Embedded System Components using
the Cal Actor Language

Johan Eker
Department of Automatic Control
Lund University
Box 118, 222 00 Lund, Sweden

johane@control.lth.se

ABSTRACT

Actors are computational entities that communicate with
other actors and with the environment by passing tokens via
their input and output ports. Actors are connected to form
models or applications. An actor or a network thereof may
be view as components. The semantics of a network of ac-
tor is determined not only by the functional behavior of the
actors or how the actors are interconnected, but also on the
model of computation. A proper component model allows
for hierarchical composition of possible concurrent compo-
nents. The behavior of the resulting component should be
deterministic in both temporal and functional aspects. It is
highly desirable to be able to investigate properties, such as
bounded memory and absence of deadlock for components.
One key for doing this is to have full knowledge of the com-
munications patterns of the actors/component. Another is-
sue for embedded actor components is the problem of gen-
erating code suitable for environments where the computing
resources are scarce. One key to achieve this to have a good
understanding of the control flow and memory management
of a component. Cal is novel actor language designed to
facilitate the extraction of needed properties in order han-
dle the above issues. It is a small domain specific language
for implementation of actors. Hierarchical components are
designed by source level transformations of actor networks,
resulting in single, semantically equivalent, actors, who in
turn may serve as a component and be composed in new
networks with other actors (components).

1. INTRODUCTION

Design of embedded software applications is inherently dif-
ficult and error prone due to their concurrent nature. A
typical embedded application consists of several parallel ac-
tivities which interacts with both each other and the exter-
nal environment under timing constraints.

Jorn W. Janneck
Department of Electrical Engineering and
Computer Sciences
University of California at Berkeley
Berkeley, CA 94720-1770, USA

janneck@eecs.berkeley.edu

Embedded software is commonly implemented in a rather
pedestrian fashion using inadequate development tools, re-
quiring unnecessary many man-hours and a deep knowledge
of low-level programming. While ten years ago the issues
pertaining to embedded software design were the headache
for a chosen few, today we find embedded software develop-
ment in a vast number of industries. Embedded applications
are present in consumer electronics, household equipment,
cars, etc., and the ability to construct high quality embed-
ded software with shorter lead than the competitors may be
the difference between success and failure.

This paper addresses the issues of component technologies
for embedded software through the use of a novel program-
ming language called Cal - Cal Actor Language.

The paper is organized as follows. Section 1.1 introduces
the Cal actor language, and this is followed by a discus-
sion on the state of the of embedded systems components
in Section 1.2. Section 1.3 discusses the notion of Models of
Computation and gives a number of examples of how this
may affect the behavior of a given actor. Section 2 gives
an overview of Cal and Section 3 shows how Cal actors are

composed. Finally, Section 4 discusses the design rationale
behind Cal.

1.1 Cal Actor Language

The Cal actor language is a small, domain specific language
designed to support the implementation of actors and the
analysis of networks of such actors. It was created as a part
of the Ptolemy project at UC Berkeley [12]. The concept
of actors was first introduced in [6] as a means of modeling
distributed knowledge-based algorithms. Actors have since
then become widely used, for example see [2].

A Cal actor is an computational entity with input ports,
output ports, states and parameters. It communicates with
other actors by sending and receiving tokens along unidirec-
tional connections. A model, or application, then consists
of a network of interconnected actors. When an actor is ex-
ecuted it is said to be fired. During a firing, tokens on the
input ports are consumed and tokens on the output ports
are produced.

Cal is not intended as a full fledged programming language,
but rather a small language to be embedded in an environ-

ment which provides the necessary infrastructure. It de-
signed as a means to coordinate scheduling and communica-
tion in a component-based framework. The functionality of
an actor is defined by a set of actions and their associated
firing rules. The firing rules are conditions on the presence
of tokens on the input ports and possibly also on their val-
ues. The Cal approach is in part much inspired by the work
presented in [10], where actors are formally defined using
firing functions and firing rules.

Cal facilitates the use of several techniques for checking com-
patibility between connected actor. Production and con-
sumption rates for a actor may be extracted from a Cal
actor and can, for example, be used to statically check a
synchronous data flow model [8] that is built using Cal ac-
tors. A more powerful way to analyze actor compatibility
is to use automata descriptions of the actor interfaces and
analyze the behavior of the composite. One promising tech-
nique for doing this is interface automaton [3], where actor
compatibility might be determined by matching possible le-
gal input and output token sequences from the actors.

The goal with Cal is to provide a concise high-level descrip-
tion of an actor. As a side effect, we will insulate the actor
behavior from the specificities of the APIs of different run-
time platforms. The language itself does not specify a strict
semantics, but instead leaves part of it to the designer of
the particular platform or application in which the actor is
executed. For example, the design of an add actor for a syn-
chronous data flow model or for a Kahn [7] process network
model should be identical. The control of the run-time be-
havior such as scheduling and data transfer is left outside
the language.

1.2 Embedded Software Components

While state-of-the-art software technologies such as object
oriented programming (C++/Java) and component frame-
works (ActiveX/Java Beans/Corba) have been highly suc-
cessful in desktop and web applications, they have been
found less useful in an embedded setting. Component tech-
nologies allow programmers to package and reuse code in a
standardized way. The functionality of a component, which
usually is distributed in binary form, may be accessed us-
ing a well defined interface, which describes available meth-
ods and their signature. The information in the interface
only describes the static type of the component and not its
behavior. This approach falls short when it comes to han-
dling temporal constraints and dynamic behavior, such as
shared resources and efficient communications and schedul-
ing. Consider, for example, the embedded controller appli-
cation in Figure 1 a. The component consists of two parts
that are executed synchronously. The first block is the con-
troller and the second is a limiter. The component executes
as a single thread with a period T, a deadline D and a worst
case execution WCET. This component would be straight-
forward to deploy by simply connecting its input and output
ports, and making sure that the component is schedulable.
So far so good, but now assume that we would like to use
this PID Component as a building block in the creation of
a more complex controller component, see Figure 1 b. The
Cascade PID Component consists of two PID components
in series, executing asynchronously at different rates. It is
desirable to view the Cascade PID as a being a component

in the same sense as the PID. However, in order to deploy it
we now longer has only three configuration parameters, but
six. In order to correctly execute and schedule the Cascade
Controller Component we must look inside it and treat it
not as one but as two components. Hence, in this example,

a)
PID Component
o i Single thread with a sampling period T,
'e; et ~ an execution time WCET, and a deadline D.
b) Cascade PID Component
PID Component PID Component
ref PID Limiter ref PID Limiter
Pl pfref >{ref -
R g TR
D—‘

Figure 1: A controller component

encapsulation breaks and the component concept fails, and
the reason for this is that threads just do not compose well.
A good introduction to embedded software and a discussion
of the shortcomings of current technologies and problems as
the above are found in [11].

1.3 Dataflow Programming

The Ptolemy project [12, 5] at University of California at
Berkeley addresses the problem of components for embedded
systems in a more elegant way. A component here can be
viewed as parametric in three orthogonal directions: func-
tionality + scheduling + communication. The actual actor
descriptions, e.g. the Cal code, capture the functional be-
havior, while the system handles the scheduling of the ac-
tors, the inter-actor communication and the communication
with the environment.

In Ptolemy several actors may be composed into a network,
a graph-like structure in which output ports of actors are
connected to input ports of the same or other actors, indi-
cating that tokens produced at those output ports are to be
sent to the corresponding input ports. Such actor networks
are of course key to the construction of complex systems and
we can make the following observations:

e A connection between an output port and an input
port can mean different things. It usually indicates
that tokens produced by the former are sent to the
latter, but there are a variety of ways in which this can
happen: token sent to an input port may be queued
in FIFO fashion, or new tokens may ’overwrite’ older
ones, or any other conceivable policy. It is important
to stress that actors themselves are oblivious to these
policies: from an actor’s point of view, its input ports
serve as abstractions of (prefixes of) input sequences

of tokens, while its output ports are the destinations
of output sequences.

e Furthermore, the connection structure between the ports
of actors does not explicitly specify the order in which
actors are fired. This order (which may be partial,
i.e actors may fire simultaneously), whether it is con-
structed at runtime or whether it can be computed
from the actor network, and if and how it relates to the
exchange of tokens among the actors—all these issues
are part of the interpretation of the actor network.

The interpretation of a network of actors determines its
semantics—it determines the result of the execution, as well
as how this result is computed, by regulating the flow of data
as well as the flow of control among the actors in the net-
work. There are many possible ways to interpret a network
of actors, and we call any specific interpretation a model of
computation (MoC)-the Ptolemy project focuses on explor-
ing the issues of models of computation and their composi-
tion.

To demonstrate how the same actor behaves differently de-
pending on its MoC, consider the following two simple actor
networks in Figures 2 and 3.

Process Network

merge sum

1,2,3
source#qt>l_|_‘> >_

1,2,3

source#2

Figure 2: Process Network

Synchronous Dataflow

1,2,3 p—> Z >

source sum

Figure 3: Synchronous Dataflow

The actors communicate by means of token passing. The
system in Figure 2 consists of two source actors that produce
tokens of type integer when fired. They are connected to a
merge actor which transforms the two input token streams
into one single token stream fed to the sum actor, which
calculates the sum of all incoming tokens and outputs the
result. The MoC is chosen as Kahn process networks (PN)
which allows the actors to be treated as independent, un-
synchronized threads, under the condition that all actors

are prefix monotonic w.r.t their input token stream. Prefix
monotonicity is achieved by making sure that the necessary
number of tokens always are available at a port before trying
to read from it (or as a blocking read). The implementation
of the sum actor could look something like this:

actor Sum {
Token sum = 0;

void Fire() {
//Runs as a thread

while(true) {
waitForToken();

sum = sum + getToken();
sendToken (sum) ;

Now, consider the system in Figure 3 with one source ac-
tor and one sum actor. The MoC in this case is Synchronous
Dataflow (SDF) [8], where the actors are executed synchronously
and the schedule can be determined statically. Since the ac-
tor schedule is static, we can make sure that the actor is only
fired when there are tokens available, relieving the actor of
checking this. The implementation of the sum actor could
now be simplified and might look something like this:

actor Sum {
Token sum := 0;

void Fire() {
// Is externally invoked

sum := sum + getToken();
sendToken (sum) ;
}
}

As a third example, consider an actor that will be used in fix
point calculations. For example, an implementation where
the actors are composed using synchronous language seman-
tics [1] or in a simulation model where actors are composed
using analog signal semantic, e.g. Matlab/Simulink [15]. In
these compositions, actors must allow to be iterated in or-
der to reach a fix point. In general, an actor must allow
to be fired several times without updating its internal state.
With this additional requirement, the sum actor would need
to look something like this:

actor Sum {
Token sum := 0; // The actor state

Token $sum; // Shadow of actor state

void Fire() {
// Is externally invoked
// First make a temporary
// copy of the state
$sum := sum
$sum := $sum + getToken();

sendToken ($sum) ;

}

void Commit () {
sum := $sum;
}
}

The Fire-method does not make any changes to the internal
state and will thus allow repeated firing. Once a fix-point
is reached, the Commit-method is called and the state is up-

dated.

1.4 Actors as Components

A Cal application consists of a network of interconnected
actors, scheduled according to a given MoC. The actual al-
gorithm of the actor, i.e. the mapping of input tokens to
output tokens, is completely separated from any execution
specification, i.e. how it is scheduled and how and with
whom it is communicating. The incomplete specification is
an important feature of Cal and provides good ground for
code reuse. The interface of an actor specifies a set of typed
input and output ports, and the algorithm of the actor is
defined as a set of input-output mappings called actions.
Each action has an interface which describes firing condi-
tions and token consumption and production. The interface
of an actor does not only specify a static interface as found in
object-oriented programming languages as Java, C++ etc,
but also expresses constraints on how the interface is used.
This can be thought of as defining a dynamic interface. A
network of Cal actors may be transformed into a single Cal
actor. An actor is a component and a network of actors is
hence also a component. This allows for hierarchical sys-
tem designs. An actor is only fully specified when placed
in an environment, i.e. given a MoC. An actor implemen-
tation is hence refined upon composition, when the actor is
interpreted in the context of a MoC. This greatly enhances
code reuse, since algorithms, if implemented as actors, do
not have to bother with runtime issues (scheduling etc), but
those are left to the composer of a particular MoC.

2. CAL ACTORS

This section will give an introduction to the Cal actor lan-
guage. The focus of the presentation will be on the actor
interfaces and later it is shown how they can be used for com-
positions. Cal is part functional and part imperative. For
example, the language has functional and procedural clo-
sure, side-effect free expressions, limited mutability of vari-
ables etc. This paper on discusses the part of Cal that we
feel is relevant to the issues of composition. For a more com-
prehensive overview of the language see [4]. A few simple
Cal examples are given below. We will start with a simple
sum actor, which takes two numbers, adds them together
and outputs the sum. The actor will have two input ports
and one output port. It will operate on two, possibly infi-
nite, input streams S4 and Sp

Sa4 =ao0,a1,...,0n

SF)‘ =b0’b1,...,bn
and produce a token streams C,

Sc =co,C1,...,Cn

which will have the following value
Sc =ao +bo,a1 +b1,...,0n + bn

When the actor fires, it consumes tokens on the input stream
and produces a token on the output stream. There needs to
be at least one token available at both S4 and Sp in order
for the actor to be firable, and this is then the firing rule of
the actor. This actor implemented in Cal as shown below.

ExamMpLE 1 (AcToR). A sum actor with two input ports
A and B and one output port C. The type of all three ports
are Double.

actor Sum() Double A, Double B => Double C :
Double sum := 0;
action [a], [b] => [sum] do
c:=a+b;
end
end

2.1 Actions

An action is an atomic piece of computation that an actor
performs, usually in response to some input. The definition
of an action describes three things:

e the consumption of input tokens,
e the production of output tokens,

e the change of state of the actor.

Usually, an actor definition contains a number of action def-
initions. Whenever it is fired the actor needs to choose one
of them, and it does so based on the availability of input
tokens, and possibly based on further conditions on their
values, and its own state. The head of an action contains
a description of the kind of inputs this action applies to, as
well as the output it produces. The body of the action is a
sequence of statements, that can change the state, or com-
pute values for local variables that can be used inside the
output port expressions.

Patterns and expressions are associated with ports either by
position or by name. In the actor signature in Example 1,
Double A, Double B —> Double C, an input pattern may
look like ’[a], [b]’ which binds a to the first token coming in
on A and b to the first one from B. The same pattern may
also be expressed using the port names: 'A :: [a] B :: [b]’.
This is often convenient if the actor has many input and
output ports and it becomes cumbersome to associate the
patterns and the ports using position.

2.2 Action matching

An actor can consist of any number of action definitions
and when fired, it has to select one of them (or none, if none
applies) for acting on the inputs and computing a new state
and outputs. Firing an action will consume some tokens
from the input sequences of the actor. For each action, a set
of patterns describes how many tokens are consumed from
each port if that action fires. In addition, such a pattern
introduces a number of variables which are bound to the
values of the respective tokens. An actor can only select an
action that matches the current input in the current state.
Such an action is said to be firable.

ExamMpLE 2 (AcTiONs). The NondeterministicMerge ac-
tor reads tokens from either of its input ports and produces
an output as a merge of its input streams. The first action
can fire if there is at least one token on port A and similarly
the second action can fire if there is at least one token on port
B. However, if there are one or more tokens on both ports
it is undecided which action that should be fired. Hence, in
that respect this merge actor is nondeterministic.

actor NondeterministicMerge()[T] T A, T B=T C:
action [a],[] = [a] do end
action [],[b] = [b] do end

end

The type of the ports is T, which is a type parameter. Type
parameters are variable symbols that are bound to types when
the actor is instantiated. They can be used to define type-
relations between elements such as variables and ports inside
the actor definition.

Input patterns allow a concise and intuitive description of
input conditions, while at the same time facilitating a high
degree of straightforward static analysis of properties such
as:

e number of tokens consumed by an action,

o whether that number is constant, depending on pa-
rameters, or depending on the state,

e which channels are to be read from (in case of a mul-
tiport!),

o whether the patters are constant, depending on pa-
rameters, or varying with the state.

A common pattern is one that refers to the first few tokens
in an input sequence, i.e. a pattern like [a, b, ¢]. This pattern
introduces three new variables, and binds them to the first
three tokens (from left to right) on the corresponding input
port. Their type is the token type of that port.

ExamMpLE 3 (PORT PATTERNS). Assume the input se-
quence [1,2,3,4]. The pattern [a, b] matches, and binds a to
1, b to 2.

The pattern [a, b | c] also matches, and binds a to 1, b to 2,
and c to [3,4].

The pattern [a, b, c, d, €] does not match.

The above patterns all cause a fixed and statically deter-
mined number of tokens to be read from each channel that
they match against. Often, however, the number of tokens
to be read by an action cannot be statically determined, and
in fact may depend on actor parameters or even the actor
state. Repeating patterns provide a way of expressing this.

ExaMpLE 4 (REPEAT PATTERN). This actor up-samples
an input stream by an integer factor by inserting tokens with

!Ports in Cal may be multidimensional. A multiport con-
sists of a set of channel for reading and writing tokens.

value zero. The up-sample factor is given by the factor pa-
rameter. On each firing, this actor reads one token from
the input port and produces factor tokens on the output port.
All but one of these is a zero-valued token of the same type
as the input. The remaining one is the token read from the
input. The position of this remaining one is determined by
the phase parameter.

actor UpSample[T|(Integer factor, Integer phase)
T input = T output :
action [a] = [b] repeat factor do
b := [if i = phase then a else 0 end :
for Integer 1 in integers(1, factor)]
end
end

Here integers(a, b) is a function that returns a list if integers
from a to b.

221 Guards

The input conditions for an action must not only be defined
by the pattern, but also using a guard ezpression. A guard
is a set of boolean expressions that may impose additional
conditions on the values of the variables bound by action
port pattern.

ExaMpLE 5 (GUARDS). The Sort-actor has two actions
and sorts the input tokens according to a given sorting cri-
terion, i.e. the function f, which is a parameter®. If the
value of the evaluation of f is true the first action is chosen
otherwise the second.

actor Sorter[T|([T — Boolean] f)

T input = T outputl, T output2 :
action [a] = [b],[] guard f(a): end
action [a] = [], [b] guard not f(a): end

end

Here the unambiguity from having two identical port patterns
are resolved by additional constraints given by the guards.

Similarly, we can now create a merge actor which is deter-
ministic and alternates between its two input ports.

ExamvpLE 6 (FAIRMERGE).

actor FairMergel()[T| T A, TB= T C:
Integeri := 0,
action [a],[] = [a] guard : = 0 do

2:=1

end

action [],[b] => [b] guard i =1 do
1:=0

end

end

The last element in the header of an actor are type con-
straints. These can be used to impose conditions on the type
variables. If these conditions are not met, the behavior of
the actor is undefined, i.e. the author may assume that these

2The type of a function is written as
[argumentType — returnType]

conditions are true. Type constraints may require types to
be equal, or may require a type to be a subtype/supertype
of another type.

ExampLE 7 (TyPE CoNsSTRAINTS). The type constraints
of the Add-actor state the requirement that the port types
must be of Number or a subtype thereof.

actor Add()[T < Number] T A, TB=T C:
action [a], [b] = [a + b] do end
end

2.3 Action schedules and priorities

It is often useful to constrain the behavior of a actor in terms
of its legal action firing order or in terms of the individual
importance of each action. There are two constructs in Cal
to achieve this, schedule and priority. In the previously shown
Cal actors actions have been anonymous, but that need not
be the case. Example 8 below shows an actor with named
or tagged actions.

The legal firing order of the actions can be formulated as
a regular expression over the tags. For example, let’s say
we have an actor A with the following action tags: connect,
send_to B, send to_C, and disconnect. Suppose A is some
sort of communication actor and transmits data to other
actors over a network. The first thing that need to happen
when the actor is started, is that it must connect to the
network. After a link has been established, it may start to
send token and finally as a last step before stopping it must
close the connection. This constraint can be described by
the following regular expression:

(connect (send_to_A | send_to_B)* disconnect)*

This is called an internal action schedule and can contain
all the usual operators found in regular expressions such as:
*

H +’ |’ ?'

Using the action schedule construct, a variant of the FairMerge
actor in Example 6 is given below.

ExaMpLE 8 (AcTION SCHEDULE). The schedule section
constraints the legal firing sequences so that the actor alter-
nates between reading tokens of the two ports.

actor FairMerge2()[T] T A, TB= T C:
al : action [a],[] = [a] do ...end
a2 : action [],[b)] = [b] do ...end
schedule
(a1 a2) x | (a2 al)x
end
end

Another way of constraining the firing sequence is to use ac-
tion priorities, which are specified as chains of orders among
tags.

ExamMpLE 9 (AcTioN PrIORITIES). The actor Foo has
two input ports and three actions. Since the port patterns are

overlapping, a priority clause is used to resolve the ambiguity
and create a deterministic actor. In the case were tokens are
available on both input ports, all three ports pattern will be
enabled but only a1 will be fired due to higher priority.

actor Foo()[T] T A, TB= T C:
al : action [a], [b] = [a,b] do ...end
a2 : action [a],[] = [a] do ...end
a3 : action [, [b] = [b] do ...end
priority

al > a2,
al > a3
end

end

The partial order that is the transitive hull of the specified
priority inequalities is the priority relation > of the actor.
Of the set S of enabled actions, only an action a may fire
such that there is no action b € S such that b > a. Schedule
and priority constructs may also be combined as shown in
Example 10. This example several actions demonstrates how
several actions may share the same tag and that a tag may
be hierarchical.

ExampLE 10
actions, which read tokens from two input ports. The desired
behavior is that the actor should, if possible, always fire ac-
tion al. Howewver, if there are not tokens available on both
of the ports action al is not enable, then the second or third
actions should be selected. The internal order between a2.b1
and a2.b2 is not important, however, what is important is
that equal amounts of tokens are consumed from both ports.
To achieve this we use an internal schedule which constraints
the internal order of a2.b1 and a2.b2. The priority clause
forces the action al to be selected over any of the actions in
a2.

actor Bar()[T|T A, TB= T C:
al : action [a], [b] = [a,b] do ...end
a2.b1 : action [a],[] = [a] do ...end
a2.b2 : action [],[b] = [b] do ...end
priority

al > a2
end
schedule

(a1 | (a2.b1 a2.62) | (a2.b2 a2.b1))x
end

end

Two of the actions in actor Bar is grouped together under
the tag a2. In the schedule and priority clauses a2 refers to
all actions who has that a2 its top level tag.

3. COMPOSITION

The Cal language specification is oblivious to the interpre-
tation of an actor composite. The semantics of a network of
interconnected Cal actors is left to the framework in which
the actors are instantiated. The meaning of a Cal model
does not only depend on the actors A and C, but also on
the order in which they are executed (i.e. the schedule) and
the way their communication is handled (i.e. buffering etc.).

(HieraRrcHICAL Taas). Actor Bar has three

First when we have chosen a MoC the semantics of the ac-
tor network is fully decided. Depending on the MoC we can
make some static analysis of the Cal application and, for
example, create schedules or detect deadlocks. The action
patterns, the action priorities and the action schedules are
three powerful concepts that allow control flow analysis and
makes it possible to retrieve information about actor inter-
action. Below, we will give some examples of how deadlock
can be detected and how a static schedule can be derived
offline. Cal components are designed through source code
level transformations, i.e. given a set of connected Cal ac-
tors and a MoC, a single, semantically equivalent, Cal actor
is synthesized.

3.1 Data flow analysis

Checking that the data types of connected actors are cor-
rect, is only a first step in verifying that actors compatible.
The next step is to look at the data flow through the ac-
tors through inspection of the input patterns and output
expressions of the connected actors.

ExamprLE 11

inl outl in3
—p > S—N out3
A B p—
—> p———
in2 out2 in4

where the Cal code for the actors A and B is found below.

actor A[] () Double inl, Integer in2
= Double outl, Integer out2:
action [a], [| =[], [d] do ... end
action [], [b] = [], [d] do... end
end

actor B[] () Double in3, Integer in4 = Double out3:
action [a], [b] = [c] guard a > b do ... end
action [a], [b] = [c] guard a < b do ... end

end

The data flow between actors can be analyzed by inspection
of the connected output expressions and input patterns. In
this trivial case it is straightforward to see that B will never
produce any output, because there will never be an output
from A that will match any of the actions of B. The model
in the figure above will hence deadlock.

The example above demonstrated how the action signatures
can be used to determine possible production and consump-
tion rates for an actor. The general problem of using this
information to detect deadlocks is undecidable, however we
believe there are many cases where such analysis still would
prove useful. The goal with Cal, in this setting, is to make
it straightforward for analysis tools to extract the needed
information from the actor source code.

ExampPLE 12
further, we will here give a more eztensive ezample.
sider a system with the following three Cal actors:

(CowmposiTiON). To demonstrate the ideas
Con-

(DeaDLOCK). Consider the following model

actor A[T] () T inl, T in2 = T outl, T oui2:
al :action [a], [=[], [[do ... end
a2 :action [a], [b]] = [], [¢] do ... end
a3 :action [], [b] =[], [¢] do ... end
priority
a2 >al,
a2 > a3,
al > a3
end
end
actor B[T] () T inl, T in2 = T outl:
bl :action [a], [= [¢] do ... end
b2 :action [], [b] = [¢,d] do ... end

end
actor C[T] () T inl = T outl, T out2:
cl :action [a] = [a],[] do ... end
c2 :action [a,b] = [],[a] do ... end
schedule
(c1 c2)x
end
end

The production and consumption of tokens are modeled as
petri net models, where places corresponds to inputs and out-
put ports and transitions correspond to actions. Here it is
assumed that they communicate with a discrete event model
and that the buffer sizes are infinite.

@/»%ﬂ @H
e
C:<—{C1
.

outl

When the above actors are composed to a model, the resulting
petri net is given as the composite of the petri nets for the
actors. This may then be used to investigate properties of
the composite such as deadlock and memory bounds.

ABC

inl outl in3
> > out3
Al B
in2 ut2 in4
1 .
out: C in1
out2
>

4.

ABC:

The incidence matriz for the above system is given as:

P Py P3 Py Py

r1 0 0 0 07 i
-1 0 1 0 0] at
-1 =1 0 1 0] a2
A = 0 -1 0 1 0] a3
0 0 —1 0 1| &

0 0 0 -1 2| b2

0 0 0 0 —1] el

L 0 0 0 0 -2 ¢

The progression of the system is now described by
M=M,+ A"z,

where M 1is the resulting marking vector, M, the initial
marking vector and x the firing vector. The firing rates for
the actors in the composite can now be calculated from the
nullspace of AT, i.e. solving ATx =0 w.r.t z. One solution
in the ezample above is x = [1,1,0,1,1,1,1, 1]T, which cor-
responds to firing each of the actions in the composite once
ezcept a2 which is never fired. From X we can now derive a

schedule:
S =i, al, bl, cl, a3, b2 ¢2].

Given a static schedule it 1s now straightforward to calculate
buffer size, i.e. mazimum number of tokens at each place.
Finally, we can make a program transformation and create
the corresponding composite Cal actor:

actor ABC[T] () T in1 = T oull:
T $b1, $b2, // The buffers
([—1],[—]) A =(al: proc() begin ... end,
a3 : proc() begin ... end),
=(b1 : proc() begin ... end ,
b2 : proc() begin ... end),
=(cl : proc() begin ... end ,
c2 : proc() begin ... end),
action [a] => [b] do

((—)Ll—]D B

((—=hl—D e

$b1 := a;

A.al(); // Reads §b1, writes §b1
B.b1(); // Reads 8b1, writes §b1
C.c1(); // Reads $b1, writes $b1
A.a3(); // Reads §b1, writes §b1
B.b2(); // Reads §b1, writes §b1, $b2
C.c2(); // Reads $b1, §b2, writes §b1
b:= $b1

end

The buffers between the actor are represented by only two
actor state variables 8b1, $b2. The actors A, B and C are
rewritten as tuples where the elements are procedures, i.e.
each procedure corresponds to an action.

Among the benefits from an actor based design is the fact
that the components are completely decoupled, however the
downside to this is that we need to find a scheduling and
manage buffers for the communication. In the above ex-
ample we show how those issues can be addressed for Cal
actors.

3.2 Interface analysis

Modern type theory allows the programmer and the com-
piler to understand how different parts of a program fit or
do not fit together. Statically, it can, for example, be de-
termined if a method is called with the correct type of pa-
rameters or if the types of the l-value and the r-value in an
assignment are compatible. Using type theory we can decide
if the connections in an actor network are legal or not. How-
ever, this does only tell us if the communication patterns of
the connected actors are compatible. When the network is
actually executed, there may still be errors in terms of, for
example, deadlocks. Therefore, it is desirable to have an
interface theory that captures not only the static behavior,
but also the dynamic behavior of an actor. The notion of
behavioral types were introduced in [9], where the interface
of an actor were described using interface automata [3]. It
was shown how compatibility between and actor and a MoC
can be statically determined.

Given a Cal actor with an internal schedule it is possible
to extract an interface automaton which captures its dy-
namic behavior. Such an automaton can then be used for
checking compatibility with other actors, but maybe more
interesting, to check compatibility with a given MoC. In the
example below the interface automaton for a simple actor is
extracted.

ExaMpLE 13 (INTERFACE AUTOMATON). The automa-
ton that describes the interface of actor A3 below is shown
in Figure 4. The labels are the corresponding action that
18 fired in the transition. For ezample, for the first transi-
tion to take place, the action sl needs to fire, which in turn
requires the presence of a token on the first input port, etc.

actor A3[T] () T inl, T in2 T in3 = T outl, T oui2:

sl :action [a], [], [|=> [c], [d]: ... end
52 : action [], [B], [=>[], [d]: ... end
s3:action[], [, [=[], [d]:... end
schedule
s1(s2]s3)x;
end
end

If we now wanted to use actor A3 in a given MoC, we could
derive an interface automaton for that MoC and check com-
patibility by exploring the composite automaton.

This last section just touched upon the subject of interface
automaton and showed how this can be extracted from a Cal

52 in22/out2!
E > st % % : ; E :im?/ouﬂ
s3

Figure 4: The data flow between actors can be an-
alyzed by inspecting the connected output expres-
sions and input patterns. Each of the transitions in
the above automaton corresponds to the firing of an
action. The corresponding interface automaton is
shown to the right, where "a?" means waiting for a
token on "a" and "a!" means writing a token to "a".

in3?/out2!

actor description. Ongoing work in area of component de-
sign in conjunction with interface automaton is found in [13],
which also introduces Actif, which is a binary component
model and a very suitable target for Cal code-generation.

3.3 Split phase execution

In the introductory example with the three versions of the
Sum-actor, the last actor had a so called split phase ezecution.
This means that the functionality of an actor is divided into
two steps. First the actor calculates output values and then
in the second step it updates its state variables. There are
two main reasons for organizing the code this way:

e To minimize the latency from input to output by only
doing the calculation necessary to get the output at the
step and saving the rest of calculation for later. This
is common practice in control systems were latency
might be a key factor in achieving good performance.

e To handle MoC:s with iterations where an actor might
be fired repetedly without changes in its internal state.

The task of the codegenerator is then to analyze the source
code and determine the least amount of statements needed
in order to compute the output. To do this it needs to cal-
culate the dependencies for the output signals. In Cal this is
fairly straightforward thanks to side-effect free expressions,
limited mutability of data structures, and non-aliasing of
variables.

4. LANGUAGE DESIGN:
GOALS AND PRINCIPLES

Designing a programming language is an exercise in balanc-
ing a number of sometimes contradicting goals and require-
ments. The following were the ones that guided the design
of Cal.

Ease of use Cal is intended to be a programming language,
not an intermediate format or a representation for auto-
matically generated code. Since we want people to actually
write code in it, the notation must be reasonably conve-
nient to write, with meaningful syntax rules, keywords, and
structures. Because people make mistakes, it needs to be
sufficiently redundant to allow effective error detection and

localization, but simple and concise enough for frequent use,
especially in frequently used areas. The language as such is
a mix between imperative and functional programming lan-
guages. Functions and expressions are side effect free simpli-
fying data flow analysis. However, since the most important
goal in the design process has been to create a useful and
expressive engineering tool, imperative statements, such as
for- and while-loops have been included.

Minimal semantic core In spite of being a full-fledged
programming language, we wanted to build Cal on a very
small set of semantic concepts, for a number of reasons. First
of all, being able to describe a large part of the full language
through reductions to a smaller language makes the defini-
tion of language semantics much easier. From a practical
perspective, this simplifies compiler construction—if there
is a generic procedure that transforms any program into an
equivalent program in the core language, then all it takes in
order to compile the full language to any given platform is
a code generator for the core language.

Focus and specificity Cal is a domain-specific language,
that is aimed at providing a medium for defining actors. It
was very important to draw a clear line between those pieces
of functionality that were deemed to be part of an actor
definition and those that were not. For example, in addi-
tion to clearly actor-specific structures such as actions and
input/output patterns/expressions, expressions and state-
ments were considered to be essential to defining an actor.
On the other hand, there are many things that Cal explicitly
does not contain, such as concepts for connecting actors, or
mechanisms to aggregate actors into composites. The fact
that Cal is explicitly agnostic about these issues makes it
possible to use the language in a wide variety of contexts,
which may provide very different designs in those areas.

Implementation independence Even though our first
target for Cal actors is the Ptolemy II platform, we want
the language to be retargetable, in the following two senses:
First, we would like to be able to take an actor written,
say, for Ptolemy II and be able to compile it to some other
platform, say to some C code that runs against a different
API. Secondly, we would like to enable other people to em-
bed Cal into entirely different, but still actor-like, contexts,
which have different kinds of objects (and types), different
libraries, different primitive data objects and operators.

Making design knowledge explicit The key goal of Cal
is to enable the author of an actor to express some of the in-
formation about the actor and its behavioral properties that
are relevant to using the actor (e.g. verify its appropriate
use inside a model, or to generate efficient code from it), but
that would be only implicit in a description of the actor in
a ’traditional’ programming language such as C or Java.

5. CONCLUSION

This paper introduced a new actor language, Cal, for pro-
gramming of embedded systems. The main characteris-
tics of the language are the usage of port patterns, action
guards, and action schedules to formally define legal execu-
tion paths. Using these it is possible to calculate the be-
havior of an actor in terms of the order that tokens are
consumed and produced. This is then used in either the

scheduling actors or in proving compatibility between an
actor and a MoC.

Block diagrams are a natural language for design and imple-
mentation of many embedded applications, e.g. the signal
processing algorithms in mobile phones or the engine con-
troller in your car. Such applications operate under strict
timing requirement, while at the same time the computing
resources are scarce. Determinacy and memory footprint are
two important factors for any embedded application. Em-
bedded system components in Cal allow a high degree of
analysis to support the above requirements.

A Cal embedded system component is designed as a com-
posite of interconnected actors which together with a MoC
defines the functionality and the interface of a component.
The information necessary to make such compositions is ex-
plicitly available for a network of Cal actors due to action
and actor interfaces. The choice of MoC will determine the
properties of the resulting composite. For example by choos-
ing a more restrictive MoC, for example SDF, it is possible
to perform offline analysis and calculate static schedules and
memory consumption bounds.

There are currently two prototype Cal compilers. One that
generates Java code for either the Ptolemy II framework [16]
or the Grafchart environment [14]. A C-code generator is
currently being developed at University of Lund, Sweden.

Acknowledgment

The authors wish to thank the members of the Ptolemy
group, especially Edward Lee, Yang Zhao, and Chris Chang
for fruitful discussions and joint work on several of the topics
described in this paper. Also thanks to Ed Willink, Thales
Research, for contributions to the compiler infrastructure
and to Anders Blomdell, Lund University, for c-code gener-
ation input.

6. REFERENCES

[1] Benviniste A. and G. Berry. The synchronous
approach to reactive and real-time systems. In
Proceedings of the IEEE, volume 79. IEEE, September
1991.

[2] Gul A. Agha. ACTORS: A Model of Concurrent
Computation in Distributed Systems. The MIT Press
Series in Artificial Intelligence. MIT Press,
Cambridge, 1986.

[3] Luca de Alfaro and Thomas A. Henzinger. Interface
theories for component based design. In Thomas A.
Henzinger and Christoph M. Kirsch, editors,
Embedded Software, First International Workshop,
EMSOFT, Lecture Notes in Computer Science, pages
148-165, Tahoe City, CA, USA, October 2001.
Springer-Verlag Berlin Heidelberg.

[4] Johan Eker and Jérn Janneck. Cal actor
language—language report (draft). Technical
memorandum, Electronics Research Lab, Department
of Electrical Engineering and Computer Sciences,
University of California at Berkeley California,
Berkeley, CA 94720, USA, 2002.
http://www.gigascale.org/caltrop.

[5] Johan Eker, Jorn W. Janneck, Edward A. Lee, Jie
Liu, Xiaojun Liu, Jozsef Ludvig, Stephen
Neuendorffer, Sonia Sachs, and Yuhong Xiong.
Taming heterogeneity—the ptolemy approach.
Proceedings of the IEEE, 2002. To appear.

[6] Carl Hewitt. Viewing control structures as patterns of
passing messages. Journal of Artifical Intelligence,

8(3):323-363, June 1977.

[7] Gilles Kahn. The semantics of a simple language for
parallel programming. In Proceedings of the IFIP
Congress 74, pages 471-475, Paris, France, 1974.
International Federation for Information Processing,

North-Holland Publishing Company.
[8

—_

Edward Lee and D. G. Messerschmitt. Synchronous
Data Flow. Proceedings of the IEEE, pages 55-64,
September 1987.

[9

—_—

Edward Lee and Yuhong Xiong. System-level types for
component-based design. In Thomas A. Henzinger and
Christoph M. Kirsch, editors, Embedded Software,
First International Workshop, EMSOFT, volume 2211
of Lecture Notes in Computer Science, pages 237-253,
Tahoe City, CA, USA, October 2001. Springer-Verlag
Berlin Heidelberg.

[10] Edward A. Lee. A denotational semantics for dataflow
with firing. Technical Memorandum UCB/ERL
M97/3, Electronics Research Lab, Department of
Electrical Enginee and Computer Sciences, University
of California at Berkeley California, Berkeley, CA
94720, USA, January 1997.

[11] Edward A. Lee. Embedded software. In M. Zelkowitz,
editor, Advances in Computers, volume 56. Academic
Press, 2002. to appear.

[12] Edward A. Lee et al. The Ptolemy Project.
Department Electrical Engineering and Computer
Sciences, University of California at Berkeley.
http://ptolemy.eecs.berkeley.edu.

[13] H. John Reekie and Edward A. Lee. Lightweight
component models for embedded systems. Technical
Report UCB ERL M02/30, Electronics Research
Laboratory, University of California at Berkeley,
October 2002.

[14] Karl-Erik Arzén et al. Grafchart - a toolbox for
supervisory level sequence control. Department of
Automatic Control, Lund University,
http://www.control.lth.se/grafchart.

[15] The Mathworks. Simulink: Dynamic System
Simulation for MATLAB. The MathWorks Inc., Natick,
MA, 2000.

[16] Lars Wernli. Design and implementation of a code
generator for the cal actor language. Technical
memorandum ucb/erl m02/05, Electronics Research
Lab, Department of Electrical Engineering and
Computer Sciences, University of California Berkeley,
2002.

