) =
∞∑

i=−∞

∞∑
k=−∞

Xs(i, k) exp(iω1t) exp(kω2t)

The corresponding bivariate form [BWLBG96, BWL97, Roy97] of xs(t) is given by

x̂s(t1, t2) =
∞∑

i=−∞

∞∑
k=−∞

Xs(i, k) exp(iω1t1) exp(kω2t2)

Appealing to the above bivariate form and using arguments similar to those in Section 5.3

we assume that when the input signals are corrupted by Brownian motion phase errors, i.e.,

are of the form b1(t+ α1(t)) and b2(t+ α2(t)), the solution of (6.2) is of the form

xtwo tone = xn(t) + y(t) (6.14)

where

xn(t) =
∞∑

i=−∞

∞∑
k=−∞

Xs(i, k) exp
(
iω1(t+ α1(t))

)
exp
(
kω2(t+ α2(t))

)
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From Section 6.2 the spectrum of xn(t) consists of a series of Lorentzians centered

around frequencies iω1 + kω2, i, k ∈ Z. y(t) consists of a wide band noise term (among

possibly other terms). However for the multitone case, the spectrum due to xn(t) is non-

negligible at the output frequency of interest (fIF ). The large blocker signal mixes with the

local oscillator signal to result in a large signal close to (but not exactly at) the intermedi-

ate frequency. The Lorentzian centered at |fLO − fBLOCKER| causes a nonnegligible noise

power at the intermediate frequency.

We need to substitute the form of the solution (6.14) in (6.2). Similar to Sec-

tion 5.3, we first assume that the circuit itself is noiseless, i.e., D(x) = 0. We first make the

following useful observations:

Definition 6.1 Let

s(t) =

s1(t)

s2(t)

 =

1

1

dt+

√c1 0

0
√
c2

dB1(t)

dB2(t)

 (6.15)

Lemma 6.2 s(t) as defined in (6.15) is a 2-dimensional Itô process.

Hence we can use the following generalization of Lemma 5.2 to evaluate dxtwo tone .

Lemma 6.3 (The general Itô formula [Øks98]) Let

dX = udt+ vdB

be an n-dimensional Itô process. Let

g(t, x) =


g1(t, x)

...

gp(t, x)


be a twice continuously differentiable map R+ × Rn → R

p. Then the process

Y (t) = g(t,X(t))

is also p-dimensional Itô process whose kth component is given by

dYk =
∂gk
∂t

(t,X(t))dt+
∑
i

∂gk
∂xi

(t,X(t))dXi +
1
2

∑
i

∑
j

∂2gk
∂x1∂x2

(t,X(t))dXidXj

where

dBidBj = δi,jdt
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Using the result of Lemma 6.3, we can evaluate dxn(t) as:

dxn(t) =
∞∑

i=−∞

∞∑
k=−∞

Xs(i, k)iω1 exp
[
iω1(t+ α1(t))

]
exp
[
kω2(t+ α2(t))

]
(dt+

√
c1dB1(t))

+
∞∑

i=−∞

∞∑
k=−∞

Xs(i, k)kω2 exp
[
iω1(t+ α1(t))

]
exp
[
kω2(t+ α2(t))

]
(dt+

√
c2dB2(t))

− 1
2

∞∑
i=−∞

∞∑
k=−∞

Xs(i, k)i2ω2
1 exp

(
iω1(t+ α1(t))

)
exp
(
kω2(t+ α2(t))

)
c1dt

− 1
2

∞∑
i=−∞

∞∑
k=−∞

Xs(i, k)k2ω2
2 exp

(
iω1(t+ α1(t))

)
exp
(
kω2(t+ α2(t))

)
c2dt

=
∞∑

i=−∞

∞∑
k=−∞

Xs(i, k)
(
iω1 + kω2 −

1
2
c1i

2ω2
1 −

1
2
c2k

2ω2
2

)
exp
(
iω1(t+ α1(t))

)
exp
(
kω2(t+ α2(t))

)
dt

+
∞∑

i=−∞

∞∑
k=−∞

Xs(i, k)iω1
√
c1 exp

(
iω1(t+ α1(t))

)
exp
(
kω2(t+ α2(t))

)
dB1(t)

+
∞∑

i=−∞

∞∑
k=−∞

Xs(i, k)jω2
√
c2 exp

(
iω1(t+ α1(t))

)
exp
(
kω2(t+ α2(t))

)
dB2(t)

The noiseless circuit equation driven by input signals with phase noise is given by

dx(t) = f(x)dt+ b1(t+ α1(t))dt+ b2(t+ α2(t))dt (6.16)

We assume that the solution of this equation is of the form xn(t) + y1(t). Since y1(t) is

assumed to be small compared to xn(t), f(x) in (6.16) can be linearized around xn(t). Then

(6.16) can be rewritten as

dxn(t) + dy1(t) = f(xn(t))dt+
∂f(x)
∂x

∣∣∣∣
xn(t)

y1(t)dt+ b1(t+ α1(t))dt+ b2(t+ α2(t))dt

Also since x̂s(t1, t2) is bi-periodic, f(x̂s(t1, t2)) can be written in bivariate form as

f(x̂s(t1, t2)) =
∞∑

i=−∞

∞∑
k=−∞

F (i, k) exp((iω1t1 + kω2t2)) (6.17)

Similarly

∂f(x)
∂x

∣∣∣∣
x̂s(t1,t2)

=
∞∑

i=−∞

∞∑
k=−∞

J(i, k) exp((iω1t1 + kω2t2)) (6.18)

We know that xs(t) is a solution of (6.1) iff x̂s(t1, t2) of the form

x̂s(t1, t2) =
∞∑

i=−∞

∞∑
k=−∞

Xs(i, k) exp((iω1t1 + kω2t2)) (6.19)
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is the solution of

∂x̂(t1, t2)
∂t1

+
∂x̂(t1, t2)
∂t2

= f(x̂(t1, t2)) + b1(t1) + b2(t2) (6.20)

and xs(t) = x̂s(t, t). Substituting (6.19) and (6.17) in (6.20) we have
∞∑

i=−∞

∞∑
k=−∞

Xs(i, k)iω1 exp((iω1t1 + kω2t2))

+
∞∑

i=−∞

∞∑
k=−∞

Xs(i, k)kω2 exp((iω1t1 + kω2t2))

=
∞∑

i=−∞

∞∑
k=−∞

F (i, k) exp((iω1t1 + kω2t2)) + b1(t1) + b2(t2)

This expression is valid for all t1 and t2, in particular t1 +α1(t1) and t2 +α2(t2). Therefore,
∞∑

i=−∞

∞∑
k=−∞

Xs(i, k)iω1 exp
[

[
iω1(t1 + α1(t1)) + kω2(t2 + α2(t2))

]]
+

∞∑
i=−∞

∞∑
k=−∞

Xs(i, k)kω2 exp
[

[
iω1(t1 + α1(t1)) + kω2(t2 + α2(t2))

]]
=

∞∑
i=−∞

∞∑
k=−∞

F (i, k) exp
[

[
iω1(t1 + α1(t1)) + kω2(t2 + α2(t2))

]]
+ b1(t1 + α1(t1)) + b2(t2 + α2(t2))

(6.21)

The corresponding expression in one time scale is obtained by substituting t1 = t2 = t in

the above expression. (6.16) can be written as
∞∑

i=−∞

∞∑
k=−∞

Xs(i, k)
[
iω1 + kω2 −

c1i
2ω2

1 + c2k
2ω2

2

2

]
exp
[
iω1(t+ α1(t)) + kω2(t+ α2(t))

]
dt

+
∞∑

i=−∞

∞∑
k=−∞

Xs(i, k)iω1
√
c1 exp

(
iω1(t+ α1(t))

)
exp
(
kω2(t+ α2(t))

)
dB1(t)

+
∞∑

i=−∞

∞∑
k=−∞

Xs(i, k)jω2
√
c2 exp

(
iω1(t+ α1(t))

)
exp
(
kω2(t+ α2(t))

)
dB2(t) + dy1(t)

=
∞∑

i=−∞

∞∑
k=−∞

F (i, k) exp
[

[
iω1(t+ α1(t)) + kω2(t+ α2(t))

]]
dt

+
∞∑

i=−∞

∞∑
k=−∞

J(i, k) exp
[

[
iω1(t+ α1(t)) + kω2(t+ α2(t))

]]
y1(t)dt+ b1(t+ α1(t))dt

+ b2(t+ α2(t))dt

(6.22)
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Using the equality (6.21), (6.22) becomes

dy1(t) =
∞∑

i=−∞

∞∑
k=−∞

J(i, k) exp
[

[
iω1(t+ α1(t)) + kω2(t+ α2(t))

]]
y1(t)dt

+
∞∑

i=−∞

∞∑
k=−∞

Xs(i, k)
c1i

2ω2
1 + c2k

2ω2
2

2
exp
(
iω1(t+ α1(t))

)
exp
(
kω2(t+ α2(t))

)
dt

−
∞∑

i=−∞

∞∑
k=−∞

Xs(i, k)iω1
√
c1 exp

(
iω1(t+ α1(t))

)
exp
(
kω2(t+ α2(t))

)
dB1(t)

−
∞∑

i=−∞

∞∑
k=−∞

Xs(i, k)kω2
√
c2 exp

(
iω1(t+ α1(t))

)
exp
(
kω2(t+ α2(t))

)
dB2(t)

(6.23)

The above stochastic differential equation is linear in y1(t). This means that y1(t) can be

viewed as y1(t) = y11(t) + y12(t) where y11(t) satisfies the following stochastic differential

equation

dy11(t) =
∞∑

i=−∞

∞∑
k=−∞

J(i, k) exp
[

[
iω1(t+ α1(t)) + kω2(t+ α2(t))

]]
y11(t)dt

−
∞∑

i=−∞

∞∑
k=−∞

Xs(i, k)iω1
√
c1 exp

(
iω1(t+ α1(t))

)
exp
(
kω2(t+ α2(t))

)
dB1(t)

−
∞∑

i=−∞

∞∑
k=−∞

Xs(i, k)kω2
√
c2 exp

(
iω1(t+ α1(t))

)
exp
(
kω2(t+ α2(t))

)
dB2(t)

(6.24)

and y12(t) satisfies the following stochastic differential equation

dy12(t) =
∞∑

i=−∞

∞∑
k=−∞

J(i, k) exp
[

[
iω1(t+ α1(t)) + kω2(t+ α2(t))

]]
y12(t)dt

+
∞∑

i=−∞

∞∑
k=−∞

Xs(i, k)
c1i

2ω2
1 + c2k

2ω2
2

2
exp
(
iω1(t+ α1(t))

)
exp
(
kω2(t+ α2(t))

)
dt

(6.25)

The input terms in (6.24) correspond to two independent white noise sources which are

modulated by

−
√
c1
∂x̂s(t1, t2)

∂t1

∣∣∣∣
t1=t+α1(t),t2=t+α2(t)

and

−
√
c2
∂x̂s(t1, t2)

∂t2

∣∣∣∣
t1=t+α1(t),t2=t+α2(t)
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Using similar arguments as in Section 5.3, we can conclude that y11(t) is the stationary

component of z11(t) where z11(t) is governed by the following linear stochastic differential

equation

dz11(t) =
∞∑

i=−∞

∞∑
k=−∞

J(i, k) exp
[
(iω1 + kω2)t

]
z11(t)dt

−
√
c1
∂x̂s(t1, t2)

∂t1

∣∣∣∣
t1=t2=t

dB1(t)−
√
c2
∂x̂s(t1, t2)

∂t2

∣∣∣∣
t1=t2=t

dB2(t)

(6.26)

Using similar arguments as in Section 5.3 it also follows that y12(t) in (6.25) is a

deterministic bi-periodic signal except that it is corrupted by phase deviation terms α1(t)

and α2(t) of the two input signals b1(t+α1(t)) and b2(t+α2(t)). Since the original system

is nonautonomous, it follows that for small c1 and c2, i.e., small input signal phase noise,

y12(t) is small compared to xn(t). The spectrum of y12(t) is similar to the spectrum of xn(t)

except that it is of much smaller amplitude. Hence the effect of adding y12(t) to the output

is to change the amplitude of the spectrum of the original signal xn(t) without altering its

frequency content.

It is easy to argue that when circuit noise sources are also included, i.e., D(x) 6= 0,

the output process can be expressed as xn(t) + y0(t) and

y0(t) = y01(t) + y12(t)

Here y12(t) is the same as defined in (6.25) and y01(t) is the stationary component of z01(t)

where z01(t) is governed by

dz01(t) =
∞∑

i=−∞

∞∑
k=−∞

J(i, k) exp
[
(iω1 + kω2)t

]
z01(t)dt−

√
c1
∂x̂s(t1, t2)

∂t1

∣∣∣∣
t1=t2=t

dB1(t)

−
√
c2
∂x̂s(t1, t2)

∂t2

∣∣∣∣
t1=t2=t

dB2(t) +D(xs(t))dBp(t)

(6.27)

This equation is very similar to the one obtained using conventional two tone noise analysis.

The only difference is the addition to two white noise sources, appropriately modulated and

the fact that we only need to consider the stationary component of output noise. This result

can be generalized to the case when l large input signals are present. It can be shown that

l additional white noise terms of the form

−
√
ci
∂x̂s(t1, . . . , tl)

∂ti

∣∣∣∣
t1=...=tl=t

1 ≤ i ≤ l
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are added to the circuit noise equations. In the next section we describe how to compute

the statistics of the output noise z01(t) for the bi-periodic case.

6.5 Numerical Techniques

We begin by describing the conventional small signal and noise analysis of a nonau-

tonomous circuit driven by two large incommensurable tones. We will derive expressions

for the output noise statistics in terms of the input noise statistics and the linear transfer

function. We use the property that a bi-periodic signal, when approximated by a truncated

two dimensional Fourier series and its time axis suitably warped, is in fact a periodic signal

for an appropriate frequency. The bi-periodic noise analysis problem reduces to a periodic

noise analysis problem and we can use techniques described in Section 5.6. In particular,

the frequency domain technique can be easily extended for the bi-periodic case. Therefore,

we only discuss the frequency domain technique here.

Consider (6.1) with a steady-state solution of the form (6.5). We consider the case

when the large input signals b1(t) and b2(t) are noiseless and the system of equations is

perturbed by additive noise as D(x(t))ξ(t) and is given by

dx
dt

= f(x(t)) + b1(t) + b2(t) +D(x(t))ξ(t) (6.28)

and the solution is assumed to be of the form

x(t) = xs(t) + y(t)

and y(t) is assumed to be small for small perturbation D(x(t))ξ(t). Substituting this in

(6.28) we have

dxs
dt

+
dy
dt

= f(xs(t) + y(t)) + b1(t) + b2(t) +D(xs(t) + y(t))ξ(t)

Linearizing the nonlinear function f(xs(t)+y(t)) around the large unperturbed steady-state

solution xs(t) and ignoring y(t) in the argument of D(x) in the above equations we have

dxs
dt

+
dy
dt

= f(xs(t)) + J(xs(t))y(t) + b1(t) + b2(t) +D(xs(t))ξ(t) (6.29)

where

J(xs(t)) =
∂f(x)
∂x

∣∣∣∣
xs(t)
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Since xs(t) is the solution of (6.1), (6.29) reduces to

dy
dt

= J(xs(t))y(t) +D(xs(t))ξ(t) (6.30)

The above differential equation is linear in y(t). Since xs(t) is bi-periodic, the coefficient

matrix J(xs(t)) is bi-periodic. Hence this equation represents as linear bi-periodic time

varying transfer function. We now describe propagation of noise through a linear bi-periodic

time varying system. The derivation is along the lines of that described in Section 5.6 for

periodic case. The extension to general quasi-periodic case is immediate.

6.5.1 Propagation of Noise Through a Liner Quasi-Periodic Time Varying

System

(6.30) is a linear differential equation (in y(t)) with bi-periodic coefficient matrix.

This equation represents a linear bi-periodic transfer function h(t2, t1) which implies that

this transfer function is periodic with respect to displacements of T1 and T2 in both its

arguments, i.e., h(t2 + T1, t1 + T1) = h(t2, t1) and h(t2 + T2, t1 + T2) = h(t2, t1). The

bi-periodicity of h implies that it can be expanded as

h(t2, t1) =
∞∑

i=−∞

∞∑
k=−∞

hi,k(t2 − t1) exp((iω1 + kω2)t) (6.31)

hi,k(·) are called bi-harmonic impulse responses of the linear bi-periodic time varying system.

Their Fourier transforms Hi,k(ω) are called bi-harmonic transfer functions of the system,

i.e.,

Hi,k(ω) =
∫ ∞
−∞

hi,k(t) exp(−ωt)dt (6.32)

Since circuit noise are in general nonstationary stochastic processes, their covariance matrix

is defined as Ruu(t1, t2) = E

[
u(t1)uT (t2)

]
where u is the input noise source. The output

noise x is related to the input noise as

Rxx(t1, t2) = E

[
x(t1)xT (t2)

]
= E

[∫ ∞
−∞

∫ ∞
−∞

h(t1, s1)u(s1)uT (s2)hT (s2, t1)ds1ds2

]
=
∫ ∞
−∞

∫ ∞
−∞

h(t1, s1)Ruu(s1, s2)hT (t2, s2)ds1ds2

The two dimensional Fourier transform of Rxx(t1, t2) is defined as

Sxx(ω3, ω4) =
∫ ∞
−∞

∫ ∞
−∞

Rxx(t1, t2) exp
(
−(ω3t1 + ω4t2)

)
dt1dt2
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Substituting (6.31) and (6.32) in the above expression of Sxx(ω3, ω4) we have

Sxx(ω3, ω4) =

∞∫∫∫∫
−∞

h(t1, s1)Ruu(t1, t2)h(t2, s2) exp
(
−(ω3t1 + ω4t2)

)
ds1ds2dt1dt2

=
1

16π4

∫∫∫ ∞∫∫
−∞

∫∫∫ ∞∑
i,k,l,m=−∞

Hi,k(ω7) exp
(

(
ω7(t1 − s1) + (iω1 + kω2)t1

))
Suu(ω5, ω6) exp

(
(ω5s1 + ω6s2)

)
HT
l,m(ω8)

exp
(

(
ω8(t2 − s2) + (lω1 +mω2)t2

))
exp

(
− (ω3t1 + ω4t2)

)
ds1ds2dt1dt2dω5dω6

dω7dω8

=
1

16π4

∫∫∫ ∞∫∫
−∞

∫∫∫ ∞∑
i,k,l,m=−∞

Hi,k(ω7)Suu(ω5, ω6)HT
l,m(ω8) exp

(
(ω5 − ω7)s1

)
exp
(
(ω6 − ω8)s2

)
exp
(
(ω7 + iω1 + kω2 − ω3)t1

)
exp
(
(ω8 + lω1 +mω2 − ω4)t2

)
ds1ds2dt1dt2dω5

dω6dω7dω8

=

∞∫∫∫∫
−∞

∞∑
i,k,l,m=−∞

Hi,k(ω7)Suu(ω5, ω6)HT
l,m(ω8)δ(ω5 − ω7)δ(ω6 − ω8)

δ(ω7 + iω1 + kω2 − ω3)δ(ω8 + lω1 +mω2 − ω4)

dω5dω6dω7dω8

=
∫ ∞
−∞

∫ ∞
−∞

∞∑
i,k,l,m=−∞

Hi,k(ω5)Suu(ω5, ω6)HT
l,m(ω6)δ(ω5 + iω1 + kω2 − ω3)

δ(ω6 + lω1 +mω2 − ω4)dω5dω6

=
∞∑

i,k,l,m=−∞
Hi,k(ω3 − iω1 − kω2)Suu(ω3 − iω1 − kω2, ω4 − lω1 −mω2)

HT
l,m(ω4 − lω1 −mω2)

(6.33)

Here we have used the fact that

1
2π

∫ ∞
−∞

exp(ωt)dt = δ(ω)
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Since xs(t) is bi-periodic, the coefficient matrix D(xs(t)) in (6.29) is also bi-periodic. Hence

the statistics of circuit noise sources are also bi-periodic. This implies that Rxx and Ruu do

not change if T1 or T2 are added to both their arguments, i.e.,

Rpp(t1 + T1, t2 + T1) = Rpp(t1 + T2, t2 + T2) = Rpp(t1, t2)

Hence both can be expanded in Fourier series as

Rpp(t1, t2) =
∞∑

i=−∞

∞∑
k=−∞

Rppi,k(t2 − t1) exp
(
(iω1 + kω2)t

)
Rxxi,k and Ruui,k are known as bi-harmonic covariances of the input and output noise

respectively. Their Fourier transform is referred to as bi-harmonic power spectral density

and is given by

Sppi,k(ω) =
∫ ∞
−∞

Rppi,k exp(−ωt)dt

With the assumption that input and output noise autocorrelations are bi-periodic with

respect to T1 and T2, the two-dimensional power spectral densities of input and output

noise are given by

Spp(ω3, ω4) =
∫ ∞
−∞

∫ ∞
−∞

Rpp exp
(
−(ω3t1 + ω4t2)

)
dt1dt2

=
∫ ∞
−∞

∫ ∞
−∞

∞∑
i=−∞

∞∑
k=−∞

Rppi,k(t2 − t1) exp
(
(iω1 + kω2 − ω4)t2 − ω3t1)

)
dt1dt2

=
1

2π

∞∫∫∫
−∞

∞∑
i=−∞

∞∑
k=−∞

Sppi,k(ω) exp
(
(iω1 + kω2 − ω4)t2 − ω3t1)

)
exp
(
ω(t2 − t1)

)
dωdt1dt2

= 2π
∫ ∞
−∞

∞∑
i=−∞

∞∑
k=−∞

Sppi,k(ω)δ(−ω3 − ω)δ(iω1 + kω2 − ω4 + ω)dω

= 2π
∞∑

i=−∞

∞∑
k=−∞

Sppi,k(−ω3)δ(ω4 + ω3 − iω1 − kω2)

Using the above form in (6.33) we have

2π
∞∑

i=−∞

∞∑
k=−∞

Sxxi,k(−ω3)δ(ω3 + ω4 − iω1 − kω2)

=2π
∞∑

l,m,n,p,q,r=−∞
Hl,m(ω3 − lω1 −mω2)Suun,p(−ω3 + lω1 +mω2)

δ
(
ω3 + ω4 − (l + n+ q)ω1 − (p+m+ r)ω2

)
HT
q,r(ω4 − qω1 − rω2)
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Therefore

Sxxi,k(−ω) =
∞∑

l,m,n,p=−∞
Hl,m(ω − lω1 −mω2)Suun,p(−ω + lω1 +mω2)

HT
i−(l+n),k−(m+p)

(
−ω − (l + n)ω1 − (m+ p)ω2

) (6.34)

In an actual RF circuit, the signal bandwidth is limited and hence a finite number harmonics

of signals are present. Hence the infinite summations in all the above expressions are

truncated. We assume that harmonics corresponding to ω1 are truncated to ±I and the

harmonics corresponding to ω2 are truncated to ±K. Hence a bi-periodic waveform z(t) in

this system is given by

z(t) =
I∑

i=−I

K∑
k=−K

Z(i, k) exp
(
(iω1 + kω2)t

)
The bivariate form of this signal is given by

ẑ(t1, t2) =
I∑

i=−I

K∑
k=−K

Z(i, k) exp
(
(iω1t1 + kω2t2)

)
Consider the waveform z̃(t) which obtained from ẑ(t1, t2) by constraining it on the line

(6.10). z̃(t) is periodic with a period T0 = (2K + 1)T1 and can be written as

z̃(t) =
L∑

i=−L
Z̃(l) exp(lω0t)

where

ω0 =
2π

(2K + 1)T1

and

L =
(2I + 1)(2K + 1)− 1

2
= 2IK + I +K

The one-to-one mapping between the harmonics present in the circuit and the

artificial spectrum [Kun89] is given by (6.12) and (6.13) and is depicted in Figure 6.3. Note

that z̃(t) is derived from z(t) by suitably distorting the time axis. If z(t) is not required in

the intermediate calculation, then the entire analysis can be carried out using the artificial
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i

k

Figure 6.3: Illustration of the AFM method for a box truncation scheme with two incom-
mensurable frequencies

spectrum. The advantage is that we can reuse the analysis developed previously for the

periodic case. For instance, if the summations in (6.34) are truncated then

Sxxi,k(−ω) =
I∑

l,n=−I

K∑
m,p=−K

Hl,m(ω − lω1 −mω2)Suun,p(−ω + lω1 +mω2)

HT
i−(l+n),k−(m+p)

(
−ω − (l + n)ω1 − (m+ p)ω2

) (6.35)

for −I ≤ i ≤ I and −K ≤ k ≤ K. (6.35) can be written in terms of S̃ and H̃ as

S̃xxĩ =
L∑

l̃=−L

L∑
ñ=−L

H̃l̃(ω − l̃ω0)S̃uuñ(−ω + l̃ω0)H̃ĩ−l̃−ñ
(
−ω + (l̃ + ñ)ω0

)
This expression is exactly the same as the one derived for the periodic case in Section 5.6.2.1.

6.5.2 Derivation of the Form of Transfer Function

Consider (5.17) which is repeated here for convenience

C(t)ẏ +G(t)y +Ab(t) = 0
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where G(t) and C(t) are assumed to be bi-periodic with periods T1 and T2. We further

assume that system of equations is nonautonomous. Since (5.17) is linear in y(t), the

corresponding linear bi-periodic time varying transfer function h(t2, t1) can be written as

h(t2, t1) =
∞∑

i=−∞

∞∑
k=−∞

hi(t2 − t1) exp[(iω1 + kω2)t2]

=
1

2π

∫ ∞
−∞

∞∑
i=−∞

∞∑
k=−∞

Hi,k(ω) exp[ω(t2 − t1)] exp[(iω1 + kω2)t2]dω

For the purpose of this analysis we assume that b(t) is deterministic and its Fourier transform

is given by

B(ω) =
∫ ∞
−∞

b(t) exp(−ωt)dt

Since h(t2, t1) is the linear transfer function corresponding to (5.17), we have

y(t2) =
∫ ∞
−∞

h(t2, t1)b(t1)dt1

=
1

4π2

∞∫∫∫
−∞

∞∑
i=−∞

∞∑
k=−∞

Hi,k(ω3) exp[ω3(t2 − t1)] exp[(iω1 + kω2)t2]B(ω4) exp(ω4t1)

dω3dω4dt1

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

∞∑
i=−∞

∞∑
k=−∞

Hi,k(ω3) exp[(ω3 + iω1 + kω2)t2]B(ω4)δ(ω4 − ω3)dω3dω3

=
1

2π

∞∑
i=−∞

∞∑
k=−∞

∫ ∞
−∞

Hi,k(ω)B(ω) exp[(ω + iω1 + kω2)t2]dω

This implies that the Fourier transform of x(t) is given by

Y (ω) =
∞∑

i=−∞

∞∑
k=−∞

Hi,k(ω − iω1 − kω2)B(ω − iω1 − 2ω2)

(5.17) is rewritten as

0 =
1

2π

∫ ∞
−∞

∞∑
i=−∞

∞∑
k=−∞

Ci,k exp[(iω1 + kω2)t]ωY (ω) exp(ωt)dω

+
1

2π

∫ ∞
−∞

∞∑
i=−∞

∞∑
k=−∞

Gi,k exp[(iω1 + kω2)t]Y (ω) exp(ωt)dω

+
1

2π

∫ ∞
−∞

AB(ω) exp(ωt)dω



CHAPTER 6. NOISE ANALYSIS OF CIRCUITS WITH MULTITONE INPUTS 139

Fourier transform of the above expression is given by
∞∑

i=−∞

∞∑
k=−∞

Ci,k(ω − iω1 − kω2)Y (ω − iω1 − kω2) +
∞∑

i=−∞

∞∑
k=−∞

Gi,kY (ω − iω1 − kω2)

+AB(ω) = 0

Substituting the value of Y (ω) in the above expression we have
∞∑

i,k,l,m=−∞
Ci,k[ω − iω1 − kω2]Hl,m[ω − (i+ l)ω1 − (k +m)ω2]

B[ω − (i+ l)ω1 − (k +m)ω2]

+
∞∑

i,k,l,m=−∞
Gi,kHl,m[ω − (i+ l)ω1 − (k +m)ω2]B[ω − (i+ l)ω1 − (k +m)ω2]

+AB(ω) = 0

Since the above expression is valid for every B(ω), it must be necessary that for i + l = 0

and k +m = 0
∞∑

i=−∞

∞∑
k=−∞

(ω − iω1 − kω2)Ci,kH−i,−k(ω) +
∞∑

i=−∞

∞∑
k=−∞

Gi,kH−i,−k(ω) +A = 0 (6.36)

and for i+ l = n 6= 0 or k +m = p 6= 0 we have
∞∑

i=−∞

∞∑
k=−∞

(ω − iω1 − kω2)Ci,kHn−i,p−k(ω − nω1 − pω2)

+
∞∑

i=−∞

∞∑
k=−∞

Ci,kHn−i,p−k(ω − nω1 − pω2) = 0

(6.37)

Collocating (6.36) the terms at frequencies ω − nω1 − pω2 for all n, p ∈ Z we have
∞∑

i=−∞

∞∑
k=−∞

[ω − (i+ n)ω1 − (k + p)ω2]Ci,kH−i,−k(ω − nω1 − pω2)

+
∞∑

i=−∞

∞∑
k=−∞

Ci,kH−i,−k(ω − nω1 − pω2) +A = 0

(6.38)

To evaluate (6.37) and (6.38) we again appeal to the AFM technique introduced

in Section 6.5.1. If the infinite summations in these equations are truncated to ±I and

±K respectively and an artificial frequency map constructed as in Section 6.5.1, (6.37) and

(6.38) can be written as

L∑
ĩ=−L

(ω − ĩω0)CĩHñ−ĩ(ω − ñω0) +
L∑

ĩ=−L

CĩHñ−ĩ(ω − ñω0) = 0
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and for all ñ ∈ Z
L∑

ĩ=−L

[ω − (̃i+ ñ)ω0]CĩH−ĩ(ω − ñω0) +
L∑

ĩ=−L

CĩH−ĩ(ω − ñω0) +A = 0

These equations are very similar to (5.26) and (5.27) and hence the technique outlined in

Section 5.6.2 for the periodic case can be used to perform noise analysis.

6.6 Examples

We carried out a two tone analysis of the two mixers described in Section 5.7. In

addition to the 2.2 GHz LO signal, a large blocker signal at 2.5 GHz was applied at the RF

port. For the active mixer, the RF signal power was set to −10 dBm while for the passive

mixer, it was set to 10 dBm. The noise figure for the active mixer increased by 2.1 dB in

presence of the blocker signal. The corresponding increase in the noise of passive mixer was

computed to be 4.1 dB. The LO and blocker signals were assumed to be noiseless for this

analysis. This increase in NF in entirely due the fact that the large blocker signals drive the

linear signal path of these mixers into gain compression which decreases the signal power

and decreases the overall SNR.

The analysis was carried out using 225 frequency mixes and took approximately

six minutes for the passive mixer and 9.5 minutes for the active mixer on a 600 MHz

Digital Alpha workstation. In our implementation, since Spice3 was used for transient

simulation, the circuit waveforms and Jacobian matrices were converted to the bi-periodic

representation. This conversion required an additional (30%) overhead. Since in an actual

multitone implementation, this overhead will not be present, it is not reported in the above

run times.

The blocker signal gets downconverted to a frequency which is at 300 MHz, i.e,

100 MHz away from the IF signal. If either the blocker or LO signal have phase noise, then

according to (6.3) the output spectrum consists of a Lorentzian centered at 300 MHz. The

noise contributed to the output by this can be significant specially if the blocker frequency

is very close to the RF signal frequency. In addition, the wide band noise due to the phase

noise of the two large tones also increases the overall output noise of the mixer. Figures 6.4

and 6.5 plot the increase in noise figure due to phase noise in the two large tones.

We observe that the presence of a large blocker signal increases the sensitivity of

the circuit to input signal phase noise. Comparing these figures to Figures 5.3 and 5.5 we
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Figure 6.4: Increase in noise figure due to phase noise in the two input signal for the four
diode mixer
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Figure 6.5: Increase in noise figure due to phase noise in the two input signal for the Gilbert
cell mixer
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find that the crossover point where the mixer noise figure starts increasing with ci is reduced

by about an order of magnitude. For the four diode mixer, we observed in Section 5.7 that

due to perfectly symmetry, the output node was insensitive to LO signal phase noise. The

presence of a large blocker destroys this symmetry and makes the output node susceptible

to phase noise from both RF and LO signals. Therefore, blocker performance constraint

poses much stricter constraints on the noise performance of input signal than just the one

tone noise performance constraint.
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Chapter 7

Conclusions and Future Directions

In this chapter we summarize our contributions and point out to some future

directions where this research can proceed.

7.1 Conclusions

In this work we have investigated noise analysis and modelling problem for RF

circuits. We first concentrated on noise analysis of autonomous circuits and then turned

our attention to noise analysis of nonautonomous circuits which are driven by oscillators

which have phase noise. We summarize our contributions below:

• We showed that linear perturbation analysis is not valid for oscillatory circuits. This

analysis predicts that the deviation away from the unperturbed steady-state solution

keeps increasing unbounded even for the smallest of perturbations. It was shown that

noise analysis techniques for oscillators which are based on linear perturbation analysis

predict nonphysical effects such as infinite total integrated noise power density.

• We developed a new perturbation analysis technique which is valid for oscillators. We

showed that the perturbed oscillator response can be viewed as a sum of two signals:

periodic steady-state unperturbed oscillator response time shifted by an amount α(t)

and a small and bounded deviation away from the limit cycle. We derived a nonlinear

differential equation for α(t), found the component of perturbation term that causes

deviation only along the limit cycle of the form xs(t+α(t)) and showed that when we

add in the rest of the perturbation term, it causes only small and bounded deviations
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away from the limit cycle for all times. In terms of this phase plane interpretation we

precisely defined the notion of phase error, phase deviation and amplitude deviation.

• For white noise perturbations, the nonlinear differential equation for phase error α(t)

becomes a stochastic differential equation and we used techniques from stochastic cal-

culus to obtain a second order characterization of phase error and oscillator response.

We showed that oscillator response, as a stochastic process, is wide-sense stationary.

We gave arguments for the physical interpretation of this result.

• We then addressed the noise analysis problem of nonautonomous circuits driven by

a single large periodic signal which has phase noise. We argued that since a nonau-

tonomous circuit, along with the driving oscillator, can be viewed as a composite

oscillator, the output noise process will be stationary and not cyclostationary, as

would be predicted by classical noise analysis for such circuits. We also derived this

result mathematically. We showed that the effect of input signal phase noise is to add

another white noise source to the circuit noise sources which is modulated by the time

derivative of the noiseless steady-state response of the circuit.

• We extended this analysis for nonautonomous circuits driven by multi-tone excita-

tions. We first reviewed some techniques in time domain, frequency domain and

mixed time frequency domain techniques for simulating circuits driven by two large

incommensurable frequency signals. We then discussed noise analysis techniques for

these circuits.

7.2 Noise Models for Circuits Driven by Multitone Excita-

tions

A byproduct of oscillator phase noise analysis presented in Chapter 4 was a com-

pact and accurate noise model for oscillator output. We showed that a single scalar constant

c is sufficient for modelling a noisy oscillator output. We later used this model in Chap-

ters 5 and 6 for noise analysis of nonautonomous circuits. We also gave a noise model for

nonautonomous circuit driven by an input signal with phase noise in terms of a stochastic

differential equation. A similar model can be developed of the output of a nonautonomous

circuit driven by two or more large periodic signals with phase noise. One possible choice
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of the model would be the stochastic differential equation similar to the one we developed

in Chapter 5.

7.3 Extensions to Non-White Noise Sources

Other than thermal and shot noise sources, there are other circuit noise sources

that cannot be modelled as a white noise source. The most important of them is flicker noise

which has a power spectral density inversely proportional to frequency. This represents a

problem since total integrated noise power in any finite bandwidth around DC is infinite.

This noise source cannot be modelled as a well defined stochastic process and hence is not

amenable to be handled using stochastic differential equation theory. The approximation of

replacing the flicker noise source with a series of white noise sources can be used. However,

the asymptotic arguments that were presented throughout this exposition need not be valid

and need to be revisited. Consider the oscillator phase noise equation (4.1) (which is

repeated here)

dα(t)
dt

= vT (t+ α(t))ξ(t)

where v is small, i.e., of the order ε. Let t′ = tε and let us rewrite the above equation as

dα(t)
dt

= vT
(
t+ α

(
t′

ε

))
ξ

(
t′

ε

)
The averaging principle [FW84] states that at time t′ = O(1), α would be governed by [Zei98]

dα
dt

= ḡξ

(
t′

ε

)
For white noise sources ξ(t), it immediately follows that α is a Brownian motion process.

Now consider a low pass filtered white noise source. The low pass filter can be absorbed

in the circuit equations and we can conclude that asymptotically α is still a Brownian

motion. If the correlation time is sufficiently small, then at time O(1/ε), the noise source

would appear almost white and the asymptotic argument will be valid. However, if the

correlation time is comparable to O(1/ε), then the noise source does not appear white and

the asymptotic argument is not valid. This is certainly the case for flicker noise where

the correlation time is comparable, if not larger than the measurement time. Even though

flicker noise is a low frequency phenomenon, in nonlinear circuits, it can mix with periodic

signals and get shifted to frequencies of interest. Extending this analysis to handle the

flicker noise case in a consistent manner is a very important problem.
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7.4 Behavioural Level Noise Simulation

Once noise model for nonautonomous circuits driven by multitone excitation is

in place, behavioural level noise analysis techniques for RF circuits need to be developed

which utilize these models for nonautonomous and autonomous circuits. These techniques

would also be based on the solution of appropriate stochastic differential equations. The

behavioural level noise analysis would enable a system designer to quickly evaluate different

choices of architectures for RF front-ends for noise performance and investigate various

design trade-offs. This would possibly also enable the use of techniques in the digital

domain to recover some noise performance, given the particular characterization of noise

from the RF front end.

In conjunction with component level models and system level simulation techniques

for distortion and other nonidealities in the system, this effort will hopefully enable efficient

design of high performance RF systems. We believe that a more thorough understanding

of how noise and other nonidealities affect the overall circuit response will be crucial in

minimizing overdesign which exists in current RF design practices. Specifically for RF mo-

bile systems, this would result in lower power and hence higher battery life. Equivalently,

extra functionality can be incorporated in those parts of an RF system where lower power

dissipation is not an important issue (such as base stations of RF communication systems).
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Appendix A

Definitions and Solution

Techniques of SDEs

Here we summarize the mathematical machinery we needed in Chapter 5. This

material is from [Øks98].

A.1 Mathematical Preliminaries

Definition A.1 If Ω is a given set, then a σ-algebra F on Ω is a family F of the subsets

of Ω with the following properties

1. ∅ ∈ F

2. F ∈ F ⇒ FC ∈ F , where FC = Ω \ F is the complement of F in Ω

3. A1, A2, . . . ∈ F ⇒ A =
⋃∞
i=1Ai ∈ F

The pair (Ω,F) is called a measurable space. A probability measure P on a

measurable space (Ω,F) is a function P : F → [0, 1] such that

1. P [∅] = 0, P [Ω] = 1

2. if A1, A2, . . . ∈ F and {Ai}∞i=1 is disjoint then

P

[ ∞⋃
i=1

Ai

]
=
∞∑
i=1

P [Ai]
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The triple (Ω,F ,P) is called the probability space.

The subsets F of Ω which belong to F are called F-measurable sets. In a probability context

these sets are called events and we use the interpretation

P [F ] = “the probability that the event F occurs”

In particular, if P [F ] = 1 we say that F occurs with probability 1, or almost surely (a.s.).

Given any family U of subsets of Ω there is a smallest σ-algebra HU containing U
namely

HU =
⋂
{H : H σ-algebra of Ω, U ∈ H}

HU is called the σ-algebra generated by U .

For instance, if U is the collection of all open subsets of a topological space Ω (e.g.

Ω = R
n), then B = HU is called the Borel σ-algebra on Ω and the elements B ∈ B are called

Borel sets. B contains all open sets, all closed sets, all countable unions of closed sets, all

countable intersections of such countable unions etc.

If (Ω,F ,P) is a given probability space, then a function Y : Ω → R
n is called

F-measurable if

Y −1(U) = {ω ∈ Ω : Y (ω) ∈ U} ∈ F

for all open sets U ∈ Rn (or, equivalently, for all Borel sets U ⊂ Rn).

If X : Ω → R
n is any function, then the σ-algebra HX generated by X is the

smallest σ-algebra on Ω containing all the sets

X−1(U) U ⊂ Rn open

It can be shown that

HX = {X−1(B) : B ∈ B}

where B is the Borel σ-algebra on Rn. Clearly X will then be HX -measurable and HX is

the smallest σ-algebra with this property.
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A.2 Itô Integrals

The following integral is defined as the Itô integral∫ T

S
f(t, ω)dBt(ω)

where Bt(ω) is a 1-dimensional Brownian motion. We need the following definitions to

describe the class of function f(t, ω) for which the Itô integral will be defined.

Definition A.2 Let Bt(ω) be an n-dimensional Brownian motion. Then Ft = F (n)
t is

defined to be the σ-algebra generated by the random variables Bs(·), s ≤ t. In other words,

Ft is the smallest σ-algebra containing all sets of the form

{ω : Bt1(ω) ∈ F1, . . . , Btk(ω) ∈ Fk}

where k = 1, 2 . . . , tj > 0 and Fj ⊂ Rn are Borel sets. (All sets of measure zero are assumed

to be included in Ft.)

Definition A.3 Let {Nt}t≥0 be a nondecreasing family of σ-algebras of subsets of Ω. A

process g(t, ω) : R+ × Ω→ R
n is called Nt-adapted if for each t ≥ 0 the function

ω → g(t, ω)

is Nt-measurable.

Itô integral can be defined for the following class of functions:

Definition A.4 Let V = V(S, T ) be the class of functions

f(t, ω) : R+ × Ω→ R

such that

1. (t, ω)→ f(t, ω) is B × F-measurable where B denotes the Borel σ-algebra on R+

2. f(t, ω) is Ft adapted

3. E
[∫ T
S f(t, ω)2dt

]
<∞
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Definition A.5 A functions φ ∈ V is called elementary if it has the form

φ(t, ω) =
∑
j

ej(ω)X[tj ,tj+1)(t) (A.1)

where X denotes the characteristic (indicator) function.

Since φ ∈ V each function ej must be Ft-measurable.

Definition A.6 (The Itô integral) Let f ∈ V(S, t). Then the Itô integral of f (from S

to T ) is defined by∫ T

S
f(t, ω)dBt(ω) = lim

n→∞

∫ T

S
φn(t, ω)dBt(ω) (limit in L2(P )) (A.2)

where {φn} is a sequence of elementary functions such that

E

[∫ T

S
(f(t, ω)− φn(t, ω))2dt

]
→ 0 as n→∞ (A.3)

An important property of the Itô integral is that it is a martingale.

Definition A.7 A filtration (on (Ω,F)) is a family {Mt}t≥0 of σ-algebras Mt ⊂ F such

that

0 ≤ s < t⇒Ms ⊂Mt

(i.e., {Mt} is increasing). An n-dimensional stochastic process {Mt}t≥0 on (Ω,F ,P) is

called a martingale with respect to a filtration {Mt}t≥0 (and with respect to P 0) if

1. Mt is Mt-measurable for all t

2. E [|Mt|] <∞ for all t

3. E [Ms|Mt] = Mt for all s ≥ t

Here the expectation and the conditional expectation are taken with respect to P 0.

For continuous martingales we have the following important inequality due to

Doob:

Theorem A.1 (Doob’s martingale inequality) If Mt is a martingale such that t →
Mt(ω) is continuous a.s., then for all p ≥ 1, T ≥ 0 and all λ > 0

P

[
sup

0≤t≤T
|Mt| ≥ λ

]
≤ 1
λp
E [|MT |p]
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This inequality can be used to prove that the Itô integral∫ t

0
f(s, ω)dBs

can be chosen to depend continuously on t.

Theorem A.2 Let f ∈ (0, T ). Then there exists a t-continuous version of∫ t

0
f(s, ω)dBs(ω) 0 ≤ t ≤ T

i.e., there exists a t-continuous stochastic process Jt on (Ω,F ,P) such that

P

[
Jt =

∫ t

0
f(s, ω)dBs(ω)

]
= 1 ∀t 0 ≤ t ≤ T (A.4)

Corollary A.3 Let f(s, ω) ∈ V(0, T ) for all T . Then

Mt(ω) =
∫ t

0
f(s, ω)dBs

is a martingale with respect to Ft and

P

[
sup

0≤t≤T
|Mt| > λ

]
≤ 1
λ2
E

[∫ T

0
f(s, ω)2ds

]
λ, T > 0 (A.5)

The Itô integral
∫
fdB can be defined for a larger class of integrands f than V.

First, the measurability condition (2) of Definition A.4 can be relaxed to the following:

2’: There exists an increasing family of σ-algebras Ht t ≥ 0 such that

1. Bt is a martingale with respect to Ht

2. ft is Ht-adapted

Condition 1 implies that Ft ⊂ Ht. The essence of this extension is that we can allow ft

to depend on more than Ft as long as the Bt remains a martingale with respect to the

“history” of fs s ≤ t. If the above conditions hold then E [Bs −Bt|Ht] = 0 for all s > t and

this is sufficient to carry out the construction of Itô integral.

Condition (3) of Definition A.4 can also be weakened to

3′ P

[∫ t

0
f(s, ω)2ds <∞ for all t ≥ 0

]
= 1

Definition A.8 W denotes a class of stochastic processes satisfying 1 of Definition A.4

and 2’ and 3’ above.
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A.3 Stochastic Differential Equations

Theorem A.4 (Existence and uniqueness theorem) Let T > 0 and b(·, ·) : [0, T ] ×
R
n → R

n, σ(·, ·) : [0, T ]× Rn → R
n×m be measurable functions satisfying

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|) x ∈ Rn t ∈ [0, T ] (A.6)

for some constant C, where |σ|2 =
∑
|σij |2 and such that

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x− y| x, y ∈ Rn t ∈ [0, T ] (A.7)

for some constant D. Let Z be a random variation which is independent of the σ-algebra

F∞ generated by Bs(·), s ≥ 0 and such that

E

[
|Z|2

]
<∞ (A.8)

Then the stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dBt 0 ≤ t ≤ T X0 = Z (A.9)

has a unique t-continuous solution Xt(ω) each component of which belongs to V[0, T ].

Remark A.1 Conditions (A.6) and (A.7) are natural in view of the following two simple

examples from deterministic differential equations (i.e., σ = 0):

1. The equation

dXt

dt
= X2

t X0 = 1 (A.10)

corresponding to b(x) = x2 (which does not satisfy (A.6)) has the (unique) solution

Xt =
1

1− t
0 ≤ t < 1

Thus it is impossible to find a global solution (defined for all t) in this case. More

generally, condition (A.6) ensures that the solution Xt(ω) does not explode, i.e., that

|X(ω)| does not tend to ∞ in a finite time.

2. The equation

dXt

dt
= 3X2/3

t X(0) = 0 (A.11)
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has more than one solution. In fact for any a > 0 the function

Xt =

 0 t ≤ a
(t− a)3 t > a

solves (A.11). In this case b(x) = 3x2/3 does not satisfy the Lipschitz condition (A.7)

at x = 0.

Thus condition (A.7) guarantees that equation (A.9) has a unique solution. Here uniqueness

means that if X1(t, ω) and X2(t, ω) are two t-continuous processes in V[0, T ] satisfying (A.9)

then

X1(t, ω) = X2(t, ω) for all t ≥ T a.s. (A.12)
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Picard-Lindelőf Theorem, 23

power amplifier, 3

probability density function, 51

characteristic function, 53, 58

moments, 53

probability measure, 51, 156

probability space, 92, 157

quasi-periodic, 114



INDEX 166

radio frequency system, 1

RF front end, 3

Riemann-Stieljes, 56

shooting method, 73, 74

shot noise, 7

signal to noise ratio, 6

singular matrix, 78

null space of, 78

state transition matrix, 26, 73

stochastic differential equation, 14, 51, 90,

116, 129

existence & uniqueness theorem, 161

stochastic integral, 56
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