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Abstract laws on discrete-time control systems over a broad class of
safety constraints.

In this paper | describe a implementation procedure for  Letz : Ny — R"™ describe the evolution of a system’s
generating controllers to guarantee safety constraints for state with respect to time and: Ny — R™ describe the
controllable discrete-time linear systems. The first two sec-time evolution of the control input. The design problem is
tions are a summary of the work of [6]. The contribution of to chose a control input such that the system’s state follows
this paper is the discussion of the limitations of this method a “safe” evolution.. The system is discrete-time, linear, and
and future research directions. We omit any discussion of time-invariant if there exist matriced € R"*"™ andB €
complexity and focus instead on functionality questions.  R™*™ such thatk € Ny,

xz(k+1) = Az(k) + Bu(k). 1)
1 Introduction The system is controllable if for any initial stat€0) € R™,
. _ _ for any timek > n, and for any desired statec R", there
The classic control system problem is to design a con- exists au : N, — R™, such that the solution to Equatiph 1
troller which drives some error function to zero as time goes satisfies

to infinity. Finding a controller of this type is called the sta- z(k) = p. )
bility problem in control systems. These controllers have

had huge impact in many engineering disciplines including See[2] for an introduction to controllability.

circuits, mechanical systems, and chemical process control. A feedback control law is a map: R™ — R™. If the
Solving the stability problem does not let us say anything State at time is z(¢), we will apply u(t) = ¢(x(t)). Then
about the transient behavior of a system. In many casesthe next state will only depend on the current state. This
this is inadequate. We may for example wish to guaranteefeedback connection is always well defingd [4].

that a robot never collides with an obstacle at any time or ~ For the system in Equatiori] 1, there is transi-
that the change in concentration of a chemical is boundedtion system over which our safety properties are de-
by a certain amount at each time. As computers becomefined. In our context, a transition system is a tuple
embedded in more physical systems, computational meth-S = (Q,Q",V, f, h), where:

ods for designing such controllers will become increasingly
relevant.

In [B], Tabuada and Pappas give a method for gener-
ating such controllers for controllable discrete-time linear
systems. We focus almost exclusively on extending the re- o 1/ is a set of values,
sults of this paper, because this paper, along with a non-
linear extension in_[5], are the only papers (to the author's e f: Q — S(Q) is the state-update map assigning the
knowledge) that give methods for generating safe control set of possible next statg¢§q) to eachy € Q,

e () is aset of states,

e Q° C Qis aset of initial states,



e h: Q — V is a map assigning valuk(q) tob each
q€Q.

Thought of as a concurrent model of computation, the set of
tags isT' = Ny, and the values arg.

In our case&) = R™, Q° c R, and

@2 € f(g2) & Ip€R™, g2 = A1 + Bp.  (3)
That is¢; can take a transition tg, if there is a control
input p which will push statey; to g5 in one step. We will
later definel” andh for our example.

A (initialized) run of a transition system is a finite or
infinite sequence = (rg,71,...) € Q** wherery, € Q°
andr; — r;11. In our case, given any : Ng — R™ and
any initial statez(0) € Q° the solution(z(0), z(1),...)
to Equatior [L is a run. The langua@és) of the transition

Let P(P) be the powerset aP. Given an infinite word
w = (wo,w1,...) € L¥(S), define a strings : Ny —
P(P) as follows:

p € s(t) & p(wy) = true (5)
Now define LTL formulae as:

e true, falseare LTL formulae

e Anyp € Pisan LTL formula.

e If 1 andy, are LTL formulae, thenp; A s, —¢1,
O¢1, andp1Ups are LTL formulae.

Givens : Ny — P(P), we says satisfies LTL formula
p attimet, s(t) F ¢, under the following conditions, where
p € Pis a predicate ang andy- are LTL formula:

system is the set of all possible finite observation sequences,

thatis

Jarunr € Q* of S,
vt < length(r),
5,5 = h(Tt)

L(S)

=q0€eV” 4)

We similarly define thev-languagelL“ (S) as the set of all
possible infinite observation sequences. A transition sys-
tem output can be thought of as a sequence in the languag
or thew-language. An input can be thought of a decision
maker which chooses which state transitiorf {§) to make
at each time and each state, although the decision mak-
ing procedure is not included in the model.

Given two transition systemS; and S, with the same
value setV, their parallel compositionS; | S
(Q,Q°,V, f,h) is defined by:

o Q={(q1.42) € Q1 X Q2|h1(q1) = ha(g2)},
e Q°={(q1,42) € QY x Q8|h1(Q1) = ha(g2) },
* (p1,p2) € f(q1,42) & p1 € fi(q1) andp € f(qa),

® h(q1,q2) = hi(q1) = ha(gz)-

Note thatL(S; || S2) = L(S1) N L(Sz). Thus parallel
composition can be thought of as requiring the outputs of
the transition systems to be equéll. = (Q1,QY, V, f1, h1)

and S, (Q2,Q9,V, fa, ho) are bisimilar with the same
valueV space are bisimilar if.(S1) = L(S2).

1.1 Linear Temporal Logic

Let P be a set of predicates over the valuésfor a
transition system. Eaclh € P is a map fromV to
B = {true false}. We lettrue : V" — B be the constant
function with true(v) = true andfalse : V' — B be the
constant function wittialse(v) = false.

e s(t) satisfiep:

s(t)Ep < pes(t),

s(t) does not satisfy; :
1) E =1 & s(t) E ¢,

(t)
(t)
(t)
(t)
s(t) satisfiesp; andys:
(t)
(t)
(t)
(t)

V)

s(t) E o1 Apg & (s(t) E o) A (s(t) F p2),

e s(t) satisfiesp; next:
s(t)EQp1 & s(t+1) Ep,

e

e s(t) satisfiesp; until s
s(t) E o1Ups <

IN € No, (Vk < N, s(t+k) E 1) A(s(E+N) E ¢2).

By conventions(t) F true ands(t) ¥ false
In our case, the strings will correspond to properties that
x will satisfy as it varies in time. For example, the state
always remains in some sét C R" is equivalent to LTL
formula
- (true UﬁinG),

where inG is a predicate corresponding to the sjateG.
Here our valuev € V would indicate whether or not the
state is inG or not.

A Blchi automata is a tuplel = (Q,Q°,V, f,h, F)
where S = (Q,Q° YV, f, h) is a transition system and
F C @ is a set of accepting states. Aiéhi automata ac-
cepts only infinite sequences in its behavior. An initialized
runr = (ro,71,...) € Q¥ is accepted by if there are
infinitely many: € Ny with r; € F. We can convert any
LTL constraints over a finite observation $éinto a Blchi
automata which only accepts runs satisfying our LTL con-
straints. See [7] for a nice explanation of how to do this. By
composing the resulting transition system with our original
system, we restrict the behaviors of the original system to
satisfy the LTL constraint.



1.2 Semilinear Sets over the Observation Space  of the system. The parameters to this actor would include
the A and B matrix as well as the observation spaeend
For a controllable discrete-time linear system, a particu- the desired LTL constraints that guarantee safety.

lar m-dimensional subspaae of R™, has a nice property After the parameters are given, the control actor would

for defining safety properties over. Lét denote thei*” refine itself to generate the control law R™ — R™. Since

column of B. Let the method of([6] only gives a method for generating a set
of possible control laws, some decision would have to be

Mi:min{k<n

spar(b;, Ab;, ..., A" 'b} = (6)  made as to what control input to chose (minimum norm,
spar{b, Abi, ..., A"b;} minimum change in value, etc.).
Our first step in computing the control law is to compute
a transition systendy, which is bisimilar to our discrete-
O = spa{ A" by, AP2by, ..., AFmb,, ). ) time control system with only a finite number of statés. [6]
gives us the bisimulation algorithm which computgs
We call this the observation space. Fram [4], we know that  To compute our controller, we must compute &chi
this space will in fact ben-dimensional. Letro : R" — automatad~ which accepts our LTL formula. The next step
O give the projection of a point onto this subspace. The for our computation is to compute the parallel composition
importance of this subspace is that given any desired statef the corresponding transition syste$a with Ss.. This
trajectoryry : R — R™ and any initial condition, there  allows only behaviors which satisfy the LTL formuld.] [3]

Then we defin® as

exists a control input such thab (z(t)) 7o (za(t)) for all gives an algorithm for computing such a controlled system
which allows the maximum number of possible behaviors.
t > max{p,. .., pm} This composition can be thought of as disabling possible

transitions inSs;.

Each state irbx; corresponds to some subsefisf. For
each disabled transition emanating from a given state, there
{x c R"|fo +e~0), ®) yvill be a restri(_:tion on the aIIowabIe values of the control

inputc(p) for p in the corresponding subsetRf'.
wheref € Q", ¢ € Q, and~€ {=,>}. We use rational If a transition controller exists in this case] [6] gives us
numbers here instead of real numbers, so that we can alwaya method to compute valid control laws. The control laws
perform exact numerical computations and not be subject towill be described through semilinear sets which depend on
roundoff error. This does not limit us in any practical sense, the states. There will be a finite number of possible control
since any real number can be approximated arbitrarily closelaws. As was mentioned earlier, we are left with a choice in
by a rational number. Thus, we will also assume that deciding which particular control law to use.
QHX’R andB E QTIX’ITL.

Suppose we partitio® into a finite number of semil-
near sets. We let our valuds be the collection of these
sets. We letryy : O — V be the projection operator that
projects each point i’ into its observation. Then we can This method has some limitations which make it imprac-
let our transition system b§ = (R™,Q°,V, f, 7y o 70). tical for many applications. Many real-world systems can-
The main result of[6] is that for any linear temporal logic not be modelled as linear. Extensions of this method to non-
constraints over this transition system, we can always com-linear systems has been addressed fin [5]. Even for linear
pute a set of control laws that guarantee our desired LTL systems, this method has some severe restrictions.
property or decide that no such control law exists. These
LTL properties will be encodings of safety properties, such 3.1 Dimension
as collision avoidance, so our control laws will be able to
guarantee or safety properties.

A set is semilinear if it can be described through unions,
intersections, and complements of the following primitive
sets:

3 Limitations

Many control systems have a state space dimension
which is larger than the number of inputs. Using this
2 Implementation method, we only have control over the projection of our
state on anm dimensional subspace of our state space, so
As of the writing of this paper, | have began a Ptolemy Il we are limited in the type of constraints we can impose on
[1] implementation of the procedure to generate safe controlour system.
laws for discrete-time controllable linear systems. The idea We may be able to transform the observation space
is to have a Ptolemy actor which takes the state as input andhrough an equivalent feedback system. That is given some
produces a control input as output which guarantees safetyk’ € R™*™, we can let our control input be given by



u(k) = Kuz(k) + v(k), andv becomes our new control
input. Then

2(k+1) = (A+ BK)a(k) + v(k). )

As an example froni 6], if

14:( >,B ( ),anv:(?f). (10)

If we apply K = (0 — 1), then our new/” becomeg1 0)”
An interesting question is if it is possible to find/&
which transforms) into an arbitrarym dimensional sub-
space ofR™. Even if we can, we are always limited to

dimensional constraints.

11
0 1

1/2
1

3.2 Bounded Control Inputs

In many systems, there are physical limitations to the
amount of control we can apply at each time. We have as-
sumed that we can apply any control input Ny — R™,
but in practice we can only apply : Ng — U, whereU
is some bounded subset Bf”. What if we can describe
U through semilinear sets? Are we still able to find safe
control laws? The answer is in general no.

Suppose we have the following control system:

) z(k)+ ( ) u(k).

(11)
Suppose we can describethrough a semilnear subset of
R™. We might try and transfer these constraints to the state

0 1
0 1

0

z(k+1) = Az(k) + Bu(k) = ( 1

by adding states to measure the control input. We define our®]

new system as

(i 1)

A 0
0 0

B
I

z(k+1)
y(k+1)

y(k)

(@ o) () + (

> u(k)  (12)

The problem here is that this system may no longer be con-

trollable, so we cannot use the results of [6] to find a bisim-
ilar transition system with finite state space representation.

In some cases we may not lose controllability using this
technique. Consider again the case where

(13)

x(k+1) = z(k) + u(k).
We can then define
z(k)

( ) ( )(mm)*(Du%> (14)

We still only have control over one dimension, simee= 1,

so if our constraints on the stateconflict with our bounds
on the control input, we have no way of finding a finite
bisimilar system.

10
0 0

z(k+1)
y(k+1)

4 Conclusions

We can automate the process of generating safe con-
trollers for controllable discrete-time linear systems us-
ing the method of[[6]. We are trying to implement this
in Ptolemy Il. There are some fundamental limits to this
method. First, we are limited in the dimension of constraints
we can apply on the states. Second, we have no way of han-
dling constraints on the control input. The method|[df [6]
relies on being able to transform our control system into a
transition system with a finite representation. It remains to
be seen if we can find a finite representation of systems with
more general constraints.
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