
 
Abstract—In this paper we introduce a new model of 

computation that is the basis for SNAL: a Sensor Network 
Application Language. In our design flow, the user describes the 
network in terms of logical components, queries and services, 
and then SNAL captures these specifications and produces a set 
of requirements that the network has to satisfy to ensure a 
correct functionality. We describe a MoC that supports this 
language.  

I. INTRODUCTION 

The complexity of the design task and the variety of skills 
needed to develop applications and implementation platforms, 
 make the task of developing an effective design methodology 
for Wireless Sensor Networks (WSN) quite challenging.  
 The ideal solution should deal with all phases of the design 
process from conception to implementation. As often is the 
case in other application areas, methods and tools are readily 
available to develop hardware platforms, [1][2][3], but they lack 
for other phases that deal with higher level of abstractions.  
 The most common design methodology for WSN starts with 
the description of the protocol specifications using the 
NesC/TinyOS stack [4]. The NesC/TinyOS platform was 
developed at U.C.Berkeley and it leverages on a "method call" 
model of computation. It was designed to describe component-
based architectures using a simple event-based concurrency 
model. This platform was enriched with a simulation 
environment called TOSSIM [5]. Its success is also related to 
the wide spreading of the hardware platforms of the Mica 
family [3]. Remarkably, the combination of Mica and TinyOS 
allowed for a great push of research in the WSN community. 
  Alternatively, protocol solutions are simulated using 
environment such as OMNET++ [6] or VisualSense [7] and 
then implemented in NesC/TinyOS. Omnet++ is a discrete 
event simulator developed by Andras Varga at the Technical 
University of Budapest. Although not specifically targeting 
the WSN domain, Omnet++ is widely used within the 
communication community for protocol simulations, especially 
in European institutions. 
Visuals ense is a modeling framework for WSN developed as 
part of the Ptolemy project at U.C.Berkeley [8]. It is an 
extension of a discrete-event model with an extra capability of 
describing properties of the wireless connectivity. Visualsense 
is certainly a powerful tool to model and evaluate protocol 
solutions under different scenarios.       

   Although an effort to move to a higher layer of abstraction is 
certainly visible, especially with Visuals ense, we believe that 
the current design flows lack of a top-down approach.    
 In [9] it is proposed a universal application interface, which 
allows programmers to develop applications without having to 
know unnecessary details of the underlying communication 
platform, such as air interface and network topology. The goal 
of [9] was "defining a standard set of services and interface 
primitives (called the Sensor Network Services Platform or 
SNSP) to be made available to an application programmer 
independently on their implementation on any present and 
future sensor network platform". Motivated by this work, we 
decided to implement a Sensor Network Application Language 
(SNAL). 
 The design flow that we envision can be summarized as 
follows: 
1. Application is specified using SNAL and constraints for 

the network architecture are generated 
2. A protocol stack with an abstraction of a hardware 

platform (network architecture) is selected as a solution of 
a covering problem. This implies the creation of a library of 
network architectures whose performance can be modeled 
using protocol level tools (i.e. VisualSense or Omnet++) 

3. Once the protocol stack is selected, a hardware platform 
exploration can be performed. Metropolis is a candidate 
for this step. Alternatively, if the hardware platform is 
given (i.e. Mica, TELOS) the protocol stack can be directly 
implemented using specific tools (i.e. NesC/TinyOS) 

    
   The goals  of SNAL should be, in order of priority: 
1. Allow user to describe the network in terms of logical 

components queries and services, as suggested in [9], 
without any knowledge of the protocol stack or the 
hardware platform. 

2. Capture these specifications and produce a set of 
constraints that the protocol stack and the hardware 
platform have to satisfy to ensure correct functionality of 
the network 

3. Simulate WSN applications whenever an abstraction of 
the protocol stack and the hardware platform is available.  

  
We believe that SNAL should have the following 
characteristics: 
1. It must be component based, and create a logical 

architecture in the WSN where controllers are masters and 
sensors and actuators are slaves, as suggested in [9]. This 
will allow for exploiting the specificity of our domain.  
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2. Since SNAL is based on a service platform it should have 
a “publish/subscribe” flavor to express the access at these 
services.  

3. It must capture all the possible scenarios that a given 
program can generate. 

 
   A language is a combination of a MoC and a set of 
primitives. In [9] some primitives for SNAL are described, but 
there is no indication of what a pertinent MoC should be. 
In this paper we present a MoC to support SNAL. First, we 
explain the features of our MoC using an intuitive approach. 
Secondly, we provide a formal description using an extension 
of the Tagged Signal Model (TSM) [10] notation.      
Although only field examples can give a final word, we believe 
that our solution offers a good trade-off between the 
necessary power of expressiveness and analysis capability 
typical of domain specific languages.              

II. THE MOC 

According to [9] a WSN is composed of three types of logical 
components, Virtual Controller (VC), Virtual Sensor (VS), 
Virtual Actuator (VA), and a set of services. Specifically, [9] 
identifies six types of services: two of them, Query service and 
Command service, are used by the logical components to 
communicate, the other four, Time Synchronization Service 
(TSS), Location Service (LS), Resource Management Service 
(RMS), and Concept Repository Service (CRS), are used by the 
logical components to interpret the content of the received 
queries or commands.  
Consequently, in our MoC we consider only four types of 
components: the three logical components VC, VS, VA, and a 
service component CRS that groups all the remaining services. 
Each logical component can call the CRS (and this is the 
publish/subscribe part of our MoC). The only connections 
allowed between logical components are the ones between: VC 
and VC, VC and VS, VC and VA. Consequently, no connection 
is allowed between two VS’s (that would be a multihop routing 
and as such a protocol choice) and no direct connection 
between VS and VA. 
 

1. Virtual Controller 
A VC is an abstraction of a set of controlling algorithms for the 
WSN.  Ideally, the VC runs a controlling algorithm and when it 
needs data or decides an action it sends a query or a command 
to another logical component. Since the VC is the “brain” of a 
WSN it has to be a powerful actor. Consequently the only 
restriction to its behavior is a simple causal relationship 
between the events of sending queries and the events of 
receiving a reply.  
 

2. Virtual Sensor 
A VS is an abstraction of a set of measuring devices and it is 
defined by the list of parameters that can be read, and by the 
primitives that are used for reading them. At this level we are 
not interested whether it is implemented by a sensor, by a set 
of sensors, or by a controller with sensing capabilities.  
The VS works as follows: 

• It reads a query from an input channel and asks the CRS 
for interpretation of the query 

• After receiving that interpretation, the VS advances its 
thread with the requested parameters and produces the 
data as required.  

• The VC responds to the query. 
 
An interesting situation happens when more than one VC is 
sending queries to the same VS. For example: a VS has two 
input channels from two different VC’s. From channel 1 it 
receives a query that is interpreted as “give me humidity 
measurements until time T1 with a particular sampling rate R1” 
and it advances its thread accordingly. Then, from the same 
input channel receives another query that can be interpreted as 
“give me humidity measurements until time T2 with a sampling 
rate R1” and advances accordingly. Then, from the other input 
it receives a query that means “give me humidity 
measurements until time T3 with a sampling rate R3” and 
assume T1<T3<T2 and R1<R3. Consequently, to service the 
third query, the VS should backtrack and reproduce the 
sampling with a higher rate. This happened because we are 
using an untimed MoC, but the content of the queries carries 
some information on the real time that is captured by the CRS. 
A clean way to deal with this problem is to introduce a 
blocking read for the VS. Reviewing the previous example, after 
receiving the first query, the VS waits for the other input 
channel to have a query and only when both inputs have a 
token it evaluates the two queries together. As a result the VS 
advances its sampling process with rate R3 (the highest of the 
two) until T1 (the earliest deadline). At this point the first 
query is fully serviced and the token on the first input is 
consumed. The other query has not been completely serviced 
yet, hence the relative token remains. When another query 
arrives at the first input channel the query evaluation process 
starts again, the VS advances and so on. 
When a VC does not need to communicate to the VS anymore, 
it sends a t  symbol. The meaning of the t  symbol is "any 
behavior from now on". Consequently, such a query will never 
be completed and the relative token remains there. This  way we 
do not introduce artificial deadlocks. When a VS interface has t  
's in all its inputs it means that it is not needed anymore and 
stops executing. 
 As a result, advancing the VS “little by little” all the 
specifications are captured and we are able to correctly 
characterize all the dynamic of the sensing requirements. 
  Notice that this blocking read is only done to capture the 
specifications at the application level and create correct 
requirements for the network architecture. At protocol level, 
when the application is mapped into real time, there is no 
commitment to implement the blocking read.   
From an expressiveness perspective, introducing a blocking 
read limits the behavior of the VS to what the VC decides. This 
way we force a master-slave relationship and this is a way to 
explore the specificity of this domain. 
 

3. Virtual Actuator 



A VA is an abstraction of a set of devices that can influence 
the environment. The semantic is very similar to the case of the 
VS, with the difference that the connections between a VC and 
VA carry only commands, and that the replies carry only 
acknowledgements. 

III. EXTENSION TO THE MODEL 

Assume that connections between the VC and the VS are 
constrained to be single port connections. 
Consider the following scenario with two VC’s connected to 
two VS’s, and: 
• VC1 waits for the data coming from VS1 to decide if 

sending or not a query to VS2 
• VC2 waits for the data coming from VS2 to decide if 

sending or not a query to VS1  
The proposed blocking read would create a deadlock. 
Nevertheless this is a realistic scenario we need to be able to 
capture (typical of an emergency reactive network where if a 
controller receives an alert message from a set of sensors it 
also queries another set of sensors to accurately characterize 
the issue). This is due to the fact that at some point in the VC 
codes there is a “if, then, else” block whose relative branches 
have a “send query” instruction. Since we are allowing for 
single connections only, the MoC fails to capture this 
scenario.   
A simple extension to the model is allowing multiple ports 
connections between the VC and the VS. In particular, a 
connection has as many ports as the number of branches in 
the VC program. As a result this number does not need to be 
specified by the user, but it can be inferred by the branching 
tree of the controlling algorithm. When a particular branch 
does not need the services of a particular VS, it sends a t 
symbol in the relative connection.   
This way we are able to capture all the possible scenarios of 
the WSN and generate a correct set of requirements. 

IV. RELATED MOC’S 

In this section we try to relate the proposed MoC to other 
existing ones outlining similarities and differences.  
The communication between logical components is similar to a 
Process Network with a blocking read mechanism to prevent 
non determinism for the virtual sensor and actuator, and 
without the blocking read for the virtual controller. This tiered 
architecture is fundamental to concentrate all the decision 
capabilities at the virtual controller. 
As already mentioned SNAL has to support a complex tag 
system. With reference to the Tagged Signal Model (TSM) 
notation, consider a connection as a signal and a query as an 
event. This event has a tag (that identifies its order within the 
signal), and a value (content of the query). The value itself is a 
composition of two types of information: the type of data 
required and the temporal scope of those data. This last 
information is referred to real time and enables to order queries 
coming from different virtual controllers. As already explained 
the only entity that has a notion of this order is the CRS. 
Consequently, the CRS is able to order the query according to 
their real time and also to intersect the sensing requirement 

expressed in their content. We believe this is similar to the 
concept of unification of tag and values expressed in [11][12]. 
In our solution this unification is performed on demand via a 
publish/subscribe mechanism. 
 Another asset of our MoC is the capability of capturing all 
possible scenarios. This idea was inspired by Ulis se [13]. In 
Ulisse the application is described using Message Sequence 
Charts to capture simple scenarios, and then different 
scenarios are composed using a Petri Net structure. The main 
difference with Ulisse is that in our case we already know what 
type of components populates the network and we are able to 
characterize them in a sort of hierarchy. Leveraging on this 
knowledge, we are able to propose a component based 
approach that is able to maintain a high level of expressivity 
(as was the case with Ulisse), and also allows for a more 
synthesis oriented view of the system.  
The idea of introducing the t query to resolve unwanted 
deadlocks can be seen as a particular case of the null message 
introduced by Misra in [14] when dealing with asynchronous 
parallel simulations.  Similarly to [14], the t query does not 
have any physical implementation, but it is a useful notation to 
avoid deadlock when capturing specifications. 
A closer look at the behavior of the logical components 
outlines their similarity to the threaded processes of 
Metropolis [15]. In particular we believe that the separation of 
the component in task and interface is a first important 
refinement. Ideally, from the task we will be able to generate the 
computation algorithm for the single hardware components, 
while from the interface we will read the requirements for the 
communication network. Furthermore, we believe that a 
Quantity Manager is a perfect candidate for the implementation 
of the CRS. These considerations drive our next step of 
integrating the proposed MoC in Metropolis.     
 An interesting approach to the design of interfaces for sensor 
network components is described in the standards of the IEEE 
1451 family [16]. This family of standard was created to 
improve the reusability of the network and component 
solutions for sensor networks within manufacturing plants. 
Although the initial targets were wired networks, the 
applicability of those concepts to a wireless solution seems to 
be appealing. In IEEE 1451 there is a first concept of logical 
components, where a sensor for example identifies a group of 
sensing devices rather than a single hardware component. 
Another interesting aspect is that the interfaces for the 
controlling entities of the network are more powerful than the 
ones for sensors and actuators, therefore implying a master-
slave logical architecture as we do. Nevertheless, those 
standards are specifically target to the design of interfaces and 
they can hardly be generalized to a complete application 
language.  

V. FORMALIZATION 

In this section we give a more formal characterization of the 
proposed MoC. Although a description using the classical 
TSM would be appropriate, the presence of a concrete 
semantics makes the description hard to read. We decided 
instead to describe the MoC borrowing the idea presented in 



[11][12] of using an extra tag set to represent an order relation 
among events of different signals (variables).  
In particular we define a query as an event of the type 

),,,,( Tvncxe = , where: x is the reference variable (in our case 

the relative connection), c can be either 0 or 1 and represents 
the fact that the query was generated by a VC asking for data 
(c=0) or a VS replying to a previous request (c=1), n is natural 
number and indicates the sequence number of the query within 
the variable x (the internal tag), v expresses the sensing (or 
actuating) requirements, T is a real number specifies the end of 
the temporal scope of the query (reference to real time). With 
this notation a t query is an event of the type ),,,0,( ∞∗= nxe .   

A VC with M connections is a process described by a set of 
variables (connections) ),..,( 1 MxxP = and a causality 

relationship among elements within the same variable that can 
be expressed as follows: for each ),,,1,( Tvnxe = , there must 

exist an event ),,,0,( Tvmxe ′′=′ with m<n (a reply follows a 

request). 
A VS (and similarly a VA) with M connections is a 
process ),,..,( 1 AM xxxP = , where Mxx ,..,1 refer to the M 

connections and Ax describes the advancing behavior of the 

VS. The connection variables have a causality requirement 
equivalent to the one expressed for the VC. We also have to 
express the blocking read and the slow advancing with 
intersection of the sensing (or actuating) requirements. Call the 
first event of Ax : )0,*,1,1,(0 Axe = . For each two events of 

Ax of the type ),,,1,( Tvnxe A= and ),,1,1,( Tvnxe A ′′+=′ , it 

must be TT ′≤ , and there exist M events of the type 
),,,0,( iiiii Tvnxe = , Mi ≤≤1 , such that iTTi ≤∀ , and 

TTi i ′≤∃ , and I
M

i
ivv

1=

=′ . 

The composition of VC, VS, and VA processes can be easily 
obtained matching the corresponding connections. The result 
is a WSN process.  

VI. CONCLUSIONS 

We introduced a MoC to support SNAL: a Sensor Network 
Application Language.  The initial goal of this language is to 
capture the specification at the application level and translate 
them into a set of requirements for the network architecture. 
Our solution allows for specifying the application in terms of 
logical components (controller, sensor and actuators) and 
services, completely independent from the implementation 
space. SNAL is characterized by an untimed MoC that merges 
typical process network characteristics with a 
publish/subscribe flavor typical of application layer languages.  
This MoC forces the description of the WSN to have a 
controller centric view, limiting the behavior of sensor and 
actuators using blocking read mechanism.  
We believe the proposed MoC allows for the right mix of 
expressiveness and analyzability required by such a domain 
specific language.   
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