
Automatic Generation of a Real-Time Operating System for

Embedded Systems

Extended Abstract

Felice Balarin� Massimiliano Chiodoy Attila Jurecskaz Luciano Lavagno�

Bassam Tabbarax Alberto Sangiovanni-Vincentelli{

April 28, 1997

1 Introduction

Embedded systems are typically implemented as a set of communicating components some of which

are implemented in hardware and some of which are implemented in software. Usually many

software components share a processor. A real-time operating system (RTOS) is used to enable

sharing and provide a communication mechanism between components. Commercial RTOSs are

available for many popular micro-controllers. Using them provides signi�cant reduction in design

time and often leads to better structured and more maintainable systems. However, since they have

to be quite general, they are not e�cient enough for many applications, either in memory usage or

in run times. Thus, it is often the case that RTOSs are hand coded by an expert for a particular

application. This approach is obviously slow, expensive and error-prone.

In this paper we propose an alternative where a RTOS is automatically generated based on a

high-level description of the system. RTOSs created in our approach o�er an ease of use comparable

to commercial RTOSs, and yet since they are generated for a speci�c example, they can be optimized

based on the same information used to optimize hand-written code.

We have implemented our approach within Polis [2], a system for HW/SW co-design of embed-

ded system. To evaluate the Polis generated RTOS we have developed a prototyping environment

which we use to compare Polis against a commercial operating system.

The rest of the paper is organized as follows. In section 2 we review the formalism for high-

level speci�cation of systems used in Polis, and then we describe RTOS generated by Polis in

section 3. A description of prototyping environment and initial experimental results are presented

in section 4, while �nal comments are given in section 5.

�Cadence Berkeley Labs, Berkeley, CA USA
yAlta Group of Cadence Design Systems, Sunnyvale, CA, USA
zMagneti Marelli, Torino, Italy
xDept. of EECS, University of California, Supported by an SRC fellowship
{Dept. of EECS, University of California, Berkeley, CA, USA

1



2 Codesign Finite State Machines

In Polis, systems are represented as networks of objects called Codesign Finite State Machines

(CFSMs). Each CFSM emits events in response to the events occurring in the environment, or

to the events generated by other CFSMs in the system. Which events should a CFSM emit in

response to certain input events is determined by a (�nite) set of rules called a transition relation.

Events are the basic observable entities that de�ne the behavior of the system. More precisely,

the behavior of the system is the set of sequences of events that CFSMs in the system can produce.

Events can have a value, e.g. the event with name \keyboard" could occur every time the user hits

a key with a value belonging to the ASCII set. The value of an event is persistent, e.g. the value

of the \keyboard" event is de�ned at all times to be the last key hit.

A CFSM is like a \classical" FSM, because both transform a set of inputs into a set of outputs

by using only a �nite amount of internal state. The di�erence from the \classical" FSM (that will be

called just FSM in the following) is that our model has no implied \synchronous" hypothesis. The

standard de�nition of interaction between FSMs assumes that all the FSMs change state exactly at

the same time. This can be very di�erent from the actual behavior of a mixed hardware/software

system, in which software components can take hundreds of clock cycles. In contrast, CFSMs

operate concurrently and independently by repeating the following four phases:

1. idle,

2. detect input events,

3. transition, according to which events are present and match a transition relation element,

4. emit output events.

Phases 1, 2 and 4 can have a duration between zero and in�nity, while phase 3 takes at least some

time. In either case, the duration of phases is independent of any other CFSM in the system.

In phase 2 a CFSM must be able to detect all the events that have occurred since its last

transition. However, if some event occurs more than once in that period of time, only the most

recent occurrence can be detected. A possible implementation of these rules are queues of length

1. Events are emitted by writing to a queue, and detected by reading from a queue. Writing to a

full queue overwrites the existing content. Each CFSM has its private input queues. Thus, it is

quite possible that two CFSMs detect the same event at di�erent times (of course, both of those

time must be after the actual occurrence of the event).

In Polis, CFSMs are also the basic unit of implementation. Each CFSM is implemented as a

module in one of the following three ways:

1. Some CFSMs are implemented in synchronous hardware. Hardware implementations of

CFSMs are denoted HW CFSM.

2. Some CFSMs are implemented in software. For every such CFSM Polis generates a C

function (denoted SW CFSM) with calls to detect and emit functions (that are de�ned by

the RTOS).

3. Some CFSMs are implemented by micro-controller peripherals. Most of the modern micro-

controllers come with powerful built-in peripherals. Programmable timer units are probably

the most common example. Implementations of CFSMs with these units are called MP

CFSMs. For them, Polis generates calls to library functions that program the units properly.

2



3 Real-time Operating System synthesis

In this section we describe the RTOS generated by Polis for a given network of CFSMs. Its major

responsibilities are to:

1. provide communication mechanism (i.e. de�ne detect and emit functions) between SW CFSMs

and other SW CFSMs, HW CFSMs and MP CFSMs,

2. coordinate the execution of SW CFSMs.

3.1 Implementation of events

For each SW CFSM and each event it is sensitive to, the RTOS maintains a 
ag which is set

when the event occurs and reset when that SW CFSM makes a transition. Emitting an event

thus requires setting these 
ags for all potential consumers. Detecting an event is implemented as

a macro that checks if a 
ag is set.

The value of an event is communicated through a shared variable. While RTOS distributes

information about event occurrence to all the detecting CFSMs, it keeps only a single copy of the

event value (for obvious, memory-saving reasons).

The event emission and detection capability described above is su�cient for communication

between SW CFSMs. For communication with other types of CFSMs it is extended as follows:

SW CFSM ! HW CFSM If an event emitted by a SW CFSM can be detected by aHW CFSM,

then it is assigned an output port and the emit function is extended to generate a pulse on

that port (by writing to it 1 and then 0). The output port is assigned from a pool that

includes actual I/O ports of the micro-controller, as well as additional memory-mapped ports

(for which Polis also generates appropriate hardware).

SW CFSM ! MP CFSM In this case the emit routine includes a call to a library function that

alerts a peripheral that a particular event has occurred (e.g. that a timer has been requested

to start).

HW CFSM ! SW CFSM There are two ways that an event emitted by HW CFSM can be

communicated to a SW CFSM: by polling or by interrupts, as speci�ed by the user. For

each interrupt-driven event, RTOS assigns an abstract interrupt vector. Micro-controller-

speci�c information is then used to map abstract interrupt vectors to actual interrupt vectors

of a target micro-controller. This task is trivial if there are fewer abstract than actual vectors,

but if that is not the case, some multiplexing hardware and software has to be generated.

In this way, we can deal with interrupts in a fairly machine-independent fashion. For every

assigned abstract interrupt vector an interrupt service routine (ISR) is generated. By default,

this routine contains only a call to appropriate emit function. However, a user may require

that the ISR also includes calls to SW CFSMs enabled by that event. If an event carries a

value, then it is also assigned an input port. The assumption is made that port holds a valid

value at the time the interrupt occurs.

Polled events are assigned one input and one output port (for the acknowledgment), and if

necessary additional input ports for the value. The external hardware sets the input port

to 1 when event occurs, and resets it to 0 when it is acknowledged. If there are any polled

signals, a polling task is automatically generated. This task is run like any other task and

can be enabled by a designated event (typically, a timing reference). When it executes, it

3



scans input ports assigned to polled events. If it �nds a 1 at one of these ports, the polling

task acknowledges it, and calls the appropriate emit function.

MP CFSM ! SW CFSM Events from MP CFSMs can also be communicated to SW CFSM

by interrupts or polling. In case of interrupts, the only di�erence is that ISR is not generated,

but imported from the library (and parameterized by the actual name of the event that has

to be emitted). In case of polling, the di�erence is that instead of checking ports, the polling

tasks calls a library de�ned function to check if the event has occurred.

3.2 Implementation of coordination

In Polis, the user can choose between two basic scheduling algorithms to coordinate SW CFSMs:

cyclic scheduling and static priority based scheduling. Furthermore, it is possible to choose between

preemptive and non-preemptive versions of static priority based scheduling. In either case, RTOS

keeps track of events a SW CFSM is sensitive to, and will not execute it unless at east one of those

has occurred since the last execution of the SW CFSMs.

Executing a SW CFSMs does not necessarily imply it making a transition. It is possible that

the combination of occurred events at the moment of execution does not enable any transition.

SW CFSMs provide this information to RTOS so it can decide whether to reset local event 
ags

(in case a transition has been made) or not.

4 Experiments

In order to validate the POLIS generated RTOS we have created a prototyping environment which

consists of a complete design 
ow to generate the �nal software and hardware elements including

boards with hardware components, and instrumentation (e.g. logic analyzer, emulator). This setup

allows us to:

� compile, link, and download the software parts,

� program the hardware parts into FPGAs, and

� debug in real-time the software code running on the target architecture.

Both POLIS generated, and commercial RTOSs are being pro�led on this platform. The experi-

ments are in progress, and in this paper we present initial results, But �rst, we give the descriptions

of the prototyping environment and the integration of POLIS generated code with a commercial

RTOS.

4.1 Prototyping environment

The prototyping environment provides a complete design path from a high-level speci�cation in

Polis to the target architecture. In our case, the target architecture, a typical prototype of an

embedded controller, includes the following hardware elements: micro-controller, external memory,

FPGAs, and some glue logic (e.g. address decoder). These components are placed and wire-

wrapped up on a traditional board.

Polis takes a speci�cation of the system being designed as an input and outputs a set of

automatically generated C programs which implement the SW CFSMs and RTOS, synthesized

hardware in XNF format, and connectivity information. C programs are individually compiled and

4



linked together with the user library, and startup code. Commercial design tools are used to place

and route and program the FPGA as directed by the Polis generated XNF code. The connectivity

between hardware and software partitions has been re
ected in the wiring of the board as well as

in the port assignment of the FPGA.1

The �nal binary code is downloaded to the micro-controller through an emulator which o�ers

many debugging and monitoring capabilities. These features allows us to: run the �nal code in

real-time on the target architecture, step it, place break points, measure execution times, ... etc.

A logic analyzer is also used for debugging and measuring properties of the system.

4.2 Integration with a commercial RTOS

The Polis generated RTOS can be substituted by an existing real-time kernel in order to compare

the two RTOSs. The integration requires manual modi�cation of the automatically generated C

code for SW CFSMs, creation of new I/O tasks, and addition of code for initialization of the

commercial RTOS, and proper implementation of Polis communication model.

The commercial RTOS we are using for this comparison is typical of a commercially available

kernels for the micro-controller we use (Motorola 68HC11). It o�ers over 60 functions that enable

the user to create multi-tasking applications for embedded controllers. Task, event, message, re-

source, timer, queue, and memory management take place through calling those functions. The

scheduler is based on preemption, interrupts and other tasks can cause immediate task switch if a

task becomes the highest priority task resulting from a system function.

The following changes were done to Polis generated code to integrate it with the kernel:

� The original Polis routines for emitting events have been changed to kernel function calls that

signal events. To ensure that a SW CFSM is executed only if some relevant event happens it

is wrapped with a code that awaits (by a system call) to any event the SW CFSM is sensitive

to, sets proper event 
ags and then executes the Polis generated SW CFSM code.

� The original polling task, has been re-implemented as an independent task triggered by a

periodic event.

� All timer tasks (implemented by MP CFSMs) have been re-implemented by cyclic timer

tasks provided by the kernel.

� A new main program initializes the kernel by creating and triggering tasks and cyclic timers.

4.3 Properties to be measured

An industrial example, a dashboard controller, has been chosen for the pro�ling. The entire speci-

�cation is implemented in software except interface modules which are in hardware. In the Polis

generated software code the dashboard example has 7 tasks and 4 timers. We are using this exam-

ple to compare Polis generated and commercial RTOSs in several areas, namely: task execution,

event emission, distribution and detection, I/O operation execution, context switching, control and

data code execution times, number of lost events, and code size. Our goal is to use example-speci�c

knowledge to improve over a commercial RTOS in all these areas. We will use experimental results

to identify bottlenecks and potential area for further optimization.

1Our environment still require some example-speci�c re-wiring. This could be avoided by using a programmable

prototyping board (e.g. APTIX) [1], but so far re-wiring was only a minor portion of total experiment time.

5



4.4 Results

So far we have experimented with a subset of dashboard speci�cation (a belt controller) that has two

tasks and uses two timers, using polling and round-robin scheduling. Initial results are encouraging.

For example, if no input events are present, the Polis generated polling task takes 230�s compared

to 969�s by the one integrated with the commercial RTOS. Similarly, event emission in the Polis

generated code takes 15�s compared to more than 150�s to execute the corresponding system call

in the existing RTOS. Code size has also been signi�cantly reduced (from 4.7kb to 1.5kb). By the

time of CODES'97 we expect to have a complete set of results.

5 Conclusions

We have proposed to automatically generate RTOS from a higher level description of the system.

This approach is faster, less expensive and less error-prone than manual design, yet it allows more

example-speci�c optimizations than commercially available general purpose RTOSs. To validate our

approach we have developed a prototyping environment and are using it to comparePolis generated

and commercial RTOSs. Although experiments are still in progress, initial results indicate that

Polis generated RTOS indeed outperforms the commercial one. In the future we plan to complete

the experiment and compare Polis generated RTOS to a manually designed one.

References

[1] S. Cardelli, M. Chiodo, P. Giusto, A. Jurecska, L. Lavagno, and A. Sangiovanni-Vincentelli.

Rapid-prototyping of embedded systems via reprogrammable devices. In 7th IEEE International

Workshop on Rapid System Prototyping, 1996.

[2] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-Vincentelli.

Hardware/software codesign of embedded systems. IEEE Micro, 14(4):26{36, August 1994.

6


