Principles on Platform-Based Design

(as summarized by Alberto Sangiovanni Vincentelli)

Global Considerations

· Electronic industry is disaggregating from a vertically oriented model into a horizontally oriented one. Product specification, IP creation, design assembly and manufacturing are no longer taking place in the same organization. Integration of the supply chain is a serious problem.

· Time-to-market pressure, design complexity and cost of ownership for masks are driving towards more disciplined design styles that favor design re-use and correct-the-first-time implementations.
· The quest for flexibility in embedded system design coupled with the previous considerations is pushing the electronic industry towards programmable solutions for a larger class of designs than ever before.
· The advent of advanced MEMS, ultra-high-speed clocks and broadband RF requires system design methods that cross the boundaries between mechanical, chemical and electronic domains and that include wireless networks distributed circuit design with 3-D spatial (E&M) effects.
· Energy consumption is a major concern.
· Safety critical and military applications are major drivers for a new breed of design methods.
· Building reliable and fault tolerant systems out of potentially faulty and unreliable components, is a necessity.
· Design methodology is the focus: design infrastructure and tools must be developed in synchrony with design methodology.

[image: image1.wmf]GSRC Design

Methods

Electronic

Design

Landscape:

Disaggregation

Product Definition

Product Definition

IP

IP

Design And Assembly

Design And Assembly

Manufacturing and Test

Manufacturing and Test

Platforms

Fabrics

Interfaces

Overarching Principles

· Integrating the design chain, limiting design iterations, reducing design and production costs requires formalizing design to an extent that has not been conceived before.
· Formalization must be supported by an encompassing design environment that stretches across several layers of abstraction from conception to silicon implementation.
· The basic tenets of the methodology are
· Regarding design as a “meeting-in-the-middle process” where successive refinements of specifications meet with abstractions of potential implementations;
· The identification of precisely defined layers where the refinement and abstraction process take place. The layers then support designs built upon them isolating from lower-level details but letting enough information transpire about lower levels of abstraction to allow design space exploration with a fairly accurate prediction of the properties of the final implementation. The information should be incorporated in appropriate parameters that annotate design choices at the present layer of abstraction.
· These layers of abstraction are called Platforms to stress solidity and opaqueness versus lower layers.
· The electronic design chain has articulation points that mark the separation among the different players in the market place. These articulation points must have the characteristics of a platform to allow for efficient communication among different players yielding significant reductions of design iterations across company and team boundaries.
· The articulation point that links system design and design implementation is referred to as the Application Programmer Interface (API) Platform that offers an abstract view of the micro-architecture upon which the design is going to be mapped. The abstract view must be decorated with a set of parameters that may include performance, power, cost and size that reflect the underlying implementation.
· The articulation point that links design implementation and manufacturing is referred to as the manufacturing platform that offers an abstract view of the manufacturing process. The platform must be decorated with physical parameters related to process technology to allow predicting the final characteristic of the manufactured product.
· Consecutive platforms, i.e., layers of abstractions, may be “glued” together to provide a platform stack. The Silicon Implementation Platform Stack is the stack of layers of abstraction that spans the micro-architecture platform and the manufacturing platform.

[image: image2.wmf]14

Platform Design Methodologies:

Platform Stacks

Application

Architecture

System

Platform Stack

Silicon Implementation

Silicon Implementation

Platform Stack

Architecture Platform

Instance

Silicom

Implementation

Platform Instance

· Mapping from one platform to the successive one is part of the refinement process and can be aided by a set of synthesis tools. For example, the code running on a programmable component can be automatically generated from a formal model of the design at the API level. The personalization of an FPGA can be automatically generated as well from a similar description at the API level. The layout of an ASIC in standard cell style can be generated as well from the same format by the use of logic synthesis tools coupled with automatic place and route.
· A platform is in general expressed as a collection of components (including communication primitives!). A design obtained by composing components of the platform is a platform instance. The essence of design re-use is the capability of assembling components with little or no effort. This presupposes the orthogonalization of communication versus the function of the blocks.
· Communication-based design is the set of methods, models and formalisms that allow this orthogonalization. In particular, components are encapsulated appropriately so that their correct composition can be ensured. The principles of communication-based design can be applied to any layer of abstraction, from sensor and actuator network design to layout.
· A platform provides a structure for a functional design to be decomposed into. The structure can be co-developed with the functional aspects of the design, thus yielding function-structure co-design. This aspect corresponds to the orthogonalization of the functional aspects of a design from its structural ones.
· The refinement process consists of mapping a functional description into a set of interconnected components. The result of the mapping process is an interconnection of embedded functionalities.

[image: image3.wmf]Methodology

Foundations

Refinement

Communication Based Design

Interface Synthesis

Latency Insensitivity

Architecture

Platform

API Platform

Platform Based Design

Function

Architecture

Computation

Communication

Orthogonalization

Of Concerns

Macro Ideas for Embedded

System Design

[image: image4.wmf]20

Communication

Refinement

Flow To Implementation

Mapping

System

Function

System

Architecture

Performance

Simulation

Functional

Simulation

2

1

3

4

Function

-

Architecture Co

-

Design

Application

Architecture

System

Platform Stack

Application (Function) Development

· Function development starts with the declarative description of the behavior of the design to be implemented.
· The initial description (specification) of the design must be executable and verifiable.
· The specification may include constraints the design has to satisfy in addition to the declarative description. Constraints are equations and inequalities involving parameters of the design at lower level of abstractions. They are used to guide the mapping process and exclude from consideration part of the implementation space. Constraints should be mapped into the lower levels of refinement possibly involving budgeting across components of the lower level design.
· Specifications may also involve formal properties the design has to satisfy. These properties may be considered invariants of the design across abstraction layers. They must be expressed so that formal analysis can be applied.
· Once the declarative design specification is converted into a collection of behaviors, concurrency among the behaviors must be appropriately captured. Concurrency has to be formally expressed to offer the possibility of carrying out formal implementation analysis and optimization.
· Function of the design must [have the ability to] be expressed with no implementation aspect. Implementation must be [allowed to be?] orthogonal to functionality. Function should not be pre-biased towards an implementation.
· Exchange of information among possibly concurrent behaviors constitutes communication. Communication should be orthogonal to component behavior description. No communication mechanism should be implicitly assumed in the description of the behavior of the components of a design. Communication is a first class citizen in the design process. At the functional level, communication implies that the components of the design have matching I/O domains. If this is not the case, behavior adaptors have to be included to make sure that communication is meaningful.
· Functional refinement, i.e., the design process that maps two consecutive abstraction layers in the functional space, must be formally defined so that verification of properties and optimization is made easier.
· Refinement exposes the fractal nature of design. Problems, models and issues appear to be the same at all abstraction layers. Each component of a functional refinement has a declarative description of its behavior that will be refined in a similar fashion.

· Components of a design are likely to be expressed with different formal models that reflect best their operation. The models of computation used to define the behavior of the design are hence heterogeneous.

· A design environment should offer full support for expressing declarative specifications, constraints and formal properties. It should also fully support successive refinement and formal semantics that allow the use of heterogeneous models of computation. Automatic synthesis and verification tools should be part of the environment whenever it is possible to do so.

· The output of this phase of development is the interconnection of behavioral components that will be mapped onto the micro-architecture platform. The final functional decomposition may be the result of a feedback loop between function design and micro-architecture platform and platform instance selection arising from the mapping phase.

· Functionality should also include the “testing function”, i.e., a set of abstract operations that are needed to verify the correct operations of the system.

[image: image5.wmf]3

Functional Decomposition

MPEG Decoder

VLD

IDCT

MC

DISPLAY

 EMBED PowerPoint.Slide.8 [image: image6.wmf]3

Refinement

VLD

IDCT

MC

DISPLAY

BA

IZ,IQ

BA

MEM

BA

MEM

M

M

M

M

M

M

M

VLD

IDCT

MC

DISPLAY

BA

IZ,IQ

BA

MEM

BA

MEM

M

M

M

M

REAS

BUS

M

SEG

M

REAS

M

M

SEG

M

SEG

M

REAS

Micro-Architecture Platform Development

· A micro-architecture platform is a family that is characterized by a library of components. Hence, re-use is intrinsically favored. Restricting the space of possible solutions to a platform allows automatic verification and synthesis.

· The component library determines the capabilities of the platform. The components can be programmable processors, analog functions such as A/D, D/A and PLLs, hardware macros, I/Os, reconfigurable hardware such as FPGAs and PLDs, and standard-cell blocks. The components must include communication primitives such as buses, networks and crossbar switches. A micro-architecture platform allows developing instances that are concurrent at all levels: concurrent hardware and software as well as concurrent heterogeneous and homogeneous multi-processor based micro-architectures.
· The programmable processors can implement almost any function (all computable functions if a Turing-machine equivalent architecture is used) if no constraints on performance and power are enforced. The FPGA blocks can also implement a large number of logic functions (but not all computable functions, they are not Turing equivalent!) but suffer again from limited performance, albeit not as limited as processor implementations, and high power consumption. I/Os analog blocks and hardware macros are on the other hand inflexible but much better performing. Finally, standard-cell blocks are in between: they are flexible, more effective than programmable solutions but they do require mask customization.

· The selection of a particular fixed set of components, a micro-architecture platform instance, out of the library is driven by the desire of maximizing profits by conjugating value delivered to the customers, manufacturing volume, time-to-market and NRE costs.

· The assembly process to build a micro-architecture platform instance must be as much as possible correct by construction. This implies that the components must be verified and that they are “encapsulated” from both functional and physical point of view. In addition, the interconnect components must be characterized and verified. The assembly process is then an instantiation of the communication-based design paradigm.

· Due to the dramatic increase of mask making costs, there is a strong interest in developing flexible, programmable micro-architecture platform instances that can be used in a number of similar applications.

· To build a successful platform, it is essential to base decisions on a set of representative benchmarks and projections about future requirements for the application space. Consequently, the trade-offs are more difficult to optimize than in the case of a micro-architecture design targeted for a single application.

· Design environments must allow exploring these trade-offs quickly and relatively accurately. This trade-off exploration involves concurrent optimization of software versus hardware solutions and, in an orthogonal dimension, analog and digital solution.

· Analog parameterized modules can be flexible components of platforms. High-level models that link performance, noise, power consumption, linearity and distortion to the parameters are essential to build analog APIs.

· Reliability and fault tolerance must be used as constraints and cost functions in the development of micro-architecture platforms.

· Once a micro-architecture platform has been determined, its API platform representation must be built to facilitate the mapping of behavior onto the platform.

· The representation includes parameters that summarize and characterize the range of performance, power consumption, cost and size of the corresponding micro-architecture. Indeed, the choice of the components is also driven by how easy it is to develop parameters that are fairly accurate representations of their physical implementation.

· Operating systems, compilers, logic synthesis tools help mapping behavior onto the micro-architecture platform. They must be optimized for the platform and provided to users as an essential part of the platform commercial offering.

· Components should also include components that are dedicated to the purpose of testing.

[image: image7.wmf]3

Architecture

Architecture: abstracted layers for smooth refinement

SYSTEM:

-

SW modules, HW

-

bounded FIFO,

lossy

channels

-

no address, bus independent

TRANSACTION:

-

address, data split in chunk

-

no detailed bus protocol or width

PHYSICAL:

-

specific bus protocol

-

detailed RTOS characterization

CPU

ASIC2

ASIC1

Sw1

Hardware

module

Sw2

Sw

I/F

Channel I/F

Wrappers

Hw

Bus I/F

C

-

Ctl

Channel

Ctl

B

-

I/F

CPU

-

IOs

e.g.

PIBus

32b

e.g.

OtherBus

64b...

C

-

Ctl

RTOS

[image: image8.wmf]38

A

View

of Platforms

Output Devices

Input devices

Micro

-

Architecture

Platform

I

O

Hardware

Software

network

Software Mapping

Tools

Application Software

Platform API

API

RTOS

BIOS

Device Drivers

Network

Communication

Compiler

Mapping Behavior to Micro-Architecture Platforms

· Mapping the behavior to a micro-architecture platform implies a limited design space exploration; limited to the library of components that defines the platform.

· The output of the mapping process is a refinement of the behavior of the design onto a set of physically implementable components.

· Mapping is facilitated by the API platform decorated with implementation parameters.

· The expression of the behavior in terms of the API platform determines the amount of concurrency and “services” that the micro-architecture platform has to offer to the behavior.

· Mapping implies hardware/software trade-offs. Design space exploration is driven by a set of constraints and costs on the design that involve at the specification level variables that cannot be evaluated unless an implementation micro-architecture is selected to support the behavior. Consequently, for each mapping, the implementation parameters of the micro-architecture platform allow the evaluation of the design constraints and costs for each choice of platform instance.

· The trade-off exploration has to be supported by appropriate mapping tools that link the API platform and the micro-architecture platform such as “compilers”, “operating systems” and partitioning tools.

· Compilers and operating systems are in general non-standard in the sense that potentially highly concurrent micro-architectures must be supported. Indeed, in absence of appropriate tools, the “performance-best” micro-architecture platform may require so much manual effort to map behavior onto it that design time and cost make it impractical.

· Compilers must evolve from the present view of mapping high-level languages to machine code within the same reference model (Turing machine) to software synthesis tools that map different models of computation such as Finite State Machines, Data Flows, and Discrete Event Systems into machine code of programmable components.

· Synthesis tools to map behavior to reconfigurable hardware must also be developed to support more general fabrics than the one supported today.

· Optimization tools can be used to select the parameters of the analog modules and generate the module implementation as a circuit.

· Synthesis may also include operating systems considering their role as mapping concurrent applications onto sequential processors or, better, if we consider multi-processor architectures, onto limited resources.

· Synthesis in the mapping process will create a discontinuity in the embedded system industry. Software implementer will be displaced in favor of application (or algorithm) developers in the same fashion as layout “artists” were displaced by circuit designers with automatic layout synthesis and logic designers by RTL engineers with automatic logic synthesis.

· Formal synthesis, i.e., based on mathematical transformations that are formally derived, is a correct-by-construction methodology. Given the complexity of embedded systems of interest to military and advanced consumer electronics, correct-by-construction is the ONLY way to solve the verification problem.

· Testing functions can also be mapped onto software or hardware. In particular, self-test can be assigned to one of the programmable components of the platform if capacity and timing constraints allow it, or it can be assigned to a specialized architecture.

· A design methodology and supporting tools must be develop for incremental changes in either functionality or constraints either from above (application requirements) or below (platform changes) to be rapidly accommodated.

· Predictability of physical implementation reduces substantially the need for expensive verification processes.

[image: image9.wmf]Mapping Behavior to Architecture

Architecture Platform Implementation

· Components of a micro-architecture platform, let them be programmable or specialized, have to be physically implemented. The same principles of platform-based communication-based design are usable for the implementation flow (fractal nature of design).

· Predictability of “implementations” is essential to maintain a clean flow where platforms can be effectively used to simplify and speed up the overall design process.

· The models that make the use of layers of abstraction useful are increasingly complex as the design moves down towards physical implementation and technology evolves.

· Regularity is an essential feature of implementations that make them predictable at higher levels of abstraction. Regular structures yield composable models for larger design modules that are based on these structures.

· Regularity favors the implementation of synthesis tools that can generate efficient circuit structures. Regularity can come in different flavors: for example, spatial regularity, circuit implementation homogeneity and pre-designed interconnect structures.

· Regularity improves re-usability both at the design level and at the manufacturing level. Regular structures can be conceived that require only a limited number of masks thus reducing costs and design time.

· The degree of optimization of the implementation of a component depends on the number of designs where the component can be used and the effect that such an optimization has on the final implementation of the system. Microprocessors in compute-bound or energy consumption-bound applications are likely to be highly hand-optimized. In these cases, regularity may not be exploited as much as in the case of microprocessors in applications where computation speed is not the limiting factor. Soft microprocessor cores are often used in programmable platforms.

· Second order effects such as cross talk, digital noise and EMC are now major concerns in implementation. Correct-by-construction layouts that are preventing these effects are likely to speed up the design process with respect to the trial and error methods often used where the design is followed by extensive simulation and verification.

· Regular layout patterns are platforms of a particular kind that can reduce considerably the amount of parameters that need to be considered at higher levels of abstraction. We refer to them as fabrics.

· Packages have to be included in the implementation design process since they are responsible for several performance, cost and power consumption parameters of the final implementation.

· The silicon processing interfaces are also moving towards the concept of regularity and predictability.

· Mapping at the physical level takes place when masks are generated from layout representations. For example, optical phase shifting can be considered as a synthesis tool to provide better reliability and higher levels of abstraction to the circuit and layout designers.

· Design constraints drive the synthesis tools that generate implementations from micro-architecture selected at the front-end of the design.

· The lack of appropriate predictable physical platforms may yield long re-design cycles since the higher-level decisions are based on the wrong information. Hence, the essential element of the back-end process is to yield predictable fabrics and the relative synthesis and mapping tools.

[image: image10.wmf]A Discipline of Platform

-

Based Design

Silicon Implementation Platform

Silicon Implementation Platform

Architectural Platform

Architectural Platform

Manfacturing

Interface

Manfacturing

Interface

Silicon Implementation

Silicon Implementation

Basic device & interconnect

structures

Delay, variation,

SPICE models

Microarchitecture(s

)

Microarchitecture(s

)

Circuit Fabric(s)

Circuit Fabric(s)

Functional Blocks,

Interconnect

Cycle

-

speed, power, area

S

S

V

V

S

G

S

G

S

S

V

V

S

S

S

S

V

V

V

V

S

S

G

G

Application

Application

Architecture(s)

Architecture(s)

Kernels/Benchmarks

Programming Model:

Models/Estimators

Articulation Point

Articulation Point

Contact: GSRC Team!

_1069139402.ppt

Refinement

VLD

IDCT

MC

DISPLAY

BA

IZ,IQ

BA

MEM

BA

MEM

M

M

M

M

M

M

VLD

IDCT

MC

DISPLAY

BA

IZ,IQ

BA

MEM

BA

MEM

M

M

M

M

REAS

BUS

M

SEG

M

REAS

M

M

SEG

M

SEG

M

REAS

M

3

Refinement

VLD

IDCT

MC

DISPLAY

BA

IZ,IQ

BA

MEM

BA

MEM

M

M

M

M

M

M

M

VLD

IDCT

MC

DISPLAY

BA

IZ,IQ

BA

MEM

BA

MEM

M

M

M

M

REAS

BUS

M

SEG

M

REAS

M

M

SEG

M

SEG

M

REAS

_1069142070.ppt

Architecture

Architecture: abstracted layers for smooth refinement

SYSTEM:

 - SW modules, HW

 - bounded FIFO, lossy channels

 - no address, bus independent

TRANSACTION:

 - address, data split in chunk

 - no detailed bus protocol or width

PHYSICAL:

 - specific bus protocol

 - detailed RTOS characterization

CPU

ASIC2

ASIC1

Sw1

Hardware

module

Sw2

Sw I/F

Channel I/F

Wrappers

Hw

Bus I/F

C-Ctl

Channel Ctl

B-I/F

CPU-IOs

e.g. PIBus 32b

e.g. OtherBus 64b...

C-Ctl

RTOS

3

Architecture

Architecture: abstracted layers for smooth refinement

SYSTEM:

-

SW modules, HW

-

bounded FIFO,

lossy

channels

-

no address, bus independent

TRANSACTION:

-

address, data split in chunk

-

no detailed bus protocol or width

PHYSICAL:

-

specific bus protocol

-

detailed RTOS characterization

CPU

ASIC2

ASIC1

Sw1

Hardware

module

Sw2

Sw

I/F

Channel I/F

Wrappers

Hw

Bus I/F

C

-

Ctl

Channel

Ctl

B

-

I/F

CPU

-

IOs

e.g.

PIBus

32b

e.g.

OtherBus

64b...

C

-

Ctl

RTOS

_1071438248.ppt

Electronic Design Landscape: Disaggregation

Product Definition

IP

Design And Assembly

Manufacturing and Test

Platforms

Fabrics

Interfaces

GSRC Design

Methods

cadencel

cadencel|

how big can you dream?™

GSRC Design

Methods

Electronic

Design

Landscape:

Disaggregation

Product Definition

Product Definition

IP

IP

Design And Assembly

Design And Assembly

Manufacturing and Test

Manufacturing and Test

Platforms

Fabrics

Interfaces

_1069142947.ppt

A Discipline of Platform-Based Design

Contact: GSRC Team!

Silicon Implementation Platform

Architectural Platform

Basic device & interconnect

structures

Delay, variation,

SPICE models

Manfacturing Interface

Silicon Implementation

Functional Blocks,

Interconnect

Cycle-speed, power, area

Microarchitecture(s)

Circuit Fabric(s)

S

S

V

V

S

G

S

S

V

V

S

G

S

G

S

S

V

V

Kernels/Benchmarks

Programming Model:

Models/Estimators

Application

Architecture(s)

Articulation Point

Articulation Point

cadencel

cadencel|

how big can you dream?™

[cadence]

File Edit View Go Commuricator Help
v ¥ A 4 . W@ S & # ﬂ
bk oo bl fme Seech Newape P Seewy
§ Bodknaks J _Gota|pp wwtensica con/oustoner =] @ Whats Relted

ISA Options

Numeric Options
I MAC15 with 40-bit accumulator

¥ 16 bit multiplier Help

T 32-bit infeger mutiply/divice wotyet avalabi)
I Fioating-Point ot yet avatabie

Exception Options
Nurnber of Interrupts [18

" High Priority Interrupt levels [3 1 Help

% [Enable Debugging

% Number of Timers [2 =
Byte Ordering

@ LitkEndian
© BigEndian

Numnber of registers available for call windows:
32 C B4

250
Specd (57) 100 ———— 50

51342

Area (Gates) 20123 — 26160
1 Help
Power @ 6 10
crart
= | Bz e

UNKNOWN-0.bin

UNKNOWN-1.psd

_1069139793.ppt

A View of Platforms

Output Devices

Input devices

Micro-Architecture Platform

I

O

Hardware

Software

network

Software Mapping Tools

Application Software

Platform API

API

RTOS

BIOS

Device Drivers

 Network

 Communication

Compiler

38

A

View

of Platforms

Output Devices

Input devices

Micro

-

Architecture

Platform

I

O

Hardware

Software

network

Software Mapping

Tools

Application Software

Platform API

API

RTOS

BIOS

Device Drivers

Network

Communication

Compiler

_1069141746.ppt

Mapping Behavior to Architecture

cadencel

cadencel|

how big can you dream?™

[cadence]

=iz

oy - GSM_Map.
nalyis - VCC_ GSM_Map. DPRAM_ave

Mapping Behavior to Architecture

_1069128513.ppt

Macro Ideas for Embedded System Design

Methodology

Foundations

Architecture Platform

API Platform

Platform Based Design

Refinement

Communication Based Design

Interface Synthesis

Latency Insensitivity

Function

Architecture

Computation

Communication

Orthogonalization

Of Concerns

cadencel

cadencel|

how big can you dream?™

Methodology

Foundations

Refinement

Communication Based Design

Interface Synthesis

Latency Insensitivity

Architecture

Platform

API Platform

Platform Based Design

Function

Architecture

Computation

Communication

Orthogonalization

Of Concerns

Macro Ideas for Embedded

System Design

_1069139268.ppt

Functional Decomposition

MPEG Decoder

VLD

IDCT

MC

DISPLAY

3

Functional Decomposition

MPEG Decoder

VLD

IDCT

MC

DISPLAY

_1068822722.ppt

Platform Design Methodologies:

Platform Stacks

Application

Architecture

System Platform Stack

Silicon Implementation

Silicon Implementation Platform Stack

Architecture Platform

Instance

Silicom Implementation

Platform Instance

Cadence Confidential

14

Platform Design Methodologies:

Platform Stacks

Application

Architecture

System

Platform Stack

Silicon Implementation

Silicon Implementation

Platform Stack

Architecture Platform

Instance

Silicom

Implementation

Platform Instance

_1068823823.ppt

Function-Architecture Co-Design

Application

Architecture

System Platform Stack

Communication

Refinement

Flow To Implementation

Mapping

System

Function

System

Architecture

Performance

Simulation

Functional

Simulation

2

1

3

4

Cadence Confidential

