
On Generating Safe Controllers for Discrete-Time Linear Systems

Adam Cataldo

EECS 290N Report
December 17, 2004

University of California at Berkeley
Berkeley, CA, 94720, USA

acataldo@eecs. berkeley.edu

Abstract

In this paper I describe a implementation procedure for
generating controllers to guarantee safety constraints for
controllable discrete-time linear systems. The first two sec-
tions are a summary of the work of [6]. The contribution of
this paper is the discussion of the limitations of this method
and future research directions. We omit any discussion of
complexity and focus instead on functionality questions.

1 Introduction

The classic control system problem is to design a con-
troller which drives some error function to zero as time goes
to infinity. Finding a controller of this type is called the sta-
bility problem in control systems. These controllers have
had huge impact in many engineering disciplines including
circuits, mechanical systems, and chemical process control.
Solving the stability problem does not let us say anything
about the transient behavior of a system. In many cases,
this is inadequate. We may for example wish to guarantee
that a robot never collides with an obstacle at any time or
that the change in concentration of a chemical is bounded
by a certain amount at each time. As computers become
embedded in more physical systems, computational meth-
ods for designing such controllers will become increasingly
relevant.

In [6], Tabuada and Pappas give a method for gener-
ating such controllers for controllable discrete-time linear
systems. We focus almost exclusively on extending the re-
sults of this paper, because this paper, along with a non-
linear extension in [5], are the only papers (to the author’s
knowledge) that give methods for generating safe control

laws on discrete-time control systems over a broad class of
safety constraints.

Let x : N0 → Rn describe the evolution of a system’s
state with respect to time andu : N0 → Rm describe the
time evolution of the control input. The design problem is
to chose a control input such that the system’s state follows
a “safe” evolution.. The system is discrete-time, linear, and
time-invariant if there exist matricesA ∈ Rn×n andB ∈
Rn×m such that∀k ∈ N0,

x(k + 1) = Ax(k) + Bu(k). (1)

The system is controllable if for any initial statex(0) ∈ Rn,
for any timek ≥ n, and for any desired statep ∈ Rn, there
exists au : N0 → Rm, such that the solution to Equation 1
satisfies

x(k) = p. (2)

See [2] for an introduction to controllability.
A feedback control law is a mapc : Rn → Rm. If the

state at timet is x(t), we will applyu(t) = c
(
x(t)

)
. Then

the next state will only depend on the current state. This
feedback connection is always well defined [4].

For the system in Equation 1, there is transi-
tion system over which our safety properties are de-
fined. In our context, a transition system is a tuple
S = (Q,Q0, V, f, h), where:

• Q is a set of states,

• Q0 ⊆ Q is a set of initial states,

• V is a set of values,

• f : Q → S(Q) is the state-update map assigning the
set of possible next statesf(q) to eachq ∈ Q,



• h : Q → V is a map assigning valueh(q) tob each
q ∈ Q.

Thought of as a concurrent model of computation, the set of
tags isT = N0, and the values areV .

In our caseQ = Rn, Q0 ⊂ Rn, and

q2 ∈ f(q2) ⇔ ∃p ∈ Rm, q2 = Aq1 + Bp. (3)

That is q1 can take a transition toq2 if there is a control
input p which will push stateq1 to q2 in one step. We will
later defineV andh for our example.

A (initialized) run of a transition system is a finite or
infinite sequencer = (r0, r1, . . .) ∈ Q∗∗ wherer0 ∈ Q0

andri → ri+1. In our case, given anyu : N0 → Rm and
any initial statex(0) ∈ Q0 the solution

(
x(0), x(1), . . .

)
to Equation 1 is a run. The languageL(S) of the transition
system is the set of all possible finite observation sequences,
that is

L(S) =

ō ∈ V ∗

∣∣∣∣∣∣
∃ a runr ∈ Q∗ of S,
∀t ≤ length(r),

ōt = h(rt)

 . (4)

We similarly define theω-languageLω(S) as the set of all
possible infinite observation sequences. A transition sys-
tem output can be thought of as a sequence in the language
or theω-language. An input can be thought of a decision
maker which chooses which state transition inf(q) to make
at each timet and each statert, although the decision mak-
ing procedure is not included in the model.

Given two transition systemsS1 andS2 with the same
value setV , their parallel compositionS1 ‖ S2 =
(Q,Q0, V, f, h) is defined by:

• Q =
{
(q1, q2) ∈ Q1 ×Q2

∣∣h1(q1) = h2(q2)
}

,

• Q0 =
{
(q1, q2) ∈ Q0

1 ×Q0
2

∣∣h1(q1) = h2(q2)
}

,

• (p1, p2) ∈ f(q1, q2) ⇔ p1 ∈ f1(q1) andp2 ∈ f(q2),

• h(q1, q2) = h1(q1) = h2(q2).

Note thatL(S1 ‖ S2) = L(S1) ∩ L(S2). Thus parallel
composition can be thought of as requiring the outputs of
the transition systems to be equal.S1 = (Q1, Q

0
1, V, f1, h1)

andS2 = (Q2, Q
0
2, V, f2, h2) are bisimilar with the same

valueV space are bisimilar ifL(S1) = L(S2).

1.1 Linear Temporal Logic

Let P be a set of predicates over the valuesV for a
transition system. Eachp ∈ P is a map fromV to
B = {true, false}. We let true : V → B be the constant
function with true(v) = true andfalse : V → B be the
constant function withfalse(v) = false.

Let P(P ) be the powerset ofP . Given an infinite word
w = (w0, w1, . . .) ∈ Lω(S), define a strings : N0 →
P(P ) as follows:

p ∈ s(t) ⇔ p(wt) = true. (5)

Now define LTL formulae as:

• true, falseare LTL formulae

• Any p ∈ P is an LTL formula.

• If ϕ1 andϕ2 are LTL formulae, thenϕ1 ∧ ϕ2, ¬ϕ1,
©ϕ1, andϕ1Uϕ2 are LTL formulae.

Givens : N0 → P(P ), we says satisfies LTL formula
ϕ at timet, s(t) � ϕ, under the following conditions, where
p ∈ P is a predicate andϕ1 andϕ2 are LTL formula:

• s(t) satisfiesp:
s(t) � p ⇔ p ∈ s(t),

• s(t) does not satisfyϕ1:
s(t) � ¬ϕ1 ⇔ s(t) 2 ϕ1,

• s(t) satisfiesϕ1 andϕ2:
s(t) � ϕ1 ∧ ϕ2 ⇔

(
s(t) � ϕ1

)
∧

(
s(t) � ϕ2

)
,

• s(t) satisfiesϕ1 next:
s(t) � ©ϕ1 ⇔ s(t + 1) � ϕ,

• s(t) satisfiesϕ1 until ϕ2:
s(t) � ϕ1Uϕ2 ⇔
∃N ∈ N0,

(
∀k < N, s(t+k) � ϕ1

)
∧

(
s(t+N) � ϕ2

)
.

By convention,s(t) � true ands(t) 2 false.
In our case, the strings will correspond to properties that

x will satisfy as it varies in time. For example, the state
always remains in some setG ⊂ Rn is equivalent to LTL
formula

¬
(

true U¬inG
)
,

where inG is a predicate corresponding to the stateq ∈ G.
Here our valuev ∈ V would indicate whether or not the
state is inG or not.

A Büchi automata is a tupleA = (Q,Q0, V, f, h, F )
where S = (Q,Q0, V, f, h) is a transition system and
F ⊂ Q is a set of accepting states. A Büchi automata ac-
cepts only infinite sequences in its behavior. An initialized
run r = (r0, r1, . . .) ∈ Qω is accepted byA if there are
infinitely manyi ∈ N0 with ri ∈ F . We can convert any
LTL constraints over a finite observation setV into a Büchi
automata which only accepts runs satisfying our LTL con-
straints. See [7] for a nice explanation of how to do this. By
composing the resulting transition system with our original
system, we restrict the behaviors of the original system to
satisfy the LTL constraint.

2



1.2 Semilinear Sets over the Observation Space

For a controllable discrete-time linear system, a particu-
lar m-dimensional subspaceO of Rn, has a nice property
for defining safety properties over. Letbi denote theith

column ofB. Let

µi = min
{

k < n

∣∣∣∣span{bi, Abi, . . . , A
n−1bi} =

span{bi, Abi, . . . , A
kbi}

}
(6)

Then we defineO as

O = span{Aµ1b1, A
µ2b2, . . . , A

µmbm}. (7)

We call this the observation space. From [4], we know that
this space will in fact bem-dimensional. LetπO : Rn →
O give the projection of a point onto this subspace. The
importance of this subspace is that given any desired state
trajectoryxd : R → Rn and any initial condition, there
exists a control input such thatπO

(
x(t)

)
πO

(
xd(t)

)
for all

t > max{µ1, . . . , µm}.

A set is semilinear if it can be described through unions,
intersections, and complements of the following primitive
sets: {

x ∈ Rn
∣∣fT x + c ∼ 0

}
, (8)

wheref ∈ Qn, c ∈ Q, and∼∈ {=, >}. We use rational
numbers here instead of real numbers, so that we can always
perform exact numerical computations and not be subject to
roundoff error. This does not limit us in any practical sense,
since any real number can be approximated arbitrarily close
by a rational number. Thus, we will also assume thatA ∈
Qn×n andB ∈ Qn×m.

Suppose we partitionO into a finite number of semil-
near sets. We let our valuesV be the collection of these
sets. We letπV : O → V be the projection operator that
projects each point inV into its observation. Then we can
let our transition system beS = (Rn, Q0, V, f, πV ◦ πO).
The main result of [6] is that for any linear temporal logic
constraints over this transition system, we can always com-
pute a set of control laws that guarantee our desired LTL
property or decide that no such control law exists. These
LTL properties will be encodings of safety properties, such
as collision avoidance, so our control laws will be able to
guarantee or safety properties.

2 Implementation

As of the writing of this paper, I have began a Ptolemy II
[1] implementation of the procedure to generate safe control
laws for discrete-time controllable linear systems. The idea
is to have a Ptolemy actor which takes the state as input and
produces a control input as output which guarantees safety

of the system. The parameters to this actor would include
theA andB matrix as well as the observation spaceO and
the desired LTL constraints that guarantee safety.

After the parameters are given, the control actor would
refine itself to generate the control lawc : Rn → Rm. Since
the method of [6] only gives a method for generating a set
of possible control laws, some decision would have to be
made as to what control input to chose (minimum norm,
minimum change in value, etc.).

Our first step in computing the control law is to compute
a transition systemSΣ which is bisimilar to our discrete-
time control system with only a finite number of states. [6]
gives us the bisimulation algorithm which computesSΣ.

To compute our controller, we must compute a Büchi
automataAC which accepts our LTL formula. The next step
for our computation is to compute the parallel composition
of the corresponding transition systemSC with SΣ. This
allows only behaviors which satisfy the LTL formula. [3]
gives an algorithm for computing such a controlled system
which allows the maximum number of possible behaviors.
This composition can be thought of as disabling possible
transitions inSΣ.

Each state inSΣ corresponds to some subset ofRn. For
each disabled transition emanating from a given state, there
will be a restriction on the allowable values of the control
input c(p) for p in the corresponding subset ofRn.

If a transition controller exists in this case, [6] gives us
a method to compute valid control laws. The control laws
will be described through semilinear sets which depend on
the states. There will be a finite number of possible control
laws. As was mentioned earlier, we are left with a choice in
deciding which particular control law to use.

3 Limitations

This method has some limitations which make it imprac-
tical for many applications. Many real-world systems can-
not be modelled as linear. Extensions of this method to non-
linear systems has been addressed in [5]. Even for linear
systems, this method has some severe restrictions.

3.1 Dimension

Many control systems have a state space dimensionn
which is larger than the number of inputsm. Using this
method, we only have control over the projection of our
state on anm dimensional subspace of our state space, so
we are limited in the type of constraints we can impose on
our system.

We may be able to transform the observation space
through an equivalent feedback system. That is given some
K ∈ Rm×n, we can let our control input be given by

3



u(k) = Kx(k) + v(k), andv becomes our new control
input. Then

x(k + 1) = (A + BK)x(k) + v(k). (9)

As an example from [6], if

A =
(

1 1
0 1

)
, B =

(
1/2
1

)
, thenV =

(
3/2
1

)
. (10)

If we applyK = (0 − 1), then our newV becomes(1 0)T

An interesting question is if it is possible to find aK
which transformsV into an arbitrarym dimensional sub-
space ofRn. Even if we can, we are always limited tom
dimensional constraints.

3.2 Bounded Control Inputs

In many systems, there are physical limitations to the
amount of control we can apply at each time. We have as-
sumed that we can apply any control inputu : N0 → Rm,
but in practice we can only applyu : N0 → U , whereU
is some bounded subset ofRm. What if we can describe
U through semilinear sets? Are we still able to find safe
control laws? The answer is in general no.

Suppose we have the following control system:

x(k + 1) = Ax(k) + Bu(k) =
(

0 1
0 1

)
x(k) +

(
0
1

)
u(k).

(11)
Suppose we can describeU through a semilnear subset of
Rm. We might try and transfer these constraints to the state
by adding states to measure the control input. We define our
new system as(

x(k + 1)
y(k + 1)

)
=

(
A 0
0 0

) (
x(k)
y(k)

)
+

(
B
I

)
u(k) (12)

The problem here is that this system may no longer be con-
trollable, so we cannot use the results of [6] to find a bisim-
ilar transition system with finite state space representation.

In some cases we may not lose controllability using this
technique. Consider again the case where

x(k + 1) = x(k) + u(k). (13)

We can then define(
x(k + 1)
y(k + 1)

)
=

(
1 0
0 0

) (
x(k)
y(k)

)
+

(
1
1

)
u(k) (14)

We still only have control over one dimension, sincem = 1,
so if our constraints on the statex conflict with our bounds
on the control input, we have no way of finding a finite
bisimilar system.

4 Conclusions

We can automate the process of generating safe con-
trollers for controllable discrete-time linear systems us-
ing the method of [6]. We are trying to implement this
in Ptolemy II. There are some fundamental limits to this
method. First, we are limited in the dimension of constraints
we can apply on the states. Second, we have no way of han-
dling constraints on the control input. The method of [6]
relies on being able to transform our control system into a
transition system with a finite representation. It remains to
be seen if we can find a finite representation of systems with
more general constraints.

References

[1] C. Brooks, E. Lee, X. Liu, S. Neuendorffer, Y. Zhao,
and H. Zheng. Heterogeneous concurrent modeling and
design in java. Memorandum UCB/ERL M04/27, Uni-
versity of California, Berkeley, July 2004.

[2] F. M. Callier and C. A. Desoer.Linear System Theory.
Springer Verlag, 1991.

[3] P. Ramadge. Some tractable supervisory control prob-
lems for discrete-event systems modeled by Büchi au-
tomata. IEEE Transactions on Automatic Control,
34(1):10–19, January 1989.

[4] E. Sontag. Mathematical Control Theory. Springer-
Verlag, 2 edition, 1998.

[5] P. Tabuada. Nonlinear flat systems admit flat bisimu-
lations. Submitted for publication, 2004. available at
http://www.nd.edu/ ptabuada/papers/FinFlat.pdf.

[6] P. Tabuada and G. Pappas. Linear time logic control
of linear systemsb.IEEE Transactions on Automatic
Control,, Submitted 2004.

[7] P. Wolper. Constructing automata from temporal logic
formulas: A tutorial. InLectures on Formal Methods
and Performance Analysis : First EEF/Euro Summer
School on Trends in Computer Science, volume 2090
of Lecture Notes in Computer Science. Springer-Verlag,
2001.

4

http://www.nd.edu/~ptabuada/papers/FinFlat.pdf

	Introduction
	Linear Temporal Logic
	Semilinear Sets over the Observation Space

	Implementation
	Limitations
	Dimension
	Bounded Control Inputs

	Conclusions

