
Overcoming Heterophobia: Modeling Concurrency in Heterogeneous Systems

Jerry Burch
Cadence Berkeley Laboratories

2001 Addison St third floor
Berkeley, CA 94709, USA

jrb@cadence.com

Roberto Passerone
Cadence Design Systems, Inc.

2670 Seely Road
San Jose, CA 95134
robp@cadence.com

Alberto L. Sangiovanni-Vincentelli
Department of EECS

University of California at Berkeley
Berkeley, CA 94720

alberto@eecs.berkeley.edu

Abstract

We describe a framework where formal models can be
rigorously defined and compared, and their interconnec-
tions can be unambiguously specified. We usetrace algebra
andtrace structure algebrato provide the underlying math-
ematical machinery. We believe that this framework will
be essential to provide the foundations of an intermediate
format that will provide the Metropolis infrastructure with
a formal mechanism for interoperability among tools and
specification methods.

1 Introduction

Microscopic devices, powered by ambient energy in
their environment, will be able to sense numerous fields,
position, velocity, and acceleration, and communicate with
appropriate and sometimes substantial bandwidth in the
near area. Larger, more powerful systems within the in-
frastructure will be driven by the continued improvements
in storage density, memory density, processing capability,
and system-area interconnects as single board systems are
eclipsed by complete systems on a chip. Data movement
and transformation is of central importance in such applica-
tions. Future devices will be network-connected, channel-
ing streams of data into the infrastructure, with moderate
processing on the fly. Others will have narrow, application-
specific UIs. Applications will not be centered within a
single device, but stretched over several, forming a path
through the infrastructure. In such applications, the ability
of the system designer to specify, manage, and verify the

functionality and performance ofconcurrent behaviorsis
essential.

Currently deployed design methodologies for embedded
systems are often based onad hoctechniques that lack for-
mal foundations and hence are likely to provide little if any
guarantee of satisfying a set of given constraints and spec-
ifications without resorting to extensive simulation or tests
on prototypes. In the face of growing complexity and tight-
ening of time-to-market, cost and safety constraints, this
approach will have to yield to more rigorous methods. We
believe that it is most likely that the preferred approaches
to the implementation of complex embedded systems will
include the following aspects:

1. Design time and cost are likely to dominate the decision-
making process for system designers. Therefore, design
reuse in all its shapes and forms, as well as just-in-time,
low-cost design debug techniques will be of paramount
importance.

2. Designs must be captured at the highest level of abstrac-
tion to be able to exploit all the degrees of freedom that
are available. Such a level of abstraction should not
make any distinction between hardware and software,
since such a distinction is the consequence of a design
decision.

3. The implementation of efficient, reliable, and robust ap-
proaches to the design, implementation, and program-
ming of concurrent systems is essential. In essence,
whether the silicon is implemented as a single, large
chip or as a collection of smaller chips interacting across
a distance, the problems associated with concurrent pro-
cessing and concurrent communication must be dealt

with in a uniform and scalable manner. In any large-
scale embedded systems program, concurrency must be
considered as a first class citizen at all levels of abstrac-
tion and in both hardware and software.

4. Concurrency implies communication among compo-
nents of the design. Communication is too often inter-
twined with the behavior of the components of the de-
sign so that it is very difficult to separate out the two is-
sues. Separating communication and behavior is essen-
tial to overcome system design complexity. If in a de-
sign component behaviors and communications are in-
tertwined, it is very difficult to re-use components since
their behavior is tightly dependent on the communica-
tion with other components of the original design.

We have advocated the introduction of rigorous method-
ologies for system-level design for years (e.g., [1, 12]) but
we feel that there is still much to do. Recently we have di-
rected our efforts to a new endeavor that tries to capture the
requirements of present day embedded system design: the
Metropolis project.

TheMetropolisproject, supported by the Gigascale Sil-
icon Research Center, started two years ago and involves a
large number of people in different research institutions. It
is based on the following principles:

� Orthogonalization of concerns: In Metropolis, behav-
ior is clearly separated from implementation. Commu-
nication and computation are orthogonalized. Commu-
nication is recognized today as the main difficulty in
assembling systems from basic components. Errors in
software systems can often be traced to communication
problems. Metropolis was created to deal with com-
munication problems as the essence of the new design
methodology. Communication-based design will allow
the composition of either software or hardware blocks
at any layer of abstraction in a controlled way. If the
blocks are correct, the methodology ensures that they
communicate correctly.

� Solid theoretical foundations that provide the nec-
essary infrastructure for a new generation of tools:
We believe that without a rigorous approach, the goal
of correct, efficient, reliable and robust designs cannot
be achieved. The tools used in Metropolis will be in-
teroperable and will work at different levels of abstrac-
tion, they will verify, simulate, and map designs from
one level of abstraction to the next, help choose imple-
mentations that meet constraints and optimize the crite-
ria listed above. The theoretical framework is necessary
to make our claims of correctness and efficiency true.
Metropolis will deal with both embedded software and
hardware designs since it will intercept the design speci-
fication at a higher level of abstraction. The design spec-

ifications will have precise semantics. The semantics is
essential to be able to: (i) reason about designs, (ii) iden-
tify and correct functional errors, (iv) initiate synthesis
processes.

� Reduction of design time and cost by using plat-
forms: Platforms have been a common approach to re-
use. We have formalized and elaborated the concept of
platform to yield an approach that combines hardware
and software platforms to build a system platform. An
essential part of a platform is its communication archi-
tecture. Communication-based design principles have
been used to define standard communication schemes,
but we advocate a more abstract use of communication-
based design to allow more flexible and better-specified
communication architectures.

The Metropolis methodology, by leveraging these three
basic principles, builds an environment where the design of
complex systems will be a matter of days versus the many
months needed today Complex, heterogeneous designs will
be mapped into flexible system platforms by highly opti-
mized “design agents” and verified by “verification agents”
in a formal logic framework.

An essential aspect of the Metropolis methodology is
the adoption of formal definition of the semantics of com-
munication so that implementation choices will be correct
by construction.

Several formal models have been proposed over the
years (see e.g. [6]) to capture one or more aspects of com-
putation as needed in embedded system design. We have
been able to compare the most important models of compu-
tations using a unifying theoretical framework introduced
recently by Lee and Sangiovanni-Vincentelli [5].

However, this denotational framework has only helped
us to identify the sources of difficulties in combining differ-
ent models of computation that are certainly needed when
complex systems are being designed. In this case, the parti-
tion of the functionality of the design into different models
of computation is somewhat arbitrary as well as arbitrary
are the communication mechanisms used to connect the
“ports” of the different models. We believe that it is pos-
sible to optimize across model-of-computation boundaries
to improve performance and reduce errors in the design at
an early stage in the process.

There are many different views on how to accomplish
this. There are two essential approaches: one is to develop
encapsulation techniques for each pair of models that al-
low different models of computation to interact in a mean-
ingful way, i.e., data produced by one object are presented
to the other in a consistent way so that the object “under-
stands” [7, 8]. The other is to develop an encompassing
framework where all the models of importance “reside”
so that their combination, re-partition and communication

2

happens in the same generic framework and as such may be
better understood and optimized. While we realize that to-
day heterogeneous models of computation are a necessity,
we believe that the second approach will be possible and
will provide a designer a powerful mechanism to actually
select the appropriate models of computation, (e.g., FSMs,
Data-flow, Discrete-Event, that are positioned in the the-
oretical framework in a precise order relationship so that
their interconnection can be correctly interpreted and re-
fined) for the essential parts of his/her design.

In this paper, we focus on this very aspect of the ap-
proach: the formal definition of a framework where formal
models can be rigorously defined and compared, and their
interconnections can be unambiguously specified. We use
a kind of abstract algebra to provide the underlying math-
ematical machinery. We believe that this framework will
be essential to provide the foundations of an intermediate
format that will provide the Metropolis infrastructure with
a formal mechanism for interoperability among tools and
specification methods.

The paper is organized as follows. Section 2 describes
our view of the requirements for a formal model of het-
erogeneous systems. Section 3 describes our framework,
which is based on trace structure algebra [2]. Section 4
gives examples of applying our framework and section 5
concludes.

2 Requirements for a Formal Model

One of our major goals is to allow different parts of a
system to be designed using different models of computa-
tion, and then be combined using a simple, formal seman-
tics. This section describes our view of what a model of
computation is, our approach to constructing formal mod-
els, and what assumptions that approach depends on.

2.1 What is a Model of Computation?

In our terminology, a model of computation is a distinc-
tive paradigm for computation, communication, etc. For
example, the Mealy machine model of computation is a
paradigm where data is communicated via signals and all
agents operate in lockstep (we use “agent” as a generic
term that includes both hardware circuits and software pro-
cesses). The Kahn Process Network model is a paradigm
where data carrying tokens provide communication and
agents operate asynchronously with each other (but coor-
dinate their computation by passing and receiving tokens).
Different paradigms can give quite different views of the
nature of computation and communication. In a large sys-
tem, different subsystems can often be more naturally de-
signed and understood using different models of computa-
tion.

The notion of a model of computation is related to, but
different from, the concept of a semantic domain for mod-
eling agent. A semantic domain is a set of mathematical
objects used to model agents. For a given model of com-
putation, there is often a most natural semantic domain.
For example, Kahn processes are naturally represented by
functions over streams of values. In the Mealy machine
model, agents are naturally represented by labeled graphs
interpreted as state machines.

However, for a given model of computation there is
more than one semantic domain that can be used to model
agents. For example, a Kahn process can also be mod-
eled by state machine that effectively simulates its behav-
ior. Such a semantic domain is less natural for Kahn Pro-
cess Networks than stream functions, but it may have ad-
vantages for certain types of analyses, such as finding rela-
tionships between the Kahn process model of computation
and then Mealy machine model of computation.

We interpret the term “model of computation” slightly
differently than others. There, the meaning of the term is
based on designating one or more unifying semantic do-
mains. A unifying semantic domain is a (possibly param-
eterized) semantic domain that can be used to represent
a variety of different computation paradigms. Examples
of unifying semantic domains include the Tagged Signal
Model [5] and the operational semantics underlying the
Ptolemy II simulator [8]. In this context, a model of com-
putation is a way of encoding a computation paradigm in
one of the unifying semantic domains. With this interpre-
tation, it is common to distinguish different models of com-
putations in terms of the traits of the encoding: firing rules
that control when different agents do computation, commu-
nication protocols, etc. For example, in Ptolemy II, models
of computation (also known as a computation domains) are
distinguished by differences in firing rules and communi-
cation protocols.

Our interpretation of these terms highlights the distinc-
tion between a model of computation and a semantic do-
main. We use the term model of computation more broadly
to include computation paradigms that may not fit within
any of the semantic domains we consider.

2.2 Strategy for Constructing a Formal Model

It is not our goal to construct a single unifying semantic
domain, or even a parameterized class of unifying semantic
domains. Instead, we wish to construct a formal framework
that simplifies the construction and comparison of different
semantic domains, including semantic domains that can be
used to unify specific, restricted classes of other semantic
domains.

There is an important tradeoff when constructing a uni-
fying semantic domain. The unifying semantic domain can

3

be used more broadly if it unifies a large number of models
of computation. However, the more models of computa-
tion that are unified, the less natural the unifying semantic
domain is likely to be for any particular model of compu-
tation. We want the users of our framework to be able to
make their own tradeoffs in this regard, rather than be re-
quired to conform to a particular choice made by us.

2.3 Assumptions About Models of Computation

We wish to have a very general framework that can han-
dle a variety of models of computation. However, we make
some assumptions about the semantic domains that will be
used. We have proved many generic theorems that hold for
any semantic domain that satisfies these assumptions. To
analyze a newly constructed semantic domain within this
framework, one starts by proving that the domain satisfies
the assumptions. Then, the above generic theorems can be
used without having to reprove them.

Our most restrictive assumption is that all models of
computation will be linear time, rather than branching time.
Generally, there are two reasons why branching time mod-
els are used. First, branching time temporal logics such as
CTL can express useful non-linear properties that are rela-
tively inexpensive to verify using automatic model check-
ers. Although the semantics of CTL cannot be represented
in our framework, CTL can still be used as a specification
language to verify linear time models, which do fit in our
framework.

The second reason to use branching time models has to
do with certain semantic inadequacies of linear time mod-
els. Our approach to handling these inadequacies follows
Dill [4]. To describe this approach, we use the standard
CCS “Vending Machine” example, which is illustrated in
figure 1 (see page 54 of Dill for a similar discussion of this
example). The first vending machine inputs money (action
a) and lets the customer select one of two items by tak-
ing inputsb andc. To simplify the example, the vending
machine halts after just one transaction. The other vend-
ing machine takes money, then makes an internal decision
about which product it will allow the customer to choose
(without telling the customer). The customer selects item
b or c, and either gets it or not, depending on the decision
made by the machine.

These two vending machines should be distinguished.
However, the sets of traces of the two machines appears
to be the same:fab; acg. CCS and other process algebras
use a branching time semantics to distinguish the two ma-
chines. However there are other approaches. Notice that
the actionsa, b andc are rendezvous in this model of com-
putation. One difference between the vending machines is
that if the customer makes choiceb, then the first vending
machine is guaranteed to complete theb rendezvous while

a

b c

a a

b c

(a) (b)

Figure 1. CCS-like trees for two “vending ma-
chines”

the second vending machine may not. This difference is not
reflected in the trace set because there is no indication of a
rendezvous that is initiated by the customer but not com-
pleted by the machine. If the alphabet of the trace language
is enriched with symbols that indicate a partially complete
rendezvous (for example), then the two vending machines
can be distinguished by their trace sets, without requiring
branching time semantics.

The above argument that branching time is not needed in
many cases is, of course, merely suggestive, not definitive.
A long term goal of this research is to extend the frame-
work to include branching time models so we can more
precisely characterize when such models are needed. How-
ever, for the main goal of this research, improving formal
semantic methods for heterogeneous systems, we believe
that branching time semantics are not necessary.

Because we use a linear time model, we can represent
a agent with a set of traces (here we use “trace” in a very
general sense, as explained in section 3.1). Our definition
of parallel composition of two agents is closely related to
finding the intersection of the corresponding sets of traces.
This is sufficient to naturally represent a large variety of
models of computation.

However, there are phenomenon that cannot be modeled
when parallel composition is based on the intersection of
sets of traces. Consider a device with two ports that con-
sists of two resistors connected in parallel (figure 2). The
amount of current flowing through the device is equal to the
sum of the currents flowing through each resistor. When
parallel composition is based on set intersection, then this
summing of currents cannot be represented. We have devel-
oped an alternative definition of parallel composition that is
general enough to model this and similar phenomenon, but
we are still working out its impact on the rest of the frame-
work.

Our current models of agents do not allow ports to be
of different types. Also, we do not explicitly model bidi-
rectional communication: all ports are designated as inputs
or outputs. However, the effects of these limitations are

4

��A
AA�
��A
AA�
��A
AA��

��A
AA�
��A
AA�
��A
AA��

Figure 2. Two resistors connected in parallel.

more cosmetic than fundamental. Different port types can
be modeled using a value domain that is the union of all
types of interest. Bidirectional communication is modeled
by allowing multiple output ports to share control over sig-
nals or shared variables. The fact that such output ports are
“output” in name only is why we consider this restriction
to be merely cosmetic. We plan to extend our framework
to remove these cosmetic restrictions.

There are many other traits that distinguish models
of computation, including: levels of abstraction, partial
orders models (e.g., POMSETS [11] and Mazurkiewicz
Traces [10]) vs total orders, action-based vs value-based,
different styles of computation, communication and coor-
dination. For all these traits, our framework is unbiased.
We have constructed different models with several differ-
ent combinations of these traits, all of which satisfy the
assumptions we place on semantic domains.

3 Trace Structure Algebra

This section describes some very general methods for
constructing different models of concurrent systems, and
for proving relationships between these models. One of
these relationships is the concept of aconservative approx-
imation [2]. Informally, a model is a conservative approx-
imation of a second model when the following condition
is satisfied: if an implementation satisfies a specification
in the first model, then the implementation also satisfies
the specification in the second model. Conservative ap-
proximations are useful when the second model is accu-
rate but difficult to use in proofs or with automatic verifi-
cation tools, and the first model is an abstraction that sim-
plifies verification. Conservative approximations, and their
inverses, also provide a way to give formal semantics to
heterogeneous systems.

Several methods for verifying concurrent systems are
based on checking forlanguage containmentor related
properties. In the simplest form of language containment-
based verification, each agent is modeled by a formal lan-
guage of finite (or possibly infinite) sequences. If agentT is

a specification andT 0 is an implementation, thenT 0 is said
to satisfyT if the language ofT 0 is a subset the language
of T . The idea is that each sequence, sometimes called a
trace, represents a behavior; an implementation satisfies a
specification iff all the possible behaviors of the implemen-
tation are also possible behaviors of the specification.

In our framework, traces can be any mathematical object
that has certain properties. In this section, these properties
are formalized in the axioms oftrace algebra,which is a
kind of abstract algebra that has a set of traces as its do-
main. Section 3.2 describestrace structure algebra,which
has as its domain a set of trace structures, each containing a
subset of the traces from a given trace algebra. The notion
of one trace structure satisfying another is based on trace
set containment.

Before giving the formal definitions of these concepts,
let us describe a simple example of a trace algebra and a
trace structure algebra. Let the set of traces over an al-
phabetA beA1, which is the set of finite and infinite se-
quences overA. A tuple ((I; O); P) is a trace structure if
P � A1, whereI andO are sets of input and output sig-
nals, respectively, andA = I [O is the alphabet of the
trace structure.

We define the operations of parallel composition, pro-
jection (for abstracting away internal signals) and renam-
ing (for instantiating models with new port names) on trace
structures by first defining projection and renaming on in-
dividual traces. Ifx 2 A1 andB � A, thenproj(B)(x)
is the string formed fromx by removing all symbols not in
B. If r is a bijection with domainA, thenrename(r)(x) is
the string formed fromx by replacing every symbola with
r(a).

Projection and renaming on trace structures are just
the natural extensions of the corresponding operations on
traces. In particular, ifT = ((I; O); P) is a trace structure,
I � B � A andr is a bijection with domainA, then

proj(B)(T) = ((I; O \ B); proj(B)(P));

rename(r)(T) = ((r(I); r(O)); rename(r)(P));

where the operations of projection and renaming on traces
are naturally extended to sets of traces. IfT = ((I; O); P)
is equal to the parallel composition ofT 0 andT 00, thenP is
the set ofx 2A1 such that

proj(A0)(x) 2 P 0 ^ proj(A00)(x) 2 P 00:

Given our definition of projection on strings, this is a natu-
ral definition of parallel composition.

Looking at the above definitions more closely, we can
see how these concepts can be generalized to unify many
different kinds of models. Rather than always using strings
in a formal language as the domain of traces, we can use
any domain that has projection and renaming operations
defined on it and that satisfies certain requirements. These

5

requirements are formalized in the axioms of trace algebra.
In each case, the operations on trace structures are defined
exactly as above, in terms of the operations on individual
traces. The resulting trace structure algebra enjoys certain
useful properties because the underlying traces satisfy the
axioms of trace algebra. The remainder of this section for-
malizes these claims, and defines what it means for one
trace structure algebra to be a conservative approximation
of another.

3.1 Trace Algebra

We make a distinction between two different kinds of
behaviors:completebehaviors andpartial behaviors. A
complete behavior has no endpoint. Since a complete be-
havior goes on forever, it does not make sense to talk about
something happening “after” a complete behavior. A par-
tial behavior has an endpoint; it can be a prefix of a com-
plete behavior or of another partial behavior. Every com-
plete behavior has partial behaviors that are prefixes of it;
every partial behavior is a prefix of some complete behav-
ior. The distinction between a complete behavior and a par-
tial behavior has only to do with the length of the behavior
(that is, whether or not it has an endpoint), not with what
is happening during the behavior; whether an agent does
anything, or what it does, is irrelevant.

Complete tracesand partial tracesare used to model
complete and partial behaviors, respectively. A given ob-
ject can be both a complete trace and a partial trace; what is
being represented in a given case is determined from con-
text. For example, a finite string can represent a complete
behavior with a finite number of actions, or it can repre-
sent a partial behavior. The form of trace algebra we define
here has only complete traces; it is intended to represent
only complete behaviors. We use the symbol ‘C’ to denote
trace algebras. Since we only consider here trace algebras
with complete traces and without partial traces, we use a
subscript ‘C ’ (e.g.,‘CC ’) to denote the trace algebras used
in this paper.

We begin with a few preliminary definitions.

Definition 1. We useW to denote a set ofsignals.The set
W is usually infinite, but this is not required.

Definition 2. An alphabetA overW is any subset ofW .

Therenameoperation uses arenaming function,which
is a bijection from one alphabet to another.

Definition 3. A function r with domainA and codomain
B, whereA andB are alphabets overW , is arenaming
function overW if r is a bijection.

Now we are ready to define trace algebra.

Definition 4. A trace algebraCC overW is a triple

(BC ; proj; rename):

For every alphabetA overW , BC(A) is a non-empty
set, called the set of traces overA. Slightly abusing no-
tation, we also writeBC as an abbreviation for

[
fBC(A) : A �Wg:

For every alphabetB overW and every renaming func-
tion r overW , proj(B) andrename(r) are partial func-
tions fromBC toBC . The following axioms T1 through
T8 must also be satisfied. For all axioms that are equa-
tions, we assume that the left side of the equation is de-
fined.

T1. proj(B)(x) is defined iff there exists an alphabetA

such thatx 2 BC(A) andB � A. When defined,
proj(B)(x) is an element ofBC(B).

T2. proj(B)(proj(B0)(x)) = proj(B)(x).

T3. If x 2 BC(A), thenproj(A)(x) = x.

T4. Let x 2 BC(A) and x0 2 BC(A0) be such that
proj(A \ A0)(x) = proj(A \ A0)(x0). For all A00

whereA[A0 � A00, there existsx00 2 BC(A00) such
thatx = proj(A)(x00) andx0 = proj(A0)(x00).

T5. rename(r)(x) is defined iffx is an element of the
setBC(dom(r)). When defined,rename(r)(x) is an
element ofBC(codom(r)).

T6. rename(r)(rename(r0)(x)) = rename(r � r0)(x).

T7. If x 2 BC(A), thenrename(idA)(x) = x.

T8. proj(r(B))(rename(r)(x)) =
rename(r j

B!r(B))(proj(B)(x)).

T1 and T5 state when the operations on traces are de-
fined. T2, T3, T6, T7 and T8 are clearly consistent with
the intuitive meaning of the projection and renaming op-
erations. The remaining axiom, T4 is a kind of “diamond
property”, as illustrated in figure 3. As an example of ap-
plying T4, consider the case where traces are sequences.
Let A = fa; bg, A0 = fb; cg, x = abab andx0 = bcb.
Clearly proj(A \ A0)(x) and proj(A \ A0)(x0) are both
equal tobb. Choosingx00 = abacb demonstrates the T4
holds for this pair of sequences. Intuitively, T4 requires
that if two tracesx andx0 are compatible on their shared
signals (i.e., A \ A0), then there exists a tracex00 that cor-
responds to the synchronous composition ofx andx0.

6

v

x00 2 B(A00)

�
�

�
�

�
�

�
�

�
�
�	

proj(A)

vx 2 B(A)

@
@
@
@
@
@
@
@
@
@
@R

proj(A0)

v x0 2 B(A0)
@
@
@
@
@
@
@
@
@
@
@R

proj(A \A0)

�
�

�
�

�
�

�
�

�
�
�	

proj(A \ A0)

v

proj(A \ A0)(x) = proj(A \ A0)(x0)

Figure 3. According to T4, if there exists an x and an x0 that satisfy the lower half of the diamond,
then there exists an x00 that satisfies the upper half, for any alphabet A00 such that A [A0 � A00.

Note 5. We naturally extend the renaming and projection
operations on traces to operations on sets of traces. For
example, ifrename(r)(x) is defined for everyx in X ,
thenrename(r)(X) is defined such that

rename(r)(X) = frename(r)(x) : x 2 Xg:

3.1.1 Examples

As an example trace algebra, we formalize the trace alge-
bra briefly described at the beginning of section 3.1, which
we callCI

C
. We always use the symbol ‘C’ to denote trace

algebras, and the superscript ‘I ’ is a mnemonic for an (un-
timed) interleaving model; the subscript ‘C ’ indicates that
there are only complete traces in the trace algebra (i.e., a
trace algebra without partial traces).

Definition 6. For a given set of signalsW , the trace alge-
bra CI

C
= (BI

C
; projI ; renameI) overW is defined as

follows:

� For every alphabetA overW , the setBI
C
(A) of traces

overA is A1, which is the set of finite and infinite
sequences overA.

� If x 2 BI
C
(A) andB � A, thenprojI (B)(x) is the

sequence formed fromx by removing every symbol
a not inB. More formally, ifx0 = projI (B)(x), then
len(x0) is

jfj 2 N : 0 � j < len(x) ^ x(j) 2 Bgj

andx0(k) = x(n) for all k < len(x0), wheren is the
unique integer such thatx(n) 2 B and

k = jfj 2 N : 0 � j < n ^ x(j) 2 Bgj:

� If x 2 BI
C
(A) andr is a renaming function overW

with domainA, then

rename(r)(x) = �n 2 N 6�[r(x(n))]:

Note 7. For the trace algebraCI
C

(and analogously for
other trace algebras defined later) we often drop the su-
perscript ‘I ’ when writingBI

C
, projI andrenameI .

Trace algebra can be used to construct a large vari-
ety of behavior models. The trace algebraCI

C
, for which

BC(A) = A1, is just one example. To provide more in-
tuition about the range of possible trace algebras, we infor-
mally describe several examples.

The simplest possible trace algebra has exactly one
trace; call itx0. For any alphabetA, the set of traces over

7

A is BC(A) = fx0g. If B is an alphabet andr is a re-
naming function, thenproj(B)(x0) andrename(r)(x0) are
defined and are equalx0. This trace algebra does not distin-
guish between any behaviors; all behaviors are represented
by the same trace. For this reason it is not a useful trace
algebra, but it does satisfy the necessary axioms.

A slightly more complicated trace algebra hasBC(A) =
2A. For any tracex, proj(B)(x) is defined and is equal
to x \ B. On the other hand,rename(r)(x) is defined iff
x � dom(r); when defined, it is equal tor(x), where isr is
naturally extended to sets. It is easy to show that this trace
algebra satisfies T1 through T8; in particular, ifx andx0

satisfy the hypothesis of T4, thenx00 = x [x0 is sufficient
to show that T4 is satisfied. Traces in this trace algebra
do not provide any information about actions occurring in
sequence, only information about what actions occurred a
non-zero number of times during a behavior. Alternatively,
if a 2 x, then this could be interpreted to mean thata oc-
curred an odd number of times during the behavior repre-
sented byx.

Traces in the last two examples provide less informa-
tion about a behavior than do traces inCI

C
. As an example

of a trace algebra that provides more information thanCI
C

,
let BC(A) = (2A)!. For any tracex, proj(B)(x) is de-
fined and is formed fromx by intersecting each element of
the sequence withB. The functionrename(r) is the nat-
ural extension ofr to sequences of sets. Unlike traces in
CI
C

, these traces can be interpreted as providing informa-
tion about the time at which events occur. Ifx is such a
trace, thenx(n) is the set of events that occurred at timen.
The setx(n) must be defined for all integersn; therefore,
each tracex must be an infinite sequence.

A trace algebra that provides an intermediate amount of
information between the last example andCI

C
can be con-

structed by lettingBC(A) = (2A � f;g)1. The renaming
operation is the same as the last example, except that it is
also extend to finite sequences. Projection is similar to the
last example, except that after doing the intersection, any
instances of the empty set that result must be removed from
the sequence. LikeCI

C
, this trace algebra is untimed; how-

ever, it represent simultaneity explicitly, unlike interleaving
semantics.

In the continuous time trace algebraCCTU
C

, each trace
over an alphabetA is an element of2A�<

6�

, where< 6� is
the set of non-negative real numbers. Each trace is a set of
events; each event is an ordered pair of an action and a time
stamp. An isomorphic trace algebra can be constructed by
taking advantage of the natural bijection between2A�<

6�

and< 6� 7! 2A. If x is a trace in< 6� 7! 2A, thenx(t) is the
set of actions that occurred at timet.

All of the trace algebras we have described are action
based, but trace algebra can also be used for state based
models. For an agent with alphabetA, we interpret each

a 2 A as a state variable. LetV be the set of values that can
be taken by state variables. Then, each state is an element
of A 7! V . A trace algebra based on sequences of states
would haveBC(A) equal to(A 7! V)!, which can also be
written asN 6� 7! (A 7! V).

For a continuous time, state based model, letBC(A) =
<6� 7! (A 7! V). If x is such a trace, thenx(t) is the state
at timet. If V is the set of real numbers, then this trace al-
gebra could be used as a circuit model that represents both
continuous time and continuous voltage.

In section 3.2 we show how trace algebras can be used
to constructtrace structure algebras.We can then dis-
cuss how the above trace algebra examples, which provide
different models of individual behaviors, lead to different
models of agents.

3.2 Trace Structure Algebra

Agents communicate through either shared actions or
shared state variables. We use the termsignal to refer
to either an action or a state variable. We associate with
each agent anagent signature(or just signature), which
describes sets of input signals and output signals.

Definition 8. The set ofagent signatures� overW is the
set of ordered pairs(I; O) such thatI andO are dis-
joint subsets ofW . We use
 to denote agent signatures
(often called justsignatures).

In a signature(I; O) overW , the setW is usually infi-
nite and the setsI andO are usually finite, but this is not
required. In future work, we plan to extend signatures to al-
low bidirectional signals and to associate type information
with each signal.

Definition 9. If
 = (I; O) is a signature overW , then
A = I [O is thealphabet of
.

Note 10. When we mention a signature
, we also implic-
itly define I andO so that
 = (I; O). We also im-
plicitly defineA to be the alphabet of
. If the name
of the signature is decorated with primes and/or sub-
scripts, those decorations carry over to the implicitly de-
fined quantities. For example, mentioning a signature
01
implicitly definesI 01, O01 andA01.

The parallel composition of two agentsT andT 0 (writ-
tenT k T 0) corresponds to, for example, joining two cir-
cuits or running two processes concurrently. In the result-
ing composition,T andT 0 communicate through shared
signals. We require that no signal be an output of bothT

andT 0. The agentrename(r)(T) is formed fromT by re-
naming the signals ofT according tor. If B is a subset of
the alphabet ofT , thenproj(B)(T) hasB as its alphabet;

8

the remaining signals ofT are not externally visible. We
allow only outputs ofT to be hidden, soB must contain all
of the inputs ofT .

We are now ready to define the concept of a trace struc-
ture algebra. Trace structures are constructed from the
traces of a trace algebra, and are used to represent agents.
Here we consider trace structures that contain one set of
traces, which represents the set ofpossiblebehaviors of an
agent.

Definition 11. Let CC = (BC ; proj; rename) be a trace al-
gebra overW . The set oftrace structuresoverCC is the
set of ordered pairs(
; P), where

�
 is a signature overW ,

� A is the alphabet of
, and

� P is a subset ofBC(A).

We call
 thesignatureandP the set ofpossible traces
of a trace structureT = (
; P).

A trace structure(
; P) represent an agent with signa-
ture
; each trace inP represents a possible complete be-
havior of the agent.

Note 12. When we mention a trace structureT , we implic-
itly define
 to be its signature andP to be its set of
possible traces. If the name of the trace structure is dec-
orated with primes and/or subscripts, those decorations
carry over to the implicitly defined quantities. For exam-
ple, mentioning a trace structureT 01 implicitly defines a
signature
01 andP 01. This, as described in note 10, also
implicitly definesI 01, O01 andA01.

Definition 13. If CC = (BC ; proj; rename) is a trace alge-
bra overW andT is a subset of the trace structures over
CC , thenAC = (CC ; T) is a trace structure algebraiff
the domainT is closed under the following operations
on trace structures: parallel composition (def. 14), pro-
jection (def. 15) and renaming (def. 16).

We use the subscriptC inAC to denote a trace structure
algebra that is built from a trace algebraCC that has only
complete traces (no partial traces).

To complete the definition of trace structure algebra, we
need to define the operations on trace structures mentioned
in definition 13.

Definition 14. If O\O0 = ;, thenT 00 = T k T 0 is defined
and

00 = ((I [I 0)� (O [O0); O [O0)

P 00 = fx 2 BC(A
00) : proj(A)(x) 2 P ^

proj(A0)(x) 2 P 0g:

Definition 15. If I � B � A, then

proj(B)(T) = ((I; O \B); proj(B)(P)):

Definition 16. If r is a renaming function with domainA,
then

rename(r)(T) = ((r(I); r(O)); rename(r)(P)):

It can be shown, using the axioms of trace algebra, that
the operations of parallel composition, projection and re-
naming on trace structures satisfy the following identities.
In all of the identities, there is an implicit assumption that
the left hand side of the equation is defined; in each case, if
the left hand side is defined, then so is the right hand side.

(T k T 0) k T 00 = T k (T 0 k T 00):

T k T 0 = T 0 k T:

rename(r)(rename(r0)(T)) = rename(r � r0)(T):

rename(r)(T k T 0) =
rename(r j

A!r(A))(T) k

rename(r j
A0!r(A0))(T

0):

rename(idA)(T) = T:

proj(B)(proj(B0)(T)) = proj(B)(T):

proj(A)(T) = T:

proj(B)(T k T 0) =
proj(B \ A)(T) k proj(B \A0)(T 0),
if (A \ A0) � B.

proj(r(B))(rename(r)(T)) =
rename(r j

B!r(B))(proj(B)(T)):

We want to use trace structure algebras as the basis for
a verification methodology, which requires defining what
it means for an implementation to satisfy a specification
when both are given by trace structures. Our notion of
satisfaction is based on trace set containment: an imple-
mentation satisfies a specification iff it iscontainedby the
specification.

Definition 17. We sayT � T 0 (readT is contained inT 0)
iff
 =
0 andP � P 0.

The operations of parallel composition, renaming and
projection are monotonic with respect to trace structure
containment. The monotonicity of parallel composition is
important for using trace structure algebras as a basis for
hierarchical verification techniques.

9

3.2.1 Examples

Let us consider how some of the example trace algebras
discussed in section 3.1.1 can be used to construct trace
structures, and how the different definitions of projection
on traces lead to different notions of parallel composition
of trace structures.

Consider trace structures over the trace algebraCI
C

. The
set of possible traces of a trace structure with alphabetA is
a subset ofBC(A), which in this case isA1. Consider the
trace structures

T = ((fa; bg; ;); fababg)

T 0 = ((fb; cg; ;); fbcbg):

By the definition of parallel composition in a trace structure
algebra, the set of possible traces ofT 00 = T k T 0 is

P 00 = fx 2 BC(fa; b; cg) : proj(fa; bg)(x) 2 P ^

proj(fb; cg)(x) 2 P 0g

= fabacb; abcabg:

This example illustrates how parallel composition results
in nondeterminism in this model.

However, parallel composition does not lead to nonde-
terminism when the underlying trace algebra is the one with
BC(A) = (2A)! described in section 3.1.1. Let

T = ((fa; bg; ;); fhfa; bg; fag; fbgig)

T 0 = ((fb; cg; ;); fhfbg; fcg; fbgig)

Here the set of possible traces ofT 00 = T k T 0 is the
singleton set

P 00 = fhfa; bg; fa; cg; fbgig:

The relevant difference between this model and the inter-
leaving model is that here each trace provides more infor-
mation about the time of occurrence of events. As a result,
the order of events is fully determined when “merging” to-
gether two local traces to form a global trace of a compo-
sition. Global traces are also fully determined in the cases
where traces over an alphabetA are elements of2A�<

6�

,
(A 7! V)! or< 6� 7! (A 7! V).

Another case where parallel composition does lead to
nondeterminism is the one described in section 3.1.1 where
BC(A) = (2A � f;g)1. In this case, forT andT 0 defined
as above, the set of possible traces ofT 00 = T k T 0 is

P 00 = fhfa; bg; fag; fcg; fbgi;

hfa; bg; fa; cg; fbgi;

hfa; bg; fcg; fag; fbgig:

3.2.2 Constructing Trace Structure Algebras

The definition of a trace structure algebraAC = (CC ; T)
requires that the set of trace structuresT be closed under
the operations on trace structures. This section states three
theorems that make it easier to prove closure, and shows
how to use these theorems.

The first theorem states that ifT is equal to the set of all
trace structures overCC , thenT is closed under the opera-
tions on trace structures, soAC is a trace structure algebra.
Recall that the alphabet of a trace structure need not be a fi-
nite set. The second theorem shows that the set of all trace
structures with finite alphabets is closed under the opera-
tions on trace structures.

For the third theorem, let(CC ; T) be a trace structure
algebra, whereT is some subset of the set of trace struc-
tures overCC . For every alphabetB, let L(B) be a class
of sets of complete traces overB, that is,L(B) � 2BC(B).
Assume thatL is closed under intersection, renaming, pro-
jection and “inverse projection” (this is formalized below).
LetT 0 be the set of trace structures(
; P) 2 T such thatP
is inL(A). ThenT 0 is closed under the operations on trace
structures, so(CC ; T 0) is a trace structure algebra.

Let T I be the set of all trace structures overCI
C

. By the
first theorem,AI

C
= (CI

C
; T I) is a trace structure algebra.

Let T IR be the set of all trace structures(
; P) over CI
C

for which
 has a finite alphabet andP is a mixed regular
set of sequences (that is,P is the union of a regular set
and an!-regular set). By the second and third theorems,
AIR

C
= (CI

C
; T IR) is also a trace structure algebra.

The remainder of this section formalizes these results.

Theorem 18. If CC is a trace algebra andT is the set of all
of the trace structures overCC , thenT is closed under
the operations on trace structures, soAC = (CC ; T) is
a trace structure algebra.

Theorem 19. LetAC = (CC ; T) be a trace structure alge-
bra. LetT 0 be the set of trace structuresT 2 T such that
the alphabet ofT is a finite set. ThenA0

C
= (CC ; T 0) is

a trace structure algebra.

Definition 20. Let T be a set of trace structure over some
trace algebraCC . The set ofalphabets ofT is the set of
alphabetsA of a signature
 in the set

f
 : 9P [(
; P) 2 T]g:

Theorem 21. LetAC = (CC ; T) be a trace structure alge-
bra. For every alphabetB of T , letL(B) be a subset of
2BC(B). LetT 0 be the set of trace structuresT 2 T such
thatP is inL(A). ThenA0

C
= (CC ; T 0) is a trace struc-

ture algebra if the following requirements are satisfied
for every alphabetB of T .

10

L1. L(B) is closed under intersection.

L2. If B0 � B andX 2 L(B), thenproj(B0)(X) 2
L(B0).

L3. If B � B0 andX 2 L(B), then

fx 2 BC(B
0) : proj(B)(x) 2 Xg 2 L(B0):

L4. If r is a renaming function with domainB andX 2
L(B), thenrename(r)(X) 2 L(r(B)).

Definition 22. We defineAI

C
to be the pair(CI

C
; T I),

whereT I is the set of all trace structures overCI
C

. By
theorem 18,AI

C
is a trace structure algebra.

Definition 23. We defineT IR to be the set of all trace
structuresT = (
; P) over CI

C
for which
 has a fi-

nite alphabet andP is a mixed regular set of sequences.
Also,AIR

C
is the ordered pair(CI

C
; T IR). By theorem 19

and theorem 21,AIR

C
is a trace structure algebra.

3.3 Conservative Approximations

A conservative approximation fromAC = (CC ; T) to
A0
C

= (C0
C
; T 0) is an ordered pair	 = (l;	u), where

	l and	u are functions fromT to T 0. For a given trace
structureT in AC , the trace structure	l(T) is a kind of
lower bound ofT , while	u(T) is an upper bound (relative
to the ‘�’ ordering on trace structures). Here we require
that	l(T) and	u(T) have the same signature asT ; it is
also possible to allow conservative approximations that can
change the signature of a trace structure, but that is beyond
the scope of this paper.

As an example, consider the verification problem

proj(A)(T1 k T2) � T;

whereT1, T2 andT are trace structures inT . This corre-
sponds to checking whether an implementation consisting
of two componentsT1 andT2 (along with some internal
signals that are removed by the projection operation) satis-
fies the specificationT . By definition, if	 is a conservative
approximation, then showing

proj(A)(u(T1) k 	u(T2)) � 	l(T)

is sufficient to show that the original implementation satis-
fies its specification. Thus, the verification can be done in
A0
C

, where it is presumably more efficient than inAC . A
conservative approximation guarantees that doing the ver-
ification in this way will not lead to a false positive result,
although false negatives are possible depending on how the
approximation is chosen. The following definition formal-
izes the notion of a conservative approximation.

Definition 24. LetAC = (CC ; T) andA0
C

= (C0
C
; T 0) be

trace structure algebras, and let	l and	u be functions
from T to T 0. We say	 = (l;	u) is aconservative
approximation fromAC to A0

C
iff the following condi-

tions are satisfied.

� For allT 2 T , the signature of	l(T) and	u(T) is

.

� Let E be an arbitrary expression potentially involv-
ing parallel composition, projection and renaming of
trace structures inT . Let E0 be formed fromE

be replacing every instance of each trace structure
T with 	u(T). If T1 is a trace structure inT , and
E0 � 	l(T1), thenE � T1.

Usually a conservative approximation	 = (l;	u) has
the additional property that	l(T) � 	u(T) for all T , but
this is not required. Also, having	l and	u be monotonic
(relative to the containment ordering on trace structures) is
common but not required.

The simplest example of a conservative approximation
is 	 = (l;	u) is

	l(T) = (
; ;)

	u(T) = (
;B0C(A)):

This definition of	 clearly satisfies the first condition of
definition 24. To see that it satisfies the second condition,
notice that the set of possible traces ofE0 and	l(T1) will
be the universal set and the empty set, respectively; thus,
it is never true thatE0 � 	l(T1). This particular con-
servative approximation is not useful, however, because it
always leads to a negative verification result; it cannot be
used to show that an implementation satisfies a specifica-
tion. In section 3.3.2, we will show how a conservative
approximation can be constructed using a homomorphism
from one trace algebra to another.

The remainder of this section states theorems that pro-
vide sufficient conditions for showing that some	 is a
conservative approximation. The first theorem can be un-
derstood by recalling the example verification problem de-
scribed above, and by considering the following chain of
implications:

proj(A)(u(T1) k 	u(T2)) � 	l(T)

assuming	u(T1 k T2) � 	u(T1) k 	u(T2)

) proj(A)(u(T1 k T2)) � 	l(T)

assuming	u(proj(A)(T 0)) � proj(A)(u(T 0))

) 	u(proj(A)(T1 k T2)) � 	l(T)

assuming	u(T 0) � 	l(T) impliesT 0 � T

) proj(A)(T1 k T2) � T:

The theorem formalizes the above three assumptions (along
with a fourth assumption for the renaming operation) and

11

states that they are sufficient to show that	 is a conserva-
tive approximation.

In addition, we show that if	0 = (0
l
;	0u) provides

looser lower and upper bounds than a conservative approx-
imation	 (i.e.,	0

l
(T) � 	l(T) and	u(T) � 	0u(T) for

all T), then	0 is also a conservative approximation. Also,
the functional composition of two conservative approxima-
tions yields another conservative approximation.

Theorem 25. LetAC = (CC ; T) andA0
C

= (C0
C
; T 0) be

trace structure algebras, and let	l and	u be functions
from T to T 0. Assume that for allT 2 T , the signature
of 	l(T) and	u(T) is
. If the following propositions
A1 through A4 are satisfied for all trace structuresT , T1
andT2 in T , then	 is a conservative approximation.

A1. 	u(T1 k T2) � 	u(T1) k 	u(T2).

A2. 	u(proj(B)(T)) � proj(B)(u(T)).

A3. 	u(rename(r)(T)) � rename(r)(u(T)).

A4. If 	u(T1) � 	l(T2), thenT1 � T2.

Theorem 26. Let AC = (CC ; T) andA0
C

= (C0
C
; T 0)

be trace structure algebras, and let	 = (l;	u) be a
conservative approximation fromAC to A0

C
. If 	0 =

(0
l
;	0u) is such that	0

l
(T) � 	l(T) and	u(T) �

	0u(T) for all T 2 T , then	0 is a conservative approxi-
mation.

Theorem 27. Let AC = (CC ; T), A0
C

= (C0
C
; T 0) and

A00
C

= (C00
C
; T 00) be trace structure algebras. Also, let

	 = (l;	u) and	0 = (0
l
;	0u) be conservative ap-

proximations fromAC to A0
C

and fromA0
C

toA00
C

, re-
spectively. Then	00 = (00

l
;	00u) is a conservative ap-

proximation fromAC toA00
C

, where

	00l (T) = 	0l(l(T))

	00u (T) = 	0u(u(T)):

3.3.1 Homomorphisms on Trace Algebras

We can define the notions of homomorphisms and isomor-
phisms between trace algebras. A homomorphism com-
mutes withrenameandproj; also, if x is a trace with al-
phabetA, then a homomorphism mapsx to a trace with al-
phabetA. Thus, our definition of a homomorphism is quite
standard. We will show in the next section how homomor-
phisms can be used to construct conservative approxima-
tions. An isomorphism is a homomorphism that is also a
bijection. It is also possible to allow homomorphisms that
can change the alphabet of a trace, but that is beyond the
scope of this paper.

Definition 28. Let CC andC0
C

be trace algebras. Leth be
a function fromBC to B0

C
such that for all alphabetsA,

if x 2 BC(A), thenh(x) 2 B0
C
(A). The functionh is a

homomorphism fromCC to C0
C

iff

h(rename(r)(x)) = rename(r)(h(x));

h(proj(B)(x)) = proj(B)(h(x)):

Here is a simple example of a homomorphism between
trace algebras. It involves two of the trace algebras de-
scribed in section 3.1.1. For all alphabetsA, let h map
traces inA1 to traces in2A such that

h(x) = fa : 9n [a = x(n)]g:

It is easy to show thath is a homomorphism. Applying
h to a trace abstracts away information about the order of
events; all that remains is the set of actions that occurred
one or more times.

Definition 29. A homomorphism fromCC to C0
C

is aniso-
morphismiff it is a bijection. CC areC0

C
isomorphiciff

there exists an isomorphism fromCC to C0
C

.

Clearly if h is an isomorphism, then so ish�1. Also, an
isomorphism on trace algebras induces an isomorphism on
trace structure algebras, as follows.

Corollary 30. Let h be an isomorphism fromCC to C0
C

.
LetAC = (CC ; T) andA0

C
= (C0

C
; T 0) be trace struc-

ture algebras such that

(
; P) 2 T) (
; h(P)) 2 T 0

(
; P 0) 2 T 0) 9(
; P) 2 T [P 0 = h(P)]:

ThenAC andA0
C

are isomorphic.

3.3.2 Approximations Induced by Homomorphisms

Let h be a trace algebra homomorphism fromCC to C0
C

,
and letx andx0 be traces inCC andC0

C
, respectively, such

thath(x) = x0. Intuitively, the tracex0 is an abstraction of
any tracey such thath(y) = x0. Thus,x0 can be thought
of as representing the set of all suchy. Similarly, a set
X 0 of traces inC0

C
can be thought of as representing the

largest setY such thath(Y) = X 0, whereh is naturally
extended to sets of traces. Ifh(X) = X 0, thenX � Y ,
soX 0 represents a kind of upper bound on the setX . This
motivates using the function	u such that

	u(T) = (
; h(P))

as the upper bound in a conservative approximation from a
trace structure algebra overCC to a trace structure algebra
overC0

C
. A sufficient condition for a corresponding lower

12

bound is: ifx 62 P , thenh(x) is not in the set of possible
traces of	l(T). This leads to the definition

	l(T) = (
; h(P)� h(BC(A)� P)):

The conservative approximation	 = (l;	u) is an exam-
ple of aconservative approximation induced byh, which is
formalized in the definition below using a slightly tighter
lower bound for	l. Using this concept, if one proves that
h is a homomorphism between two trace algebras (which
is often quite easy), then one obtains a conservative ap-
proximation between trace structures with no additional ef-
fort. A conservative approximation induced by a homo-
morphismh is closely related to homomorphisms on!-
automata [9].

Definition 31. Let h be a homomorphism fromCC to C0
C

,
and letAC = (CC ; T) andA0

C
= (C0

C
; T 0) be trace

structure algebras. We naturally extendh to sets of
traces. Assume	u and	l are functions fromT to T 0

such that

	u(T) � (
; h(P))

	l(T) � (
; h(P)� h(Y � P));

whereY is the union of theX � BC(A) such that

(
;X) 2 T ^ h(X) � h(P):

It can be shown that	 = (l;	u) is a conservative
approximation fromAC toA0

C
, which we call aconser-

vative approximation induced byh fromAC to A0
C

. If
the two set inequalities above are replaced by equalities,
then	 is called thetightestconservative approximation
induced byh fromAC toA0

C
.

Notice thath(P)�h(BC(A)�P) is a subset ofh(P)�
h(Y � P), so

	u(T) = (
; h(P))

	l(T) = (
; h(P)� h(BC(A)� P))

(as described at the beginning of this section) is an exam-
ple of a conservative approximation induced byh. This
conservative approximation is independent ofT ; the tight-
est conservative approximation induced byh depends on
bothh andT .

Definition 31 defines both the class of conservative ap-
proximations induced by a homomorphismh and a dis-
tinguished approximation in that class, which we call the
tightest conservative approximation induced byh. It is ob-
vious that this distinguished approximation is in fact the
tightest approximation within the class we defined. That is,
if 	 is the tightest conservative approximation induced by
h and	0 is any conservative approximation in induced by

h, then	0
l
(T) � 	l(T) and	u(T) � 	0u(T) for any trace

structureT .
However, it is not immediately clear that class of ap-

proximations we defined includes all conservative approx-
imations that might intuitively be “induced” byh. If there
is a larger class of conservative approximations “induced”
by h, then it might include an approximation that is tighter
then the tightest one given in definition 31. We provide ev-
idence that this is not the case in section 3.3.3, where we
consider theinverseof a conservative approximation. This
result depends on the particular setY used in definition 31,
and would not be true if we replacedY by a simpler ex-
pression such asBC(A).

A tracex is in Y iff it is contained in a trace structure
T1 2 T such thath(P1) � h(P). If T1 6� T , it is required
that	u(T1) 6� 	l(T). In this case, there exists a tracex 2
P1�P , which impliesx 2 Y �P . Thus,h(x) is in	u(T1)
but not in	l(T), so the requirement is satisfied. On the
other hand, if there is noT1 2 T such thath(P1) � h(P)
andT1 6� T , thenY = P . In this case,	l(T) = 	u(T),
showing that the particular definition ofY in definition 31
makes	 a tighter conservative approximation than it would
otherwise be.

It is straightforward to take the general notion of a con-
servative approximation induced by a homomorphism, and
apply it to specific models. Simply construct trace algebras
C andC0, and a homomorphismh from C to C0. Recall that
these trace algebras act as models of individual behaviors.
Using the results described so far in this section (without
any additional proofs), one can construct the trace structure
algebrasA = (C; T) andA0 = (C0; T 0), and a conserva-
tive approximation	 induced byh (whereT andT 0 are
the sets of all trace structures overC andC0, respectively).
Thus, one need only construct two models of individual be-
haviors and a homomorphism between them to obtain two
trace structure models along with a conservative approxi-
mation between the trace structure models.

3.3.3 Inverses of Conservative Approximations

Let 	 = (l;	u) be a conservative approximation from
AC = (CC ; T) toA0

C
= (C0

C
; T 0). LetT 2 T andT 0 2 T 0

be such thatT 0 = 	u(T). As we have discussed,T 0 rep-
resents a kind of upper bound onT . It is natural to ask
whether there is a trace structure inT that is represented
exactly byT 0 rather than just being bounded byT 0. If no
trace structure inT can be represented exactly, then	 is
abstracting away too much information to be of much use.
If every trace structure inT can be represented exactly,
then	l and	u are equal and are isomorphisms fromAC

to A0
C

. These extreme cases illustrate that the amount of
abstraction in	 is related to what trace structuresT are
represented exactly by	u(T) and	l(T).

13

To formalize what it means to be represented exactly in
this context, we define the inverse of the conservative ap-
proximation	. Normal notions of the inverse of a function
are not adequate for this purpose, since	 is a pair of func-
tions. We handle this by only considering thoseT 2 T for
which	l(T) and	u(T) have the same value, call itT 0. In-
tuitively, T 0 representsT exactly in this case; the key prop-
erty of the inverse of	 (written	inv) is that	inv (T 0) = T .
If 	l(T) 6= 	u(T), thenT is not represented exactly in
A0
C

. In this case,T is not in the image of	inv . Character-
izing when	inv (T 0) is defined (and what its value is) helps
to show what trace structures inT can be represented ex-
actly (not just conservatively) by trace structures inT 0. The
remainder of this section formalizes the idea of the inverse
of a conservative approximation, and characterizes the in-
verse of the tightest conservative approximation induced by
a homomorphismh.

Lemma 32. Let 	 = (l;	u) be a conservative approx-
imation fromAC = (CC ; T) to A0

C
= (C0

C
; T 0). For

everyT 0 2 T 0, there is at most oneT 2 T such that
	l(T) = T 0 and	u(T) = T 0.

Definition 33. Let 	 = (l;	u) be a conservative ap-
proximation fromAC = (CC ; T) to A0

C
= (C0

C
; T 0).

Let T1 be the set ofT 2 T such that	l(T) = 	u(T).
Let T 01 be the image ofT1 under	l. Theinverse of	 is
the partial function	inv with domainT 0 and codomain
T that is defined for allT 0 2 T 01 so that	inv (T 0) = T ,
whereT is the unique (by lemma 32 and the defini-
tion of T 01) trace structure such that	l(T) = T 0 and
	u(T) = T 0.

Theorem 34. Let h be a trace algebra homomorphism
from CC to C0

C
, and let	 = (l;	u) be the tightest

conservative approximation induced byh from AC =
(CC ; T) toA0

C
= (C0

C
; T 0). If T 0 2 T 0 is such that the

set

Z = fX � BC(A
0) : (
0; X) 2 T ^ h(X) � P 0g;

contains a unique maximal (by inclusion) elementP for
whichP 0 = h(P), then	inv (T 0) = (
0; P); otherwise,
	inv (T

0) is undefined.

The above theorem completely characterizes the in-
verse of any tightest conservative approximation induced
by a homomorphismh. The final theorem of this section
specializes this result to trace structures algebras that are
closed under finite and infinite unions,a property enjoyed
by many of the trace structure algebras we consider. This
specialization results in a simpler characterization of when
	inv is defined. In particular,	inv (T 0) is defined iff there
exists aT 2 T such that	u(T) = T 0. This is a strong

result. Clearly the existence of such aT is a necessary con-
dition for the inverse of any conservative approximation to
be defined onT 0; whenT is closed under finite and infinite
unions, and	 is the tightest conservative approximation
induced by a homomorphism, it is also a sufficient condi-
tion.

Definition 35. Let AC = (CC ; T) be a trace structure al-
gebra. We sayAC is closed under finite (infinite) unions
iff for every signature
 the set

fP � BC(A) : (
; P) 2 T g

is closed under finite (infinite) unions.

Theorem 36. Let h be a trace algebra homomorphism
from CC to C0

C
, and let	 = (l;	u) be the tightest

conservative approximation induced byh from AC =
(CC ; T) to A0

C
= (C0

C
; T 0). AssumeAC is closed un-

der finite and infinite unions. IfT 0 2 T 0 is such that
	u(T) = T 0 for someT 2 T , then	inv (T 0) is defined
and its set of possible traces is

[
fX � BC(A

0) : (
0; X) 2 T ^ h(X) � P 0g;

otherwise,	inv (T 0) is undefined.

3.3.4 Modeling Heterogeneous Systems

Our method for modeling homogeneous systems makes
use of the inverses of conservative approximations. Given
models of agents in two different models of computation, a
formal semantics of their parallel composition can be con-
structed as follows.

1. Construct trace algebrasC0
C

and TAlg00
C

(def. 4) ap-
propriate for the two different models of computation.
These algebras are models of individual behaviors (or
executions), rather than agents. Thus, they should be
relatively easy to construct.

2. Construct trace structure algebrasA0
C

= (C0
C
; T 0) and

A00
C
= (C00

C
; T 00) (def. 13). These algebras are models of

agents. The generic theorems of section 3.2.2 simplify
their construction from the corresponding trace algebras
C0
C

andC00
C

.

3. Within the trace structure algebrasA0
C

andA00
C

, con-
struct trace structuresT 0 andT 00 for the two agents. No-
tice that these first three steps are only necessary to bring
the agent models into our framework. If the agent mod-
els were originally constructed within the framework as
trace structures, then we can begin with step 4.

14

4. Construct a third trace algebraCC that is at a lower level
of abstraction thanC0

C
andTAlg00

C
and can serve as the

basis for a unifying model of computation.

5. Use the theorems of section 3.2.2 to construct a trace
structure algebraAC = (CC ; T) from the trace algebra
CC .

6. Construct trace algebra homomorphismsh0 from CC to
C0
C

andh00 from CC to C00
C

(def. 28).

7. The homomorphismsh0 andh00 induce conservative ap-
proximations	0 and 	00 (def. 31), which map trace
structures fromA toA0 andA00, respectively.

8. The inverses of the above conservative approximations,
	0
inv

and	00
inv

(def. 33), map trace structures fromA0

andA00, respectively, to the unifying semantic domain
A. There, the parallel composition of the original agent
models is

	0inv (T
0) k 	00inv (T

00):

We can also define what it means for one agent model to
be a refinement of another. LetT andT 0 be trace structures
in a trace structure algebraAC . ThenT is a refinement of
T 0 iff T � T 0 (def. 17).

A more interesting case is whenT andT 0 are in different
trace structure algebrasAC andA0

C
, respectively. This can

happen, for example, ifA0
C

is a functional model andAC

is a more detailed model used to introduce timing and/or
power constraints. Given an inverse conservative approxi-
mation	inv fromA0

C
toAC , thenT is a refinement ofT 0

iff

T � 	inv (T
0):

3.4 Summary

In our framework, each agent is represented by atrace
structure,which is an ordered pair of a signature
 (the in-
terface of the agent) and a setP of possible traces.Each
trace inP represents a possible behavior of the agent. Both
implementations and specifications are represented by trace
structures. One trace structure satisfies the specification
given by another trace structure iff the set of possible traces
of the first is contained in the set of possible traces of the
second. This notion oftrace set containmentis a gener-
alization of standard verification techniques based onlan-
guage containment.

The above description of trace structures does not say
what kinds of mathematical objects are used as traces. In
normal language containment methods, a trace is a finite or
infinite sequence, so a set of traces is a formal language.
We want to be much more general than this, because we

do not want our use of trace structures to limit the kinds
of models we can consider. On the other hand, we do not
want to allow completely arbitrary traces because we want
to have general theorems that are true of all trace structures
(so the theorems do not have to be reproven every time a
new class of trace structures is constructed).

We satisfy these constraints by using the idea of atrace
algebra.A trace algebra (def. 4) is an abstract algebra with
a set of traces as its domain, where each trace is interpreted
as an abstraction of a physical behavior. There are two op-
erations in a trace algebra: projection and renaming. These
operations must satisfy axioms T1 through T8, theaxioms
of trace algebra.Other than these axioms, no other restric-
tions are placed on what kinds of mathematical objects can
be used as traces in a trace algebra.

Once trace algebra is formalized, it is possible to formal-
ize trace structures. The set oftrace structures(def. 11)
over a trace algebraC is the set of ordered pairs(
; P),
where
 is a signature andP is a subset of the traces ofC
with the same alphabet (i.e., set of signals) as
. A trace
structure algebrais an ordered pairA = (C; T), whereC is
a trace algebra andT is a subset of the set of trace structures
overC. The operations of parallel composition, projection
and renaming are defined on trace structures inT using the
operations of projection and renaming on individual traces
in C (def. 14, def. 15 and def. 16). The set of trace struc-
turesT must be closed under these operations. The axioms
of trace algebra are quite weak, but they are strong enough
to guarantee that the operations on trace structures satisfy
several useful identities.

Using these ideas to construct agent models only re-
quires constructing a domain of traces, along with projec-
tion and renaming operations, and proving that they sat-
isfy the axioms of trace algebra. A trace structure algebra
can be constructed from the trace algebra without having
to prove any additional theorems. Thus, our general results
greatly simplify the task of constructing new agent models.

One of the uses of being able to easily build new agent
models is to study the relationships between models that
can be efficiently mechanized and models that accurately
represent physical reality. Ideally, correctness proofs (of
trace set containment) in the efficient model would be
logically equivalent to correctness proofs in the accurate
model, but this is rarely the case. The best we can usu-
ally do is to have correctness in the efficient model im-
ply correctness in the accurate model. This is formalized
by using aconservative approximationfrom the accurate
model to the efficient model (def. 24). LetAC = (CC ; T)
andA0

C
= (C0

C
; T 0) be trace structure algebras. A con-

servative approximation fromAC toA0
C

is an ordered pair
	 = (l;	u), where	l and	u are functions fromT to
T 0. For a given trace structureT in AC , the trace structure
	l(T) is a kind of lower bound ofT , while 	u(T) is an

15

upper bound (relative to trace set containment). By defi-
nition, if a verification problem inCC is converted into a
verification problem inC0

C
by applying a conservative ap-

proximation	, then a correctness proof in the latter prob-
lem implies a correctness result in the former problem.

A general method for constructing conservative ap-
proximations involveshomomorphisms on trace algebras
(def. 28). A homomorphism fromC to C0 is just a function
from the traces ofC to the traces ofC0 that satisfies the stan-
dard homomorphism laws for the operations of trace alge-
bra. A conservative approximation induced byh (def. 31)
is a conservative approximation fromAC = (CC ; T) to
A0
C

= (C0
C
; T 0), for appropriateT andT 0. To take advan-

tage of these results we need only construct the appropriate
trace algebras and homomorphisms; the trace structure al-
gebras and the conservative approximations are obtained
without any additional effort.

We also showed how our framework can be used to
model heterogeneous systems. Inverses of conservative ap-
proximations (def. 33) can be used to embed traces struc-
tures from two different models of computation into a uni-
fying trace structure algebra, and to check refinement be-
tween different models of computation.

4 Application

[This section needs to be updated.]

4.1 Overview

In this section we present an application of our frame-
work in which we explore how we can characterize dif-
ferent models of computation in terms of their underly-
ing trace structures. In particular we will be looking at
three different models with farily different properties. We
will consider Kahn Process Networks, which are monotone
stream based functions; synchronous or finite state systems,
which are sequence based functions; and discrete time sys-
tems, which are functions on quantitative evenly spaced se-
quences. Then we will consider abstractions from the dis-
crete time models to the other two models and show how to
study the interaction of synchronous and Kahn processes.

4.2 Kahn Process Networks

Kahn Process Networks are characterized by a function
that takes a stream of value from each of the inputs, and
produces streams of values to each of the outputs. Our
characterization proceeds in two steps. First we define how
to represent a single behavior of the process (that is, the
fact that a particular set of streams at the input is translated
into a particular set of streams at the output); then we con-
sider the restrictions that must be imposed on a collection

of these behaviors for it to comply with the definition of a
Kahn Process.

As said before, a Kahn Process operates on streams. As-
sume, but without loss of generality, that all inputs and all
outputs can take values from a setV . Then we can rep-
resent the set of streams at a particular input or output as a
sequence of values fromV . The set of the finite and infinite
sequences fromV is denoted asV �. A behavior of a Kahn
Process is composed by a stream for each of the inputs and
each of the outputs. LetA be the set of inputs and outputs
for a process (we also callA thesignatureof the proces).
Then a behavior, ortraceof a Kahn Process is a function
f : A! V �.

For the purpose of composing different Kahn Processes,
we are interested in the operation of projecting some of the
inputs out of a trace. This is useful to restrict the visibil-
ity of some signals that might be considered internal to a
composition. We define the projection operation for Kahn
Processes as follows: ifB is a set of inputs and outputs,
andB � A then the projectionproj(B)(f) of a trace
f : A! V � is defined as the restrictionf jB of the function
f :

proj(B)(f) = f jB

In order for the composition to work correctly, the pro-
jection operation must enjoy a few properties. One in par-
ticular is the following diamond property:

Theorem 37. If f : A! V I andf 0 : A0 ! V � are traces
such thatproj(A [A0)(f) = proj(A [A0)(f 0), then
for all A00 there existsf 00 such thatf = proj(A)(f 00)
andf 0 = proj(A0)(f 00).

Proof: The proof is particularly simple once we take into
account the definition of projection. LetA00 be such that
A [A0 � A00. Now construct a functionf 00 : A00 ! V �

such thatf 00 agrees withf on A and agrees withf 0 on
A0. The function so constructed is well defined because,
by assumption, we know thatf andf 0 agree on the com-
mon elements ofA andA0. This is enough to satisfy the
requirements of the theorem.

A Kahn Process can now be defined simply as a set of
tracesP (a trace structure) defined for a particular alphabet
(the set of inputs and outputs)A. However, not all set of
traces are valid Kahn Processes. In fact, a Kahn Process
must befunctional in the sense that the same output se-
quences must be obtained from the same input sequences.
Note that in our definition the setA doesn’t distinguish be-
tween inputs and outputs. Once this distinction is enacted,
it is easy to define functional processes by requiring that if
two trace structuresT andT 0 have the same input traces,
thenT = T 0.

The compositionP 00 of a processP and another process
P 0, written P 00 = P jj P 0, can be defined relative to the

16

operation of projection as follows:

P 00 = ff : A00 ! V � j proj(A)(f) 2 P

^ proj(A0)(f) 2 P 0g

This definition ensures that the projection of the composi-
tion P 00 is contained in the original processes being com-
posed, and that it is maximal to that respect.

4.3 Synchronous Networks

We define a synchronous process as one that processes
all of its inputs and all of its outputs as an atomic entity.
This is the case, for example, for finite state machines. The
definition of the traces in this case differs slightly from the
previous case because we want a structure that can repre-
sent the simultaneity of the events at the interface of a pro-
cess. As before, we define the structure for a synchronous
process in two steps.

A synchronous process operates on sequences of values
that are synchronized. Consider the set of valuesV and
the set of inputs and outputsA as before. Then the set of
value that can be observed at any synchronization point (a
clock edge in the world of finite state machines) is given
by a functiong : A ! V . We are interested in a sequence
of these values. Hence a trace in this case is an element of
the set of sequences(A ! V)�. The operation of projec-
tion is defined in a similar way and consists in restricting
the domain of each of the functions in the sequence to a
smaller set of elements. Hence, if we denote with< g >

a sequence of functions, and forB � A, we define the
operation of projection as

proj(B)(< g >) =< gjB > :

As it was done in the case of Kahn Processes, we verify
that the operation of projection satisfies the diamond prop-
erty. This is easy to show given the assumptions and the
definitions, and is not shown here for brevity.

A synchronous process can now be defined just as a set
of traces. As in the previous case, we might impose restric-
tions on the models. For instance, we might require that
only the regular sequences be considered (in case we really
want to represent finite state systems), and that the output
is determinate once the input is. The composition is once
again defined in terms of the projection operation as before,
so we don’t need to repeat it here.

4.4 Discrete Time Networks

The last example is a version of discrete time model.
In a discrete time model a process samples the sets of in-
puts and produces a set of outputs at discrete instants in
time. Moreover, the instants in times are characterized by

their distance, i.e. they form a metric space. Without loss
of generality, we will consider discrete time models where
the model of time is represented by the positive integersN.
In practice, the integers represent time in a particular unit,
for example picoseconds. Note also that we are consider-
ing a regular sample time, while in general a discrete time
model may involve sampling at irregular times (for exam-
ple the sampling time may be adjusted according to the rate
of variations of values in the signals).

In the discrete time model each input and output signal
assumes a value at each time stamp. Hence, for each time
stamp the trace is represented by a functionA! V , while
the trace for the entire time is represented by an additional
functionN! (A! V).

As in the other two cases we can define the operation
of projection on traces by just restricting the function to a
subset of the domainA:

proj(B)(N ! g) =N! gjB

Consequently we can define the operation of composition
in terms of the projection of traces.

4.5 Refinement

In this example we want to use the discrete time model
as a common refinement of both the Kahn Processes and
the synchronous processes. Then we will study the effect
of composing Kahn and synchronous processes as a conse-
quence of the definition of composition at the level of the
discrete time model.

Instead of defining the refinement, we will define the ab-
straction from the discrete time to the other two models. In
our case the operation of abstraction consists of defining a
mapping from trace structures in one model into trace struc-
tures in the other model. This mapping can be obtained by
naturally extending to sets a corresponding mapping on in-
dividual traces. In addition we require that the mapping
on individual traces preserve the operation of projection,
that is it is a homomorphism on the set of traces of the two
models.

Let’s first consider the abstraction from discrete time
processes to synchronous processes. In the discrete time
world we must first define how the sampled time relates
to the interval in the sequences of the synchronous model.
To do that, the discrete time models needs a notion “clock
tick”: for example, we might introduce an additional sig-
nal (the clock) in the signature of the process that can
assume only two values, denoted> and?; we interpret
these two values to indicate whether the time stamp cor-
responds to a synchronous instant, or whether the corre-
sponding value should be discarded because it represents a
non-visible behavior between synchronous instants. Then
the homomorphism between the traces can be defined as

17

the function that takes a traceN ! (A ! V) in the ex-
tended signatureA (that includes the clock signal) into the
trace(A ! V)� where the additional signals are dropped
and the sequence is constructed by only considering the in-
stants in the discrete model where the clock signal is (for
example)>. We denote with�1 the function that takes a
discrete time trace structure and produces the correspond-
ing synchronous trace structure. It is also easy to show that
this function preserves the operation of projection. Figure 4
shows an example of the application of this abstraction.

a b c d e f

g h j k l m
n o p q r s

a c d f

g j k m
n p q s

Figure 4. Abstraction of discrete into syn-
chronous time

Notice how several different trace structures at the level
of discrete time can be mapped to the same synchronous
trace structure because of the loss of information due to the
simpler timing model. Conversely, a single synchronous
trace structure corresponds to several discrete time trace
structures given the different choices of implementation.

Let’s now consider the correspondence between discrete
time traces and Kahn Process traces. Here the discrete time
model need a notion of arrival of a new piece of data. In
this example we will take the convention that a new piece
of data (or token) arrives whenever the value on a partic-
ular signal changes. In this way the value itself encodes
the information that a new element of a stream is present
at the input (or is generated at the output). Here the ad-
vancement of the computation (the addition of a new token
in a stream) is not centrally regulated but depends on the
individual signals. We can therefore define a mapping that
takes a traceN! (A! V) (call this functionm(i; a) into
the traceA ! V �, call thisf(a), where for eacha 2 A,
the functionf(a) is obtained by dropping the repeated val-
ues of the corresponding sequencem(i; a) over the index
variablei. We denote with�2 the function that takes a dis-
crete time trace structure and produces the corresponding
trace structure in the Kahn Process model. Again, it is also
easy to show that this function preserves the operation of
projection. An example is shown in Figure 5.

a b b c e e

g j l m
n o p r s

a

g j m
n p s

g j

b c e

l

p

o r

Figure 5. Abstraction of discrete into Kahn
Processes

The operations defined in this section are not the only
possible abstractions of discrete time into synchronous or
Kahn Process models. Indeed, we could have defined dif-
ferent mappings with different properties. As we will see
later, a different refinement gives rise to a different notion
of composition.

4.6 Refinement driven composition

We now consider the problem of composing two ob-
jects: a trace structureT1 of the synchronous model and
a trace structureT2 of the Kahn Process model. Because
these trace structures are drawn from different algebras we
don’t have a definition of a composition. And in fact, there
are several different, and all valid, ways that a composi-
tion could be defined. We prefer to define this operation
in terms of the common refined discrete time model where
composition is defined. As noted above, a different refine-
ment would lead to a different composition of the two mod-
els.

We proceed as follows. LetT 01 be a discrete time
model such that�1(T

0
1) = T1, and letT 02 be a discrete

time model such that�2(T
0
2) = T2. BecauseT 01 andT 02

are discrete time models, we can obtain their composition
V 0 = T1 jj T2 as defined in the previous section. We now
consider the minimalV 01 � T 01 andV 02 � T 02 such that the
composition ofV 01 andV 02 isV 0 (minimality is inteded with
respect to trace containment). These objects represent the
behaviors ofT 01 andT 02 that are mutually compatible and
concur in creating a behavior of the compound objectV 0.
In other words,V 01 andV 02 represent the behaviors ofT 01
andT 02 as constrained by the composition. This procedure
is represented graphically in Figure 6.

We can now abstract these two objects and obtain
�1(V

0
1) = V1 � T1 and�2(V

0
2) = V2 � T2. Repeating

this procedure for allT 01 such that�1(T
0
1) = T1 (similarly

for T2), and taking the intersection of all the results, we
obtainW1 � T1 andW2 � T2. These objects represent

18

T2
’

V1
’

Φ1

T2 V2

T1
’

T1

V2
’

V’

Φ2

V1

Figure 6. Refinement driven composition

at the higher level of abstraction the constrained behaviors
that are due to the effect of the composition.

The result of applying this procedure is not to obtain a
new compound object, as such object could not possibly be
defined in either the synchronous or the kahn Process do-
main alone. Rather we act as to obtain in each domain the
restricted behavior that is caused by the existence of an in-
teraction. The particular effect of the interaction can only
be understood at a lower level of abstraction that can talk
about both models at the same time. Hence the composition
is not only dependent upon the definition of composition at
the lower level, but also on the particular process of refine-
ment employed to derive the new model.

It is instructive to note that a more direct relation be-
tween synchronous trace structures and Kahn Process trace
structures could be obtained by observing that both mod-
els actually operate on sequences of values. The intuitive
way of combining these two models would therefore be to
convert each sequence in one model into a corresponding,
identical, sequence in the other. This straighforward con-
version however fails to acknowledge the fact that compu-
tation in the Kahn Process model advances on individual
signals, while the synchronous model advances on all sig-
nals at the same time. The result is a different notion of
composition. This is not to say that this different notion of
composition is wrong or not valid; it shows that there are
possibly many different ways of combining heterogeneous
models that result in different underlying properties. In this
section we have shown a methodology that derives a notion
of composition that is consistent with the chosen notion of
refinement to a common model.

4.7 A lattice of models

The simple example shown in this section can be carried
forward to include a set of different models. This generates
a framework of models in which the notion of refinement
is used to determine the interaction of those that are not

directly related. That is, if we can always find a common
refinement. Because the relation of refinement is a partial
order in this set, we can organize our models in their order
of implementation details; by lifting this set with a model
that can refine (perhaps transitively by going through other
models) all other models, we satisfy that requirement and
we can define a refinement driven composition for all pairs
of models.

In addition it is also easy to provide a model that con-
tains no information into which every other model could
be abstracted. By doing this we generate a lattice struc-
ture, as the one shown in Figure 7. In a lattice structure we

8

Φ
Φ Φ

Φ
Φ

Φ

Φ

Φ

Φ

3

5

4

7

6

9

1
2

Figure 7. A lattice of models

can transitively apply the techniques presented above. For
example, the refinement driven composition can be carried
out on models that can only indirectly be put in relation to
a common refinement by recursively applying the transfor-
mation until the greatest lower bound is found.

5 Conclusions

To be written.

References

[1] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Ju-
recska, L. Lavagno, C. Passerone, A. Sangiovanni-
Vincentelli, E. Sentovich, K. Suzuki, and B. Tab-
bara. Hardware-Software Co-Design of Embedded
Systems: The Polis Approach. Kluwer Academic
Press, June 1997.

[2] J. R. Burch. Trace Algebra for Automatic Verifica-
tion of Real-Time Concurrent Systems. PhD thesis,
School of Computer Science, Carnegie Mellon Uni-
versity, Aug. 1992. Technical Report CMU-CS-92-
179.

19

[3] J. W. de Bakker, W.-P. de Roever, and G. Rozenberg,
editors.Linear Time, Branching Time and Partial Or-
der in Logics and Models for Concurrency, volume
354 ofLecture Notes in Computer Science. Springer-
Verlag, 1989.

[4] D. L. Dill. Trace Theory for Automatic Hierarchi-
cal Verification of Speed-Independent Circuits. ACM
Distinguished Dissertations. MIT Press, 1989.

[5] A. L. S.-V. E. A. Lee. A framework for comparing
models of computation.IEEE Trans. Comput.-Aided
Design Integrated Circuits, 17(12):1217–1229, Dec.
1998.

[6] S. Edwards, L. Lavagno, E. Lee, and A. Sangiovanni-
Vincentelli. Design of embedded systems: Formal
models, validation, and synthesis.Proceedings of the
IEEE, 85(3):366–390, Mar. 1997.

[7] J. D. II, M. Goel, C. Hylands, B. Kienhuis, E. A. Lee,
J. Liu, X. Liu, L. Muliadi, S. Neuendorffer, J. Reekie,
N. Smyth, J. Tsay, and Y. Xiong. Overview of the
ptolemy project. ERL Technical Report UCB/ERL
No. M99/37, Dept. EECS, University of California,
Berkeley, July 1999.

[8] J. D. II, C. Hylands, B. Kienhuis, E. A. Lee, J. Liu,
X. ojun Liu, L. Muliadi, S. Neuendorffer, J. Tsay,
B. Vogel, and Y. Xiong. Heterogeneous concurrent
modeling and design in java. Technical Memorandum
UCB/ERL M01/12, EECS, University of California,
Berkeley, Mar. 1986.

[9] R. P. Kurshan. Computer-Aided Verification of Co-
ordinating Processes: The Automata-Theoretic Ap-
proach. Princeton University Press, 1995.

[10] A. Mazurkiewicz. Basic notions of trace theory. In
de Bakker et al. [3].

[11] V. R. Pratt. Modelling concurrency with partial or-
ders.International Journal of Parallel Programming,
15(1):33–71, Feb. 1986.

[12] J. Rowson and A. Sangiovanni-Vincentelli. Felix ini-
tiative pursues new co-design methodology.Elec-
tronic Engineering Times, pages 50, 51, 74, June
1998.

20

