

Abstract—In this paper we introduce a new model of

computation that is the basis for SNAL: a Sensor Network
Application Language. In our design flow, the user describes the
network in terms of logical components, queries and services,
and then SNAL captures these specifications and produces a set
of requirements that the network has to satisfy to ensure a
correct functionality. We describe a MoC that supports this
language.

I. INTRODUCTION

The complexity of the design task and the variety of skills
needed to develop applications and implementation platforms,
 make the task of developing an effective design methodology
for Wireless Sensor Networks (WSN) quite challenging.
 The ideal solution should deal with all phases of the design
process from conception to implementation. As often is the
case in other application areas, methods and tools are readily
available to develop hardware platforms, [1][2][3], but they lack
for other phases that deal with higher level of abstractions.
 The most common design methodology for WSN starts with
the description of the protocol specifications using the
NesC/TinyOS stack [4]. The NesC/TinyOS platform was
developed at U.C.Berkeley and it leverages on a "method call"
model of computation. It was designed to describe component-
based architectures using a simple event-based concurrency
model. This platform was enriched with a simulation
environment called TOSSIM [5]. Its success is also related to
the wide spreading of the hardware platforms of the Mica
family [3]. Remarkably, the combination of Mica and TinyOS
allowed for a great push of research in the WSN community.
 Alternatively, protocol solutions are simulated using
environment such as OMNET++ [6] or VisualSense [7] and
then implemented in NesC/TinyOS. Omnet++ is a discrete
event simulator developed by Andras Varga at the Technical
University of Budapest. Although not specifically targeting
the WSN domain, Omnet++ is widely used within the
communication community for protocol simulations, especially
in European institutions.
Visuals ense is a modeling framework for WSN developed as
part of the Ptolemy project at U.C.Berkeley [8]. It is an
extension of a discrete-event model with an extra capability of
describing properties of the wireless connectivity. Visualsense
is certainly a powerful tool to model and evaluate protocol
solutions under different scenarios.

 Although an effort to move to a higher layer of abstraction is
certainly visible, especially with Visuals ense, we believe that
the current design flows lack of a top-down approach.
 In [9] it is proposed a universal application interface, which
allows programmers to develop applications without having to
know unnecessary details of the underlying communication
platform, such as air interface and network topology. The goal
of [9] was "defining a standard set of services and interface
primitives (called the Sensor Network Services Platform or
SNSP) to be made available to an application programmer
independently on their implementation on any present and
future sensor network platform". Motivated by this work, we
decided to implement a Sensor Network Application Language
(SNAL).
 The design flow that we envision can be summarized as
follows:
1. Application is specified using SNAL and constraints for

the network architecture are generated
2. A protocol stack with an abstraction of a hardware

platform (network architecture) is selected as a solution of
a covering problem. This implies the creation of a library of
network architectures whose performance can be modeled
using protocol level tools (i.e. VisualSense or Omnet++)

3. Once the protocol stack is selected, a hardware platform
exploration can be performed. Metropolis is a candidate
for this step. Alternatively, if the hardware platform is
given (i.e. Mica, TELOS) the protocol stack can be directly
implemented using specific tools (i.e. NesC/TinyOS)

 The goals of SNAL should be, in order of priority:
1. Allow user to describe the network in terms of logical

components queries and services, as suggested in [9],
without any knowledge of the protocol stack or the
hardware platform.

2. Capture these specifications and produce a set of
constraints that the protocol stack and the hardware
platform have to satisfy to ensure correct functionality of
the network

3. Simulate WSN applications whenever an abstraction of
the protocol stack and the hardware platform is available.

We believe that SNAL should have the following
characteristics:
1. It must be component based, and create a logical

architecture in the WSN where controllers are masters and
sensors and actuators are slaves, as suggested in [9]. This
will allow for exploiting the specificity of our domain.

A Model of Computation for Sensor Network Application Language

Class Project for EE290N, Fall ‘04
Author: Alvise Bonivento

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

2. Since SNAL is based on a service platform it should have
a “publish/subscribe” flavor to express the access at these
services.

3. It must capture all the possible scenarios that a given
program can generate.

 A language is a combination of a MoC and a set of
primitives. In [9] some primitives for SNAL are described, but
there is no indication of what a pertinent MoC should be.
In this paper we present a MoC to support SNAL. First, we
explain the features of our MoC using an intuitive approach.
Secondly, we provide a formal description using an extension
of the Tagged Signal Model (TSM) [10] notation.
Although only field examples can give a final word, we believe
that our solution offers a good trade-off between the
necessary power of expressiveness and analysis capability
typical of domain specific languages.

II. THE MOC

According to [9] a WSN is composed of three types of logical
components, Virtual Controller (VC), Virtual Sensor (VS),
Virtual Actuator (VA), and a set of services. Specifically, [9]
identifies six types of services: two of them, Query service and
Command service, are used by the logical components to
communicate, the other four, Time Synchronization Service
(TSS), Location Service (LS), Resource Management Service
(RMS), and Concept Repository Service (CRS), are used by the
logical components to interpret the content of the received
queries or commands.
Consequently, in our MoC we consider only four types of
components: the three logical components VC, VS, VA, and a
service component CRS that groups all the remaining services.
Each logical component can call the CRS (and this is the
publish/subscribe part of our MoC). The only connections
allowed between logical components are the ones between: VC
and VC, VC and VS, VC and VA. Consequently, no connection
is allowed between two VS’s (that would be a multihop routing
and as such a protocol choice) and no direct connection
between VS and VA.

1. Virtual Controller
A VC is an abstraction of a set of controlling algorithms for the
WSN. Ideally, the VC runs a controlling algorithm and when it
needs data or decides an action it sends a query or a command
to another logical component. Since the VC is the “brain” of a
WSN it has to be a powerful actor. Consequently the only
restriction to its behavior is a simple causal relationship
between the events of sending queries and the events of
receiving a reply.

2. Virtual Sensor
A VS is an abstraction of a set of measuring devices and it is
defined by the list of parameters that can be read, and by the
primitives that are used for reading them. At this level we are
not interested whether it is implemented by a sensor, by a set
of sensors, or by a controller with sensing capabilities.
The VS works as follows:

• It reads a query from an input channel and asks the CRS
for interpretation of the query

• After receiving that interpretation, the VS advances its
thread with the requested parameters and produces the
data as required.

• The VC responds to the query.

An interesting situation happens when more than one VC is
sending queries to the same VS. For example: a VS has two
input channels from two different VC’s. From channel 1 it
receives a query that is interpreted as “give me humidity
measurements until time T1 with a particular sampling rate R1”
and it advances its thread accordingly. Then, from the same
input channel receives another query that can be interpreted as
“give me humidity measurements until time T2 with a sampling
rate R1” and advances accordingly. Then, from the other input
it receives a query that means “give me humidity
measurements until time T3 with a sampling rate R3” and
assume T1<T3<T2 and R1<R3. Consequently, to service the
third query, the VS should backtrack and reproduce the
sampling with a higher rate. This happened because we are
using an untimed MoC, but the content of the queries carries
some information on the real time that is captured by the CRS.
A clean way to deal with this problem is to introduce a
blocking read for the VS. Reviewing the previous example, after
receiving the first query, the VS waits for the other input
channel to have a query and only when both inputs have a
token it evaluates the two queries together. As a result the VS
advances its sampling process with rate R3 (the highest of the
two) until T1 (the earliest deadline). At this point the first
query is fully serviced and the token on the first input is
consumed. The other query has not been completely serviced
yet, hence the relative token remains. When another query
arrives at the first input channel the query evaluation process
starts again, the VS advances and so on.
When a VC does not need to communicate to the VS anymore,
it sends a t symbol. The meaning of the t symbol is "any
behavior from now on". Consequently, such a query will never
be completed and the relative token remains there. This way we
do not introduce artificial deadlocks. When a VS interface has t
's in all its inputs it means that it is not needed anymore and
stops executing.
 As a result, advancing the VS “little by little” all the
specifications are captured and we are able to correctly
characterize all the dynamic of the sensing requirements.
 Notice that this blocking read is only done to capture the
specifications at the application level and create correct
requirements for the network architecture. At protocol level,
when the application is mapped into real time, there is no
commitment to implement the blocking read.
From an expressiveness perspective, introducing a blocking
read limits the behavior of the VS to what the VC decides. This
way we force a master-slave relationship and this is a way to
explore the specificity of this domain.

3. Virtual Actuator

A VA is an abstraction of a set of devices that can influence
the environment. The semantic is very similar to the case of the
VS, with the difference that the connections between a VC and
VA carry only commands, and that the replies carry only
acknowledgements.

III. EXTENSION TO THE MODEL

Assume that connections between the VC and the VS are
constrained to be single port connections.
Consider the following scenario with two VC’s connected to
two VS’s, and:
• VC1 waits for the data coming from VS1 to decide if

sending or not a query to VS2
• VC2 waits for the data coming from VS2 to decide if

sending or not a query to VS1
The proposed blocking read would create a deadlock.
Nevertheless this is a realistic scenario we need to be able to
capture (typical of an emergency reactive network where if a
controller receives an alert message from a set of sensors it
also queries another set of sensors to accurately characterize
the issue). This is due to the fact that at some point in the VC
codes there is a “if, then, else” block whose relative branches
have a “send query” instruction. Since we are allowing for
single connections only, the MoC fails to capture this
scenario.
A simple extension to the model is allowing multiple ports
connections between the VC and the VS. In particular, a
connection has as many ports as the number of branches in
the VC program. As a result this number does not need to be
specified by the user, but it can be inferred by the branching
tree of the controlling algorithm. When a particular branch
does not need the services of a particular VS, it sends a t
symbol in the relative connection.
This way we are able to capture all the possible scenarios of
the WSN and generate a correct set of requirements.

IV. RELATED MOC’S

In this section we try to relate the proposed MoC to other
existing ones outlining similarities and differences.
The communication between logical components is similar to a
Process Network with a blocking read mechanism to prevent
non determinism for the virtual sensor and actuator, and
without the blocking read for the virtual controller. This tiered
architecture is fundamental to concentrate all the decision
capabilities at the virtual controller.
As already mentioned SNAL has to support a complex tag
system. With reference to the Tagged Signal Model (TSM)
notation, consider a connection as a signal and a query as an
event. This event has a tag (that identifies its order within the
signal), and a value (content of the query). The value itself is a
composition of two types of information: the type of data
required and the temporal scope of those data. This last
information is referred to real time and enables to order queries
coming from different virtual controllers. As already explained
the only entity that has a notion of this order is the CRS.
Consequently, the CRS is able to order the query according to
their real time and also to intersect the sensing requirement

expressed in their content. We believe this is similar to the
concept of unification of tag and values expressed in [11][12].
In our solution this unification is performed on demand via a
publish/subscribe mechanism.
 Another asset of our MoC is the capability of capturing all
possible scenarios. This idea was inspired by Ulis se [13]. In
Ulisse the application is described using Message Sequence
Charts to capture simple scenarios, and then different
scenarios are composed using a Petri Net structure. The main
difference with Ulisse is that in our case we already know what
type of components populates the network and we are able to
characterize them in a sort of hierarchy. Leveraging on this
knowledge, we are able to propose a component based
approach that is able to maintain a high level of expressivity
(as was the case with Ulisse), and also allows for a more
synthesis oriented view of the system.
The idea of introducing the t query to resolve unwanted
deadlocks can be seen as a particular case of the null message
introduced by Misra in [14] when dealing with asynchronous
parallel simulations. Similarly to [14], the t query does not
have any physical implementation, but it is a useful notation to
avoid deadlock when capturing specifications.
A closer look at the behavior of the logical components
outlines their similarity to the threaded processes of
Metropolis [15]. In particular we believe that the separation of
the component in task and interface is a first important
refinement. Ideally, from the task we will be able to generate the
computation algorithm for the single hardware components,
while from the interface we will read the requirements for the
communication network. Furthermore, we believe that a
Quantity Manager is a perfect candidate for the implementation
of the CRS. These considerations drive our next step of
integrating the proposed MoC in Metropolis.
 An interesting approach to the design of interfaces for sensor
network components is described in the standards of the IEEE
1451 family [16]. This family of standard was created to
improve the reusability of the network and component
solutions for sensor networks within manufacturing plants.
Although the initial targets were wired networks, the
applicability of those concepts to a wireless solution seems to
be appealing. In IEEE 1451 there is a first concept of logical
components, where a sensor for example identifies a group of
sensing devices rather than a single hardware component.
Another interesting aspect is that the interfaces for the
controlling entities of the network are more powerful than the
ones for sensors and actuators, therefore implying a master-
slave logical architecture as we do. Nevertheless, those
standards are specifically target to the design of interfaces and
they can hardly be generalized to a complete application
language.

V. FORMALIZATION

In this section we give a more formal characterization of the
proposed MoC. Although a description using the classical
TSM would be appropriate, the presence of a concrete
semantics makes the description hard to read. We decided
instead to describe the MoC borrowing the idea presented in

[11][12] of using an extra tag set to represent an order relation
among events of different signals (variables).
In particular we define a query as an event of the type

),,,,(Tvncxe = , where: x is the reference variable (in our case

the relative connection), c can be either 0 or 1 and represents
the fact that the query was generated by a VC asking for data
(c=0) or a VS replying to a previous request (c=1), n is natural
number and indicates the sequence number of the query within
the variable x (the internal tag), v expresses the sensing (or
actuating) requirements, T is a real number specifies the end of
the temporal scope of the query (reference to real time). With
this notation a t query is an event of the type),,,0,(∞∗= nxe .

A VC with M connections is a process described by a set of
variables (connections)),..,(1 MxxP = and a causality

relationship among elements within the same variable that can
be expressed as follows: for each),,,1,(Tvnxe = , there must

exist an event),,,0,(Tvmxe ′′=′ with m<n (a reply follows a

request).
A VS (and similarly a VA) with M connections is a
process),,..,(1 AM xxxP = , where Mxx ,..,1 refer to the M

connections and Ax describes the advancing behavior of the

VS. The connection variables have a causality requirement
equivalent to the one expressed for the VC. We also have to
express the blocking read and the slow advancing with
intersection of the sensing (or actuating) requirements. Call the
first event of Ax :)0,*,1,1,(0 Axe = . For each two events of

Ax of the type),,,1,(Tvnxe A= and),,1,1,(Tvnxe A ′′+=′ , it

must be TT ′≤ , and there exist M events of the type
),,,0,(iiiii Tvnxe = , Mi ≤≤1 , such that iTTi ≤∀ , and

TTi i ′≤∃ , and I
M

i
ivv

1=

=′ .

The composition of VC, VS, and VA processes can be easily
obtained matching the corresponding connections. The result
is a WSN process.

VI. CONCLUSIONS

We introduced a MoC to support SNAL: a Sensor Network
Application Language. The initial goal of this language is to
capture the specification at the application level and translate
them into a set of requirements for the network architecture.
Our solution allows for specifying the application in terms of
logical components (controller, sensor and actuators) and
services, completely independent from the implementation
space. SNAL is characterized by an untimed MoC that merges
typical process network characteristics with a
publish/subscribe flavor typical of application layer languages.
This MoC forces the description of the WSN to have a
controller centric view, limiting the behavior of sensor and
actuators using blocking read mechanism.
We believe the proposed MoC allows for the right mix of
expressiveness and analyzability required by such a domain
specific language.

REFERENCES

[1] J. Rabaey et al., ``PicoRadio Supports Ad Hoc Ultra-low Power
Wireless Networking'', IEEE

[2] J. Kahn, R. Katz, and K. Pister, ``Next Century Challenges:
Mobile Networking for Smart Dust'', MobiCom,
1999.Computer Magazine, July 2000.

[3] J. Hill, D. Culler, ``Mica: A Wireless Platform for Deeply
Embedded Networks'' IEEE Micro., vol22 (6), Nov/Dec 2002,
pp.12-24.

[4] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D.
Culler, ``The nesC Language: A Holistic Approach to
Networked Embedded Systems'', Proceedings of Programming
Language Design and Implementation (PLDI) 2003, June 2003.

[5] P. Levis, N. Lee, M. Weksh, and D. Culler, ``TOSSIM: Accurate
and Scalable Simulation of Entire TinyOS Application'',SENSYS
03.

[6] A. Varga, ``The OMNeT++ Discrete Event Simulation System'',
in European Simulation Multiconference June 2001.

[7] P. Baldwin, S. Kohli, E.A. Lee, X. Liu, Y. Zhao, ``Visualsense:
Visual Modeling for Wireless and Sensor Network Systems'',
UCB ERL Memorandum UCB/ERL M04/8 April 23, 2004.

[8] http://ptolemy.eecs.berkeley.edu
[9] M. Sgroi, Adam Wolisz, Alberto Sangiovanni-Vincentelli and Jan

M. Rabaey, “A Service-Based Universal Application Interface
for Ad-hoc Wireless Sensor Networks'', whitepaper,
U.C.Berkeley 2004.

[10] E. A. Lee and A. Sangiovanni-Vincentelli, ``A Framework for
Comparing Models of Computation'', IEEE Transactions on
CAD, 17(12), December, 1998.

[11] A. Benveniste, B. Caillaud, L.P. Carloni, P. Caspi, and A.L.
Sangiovanni-Vincentelli, “Heterogeneous Reactive Systems
Modeling: Capturing Causality and the Correctness of Loosely
Time-Triggered Architectures (LTTA)”, Proceedings of the
Fourth International Conference on Embedded Software
(EMSOFT), 2004

[12] A. Benveniste, L.P. Carloni, P. Caspi, and A.L. Sangiovanni-
Vincentelli, “Heterogeneous Reactive Systems Modeling and
Correct-by-Construction Deployment”, Proceedings of the
Third International Conference on Embedded Software
(EM SOFT),

[13] M. Sgroi, “Platform-based Design methodologies for
Communication Networks” Ph.D. Thesis, U.C.Berkeley, Fall
2002.

[14] J. Misra, “Distributed Discrete-Event Simulation”.
[15] A. Pinto, “Metropolis Design Guidelines”, U.C.Berkeley,

UCB/ERL Memo 04/40, November, 2004
[16] http://www.motion.aptd.nist.gov/

