
PtinyOS: Simulating TinyOS in
Ptolemy II

Elaine Cheong
celaine@eecs.berkeley.edu

EECS 290N Project Paper
December 17, 2004

Abstract

TinyOS is a component-based operating system designed
for wireless embedded sensor networks. TOSSIM pro-
vides discrete event simulation of homogeneous TinyOS pro-
grams at the interrupt level. This paper presents PtinyOS,
an integrated development environment built in Ptolemy II
for developing and simulating heterogeneous TinyOS pro-
grams. PtinyOS will allow application developers to eas-
ily transition between high-level simulation of algorithms
to low-level implementation and simulation. This paper
also presents the semantics of the integration between the
Ptolemy II and TinyOS/TOSSIM programming and execu-
tion models.

1 Introduction

Wireless sensor networks provide a way to create flex-
ible, tetherless, automated data collection and monitoring
systems. Building sensor networks today requires piecing
together a variety of hardware and software components,
each with different design methodologies and tools, mak-
ing it a challenging and error-prone process today. Typical
networked embedded system software development may re-
quire the design and implementation of device drivers, net-
work stack protocols, scheduler services, application-level
tasks, and partitioning of tasks across multiple nodes. Little
or no integration exists among the tools necessary to create
these software components, mostly because the interactions
between the programming models are poorly understood.
In addition, the tools typically have little infrastructure for
building models and interactions that are not part of their
original scope or software design paradigms. The goal of
this work is to create integrated tools for networked em-
bedded application developers to model and simulate their

algorithms and quickly transition to testing their software
on real hardware in the field, while allowing them to use the
programming model most appropriate for each part of the
system.

Battery-operated nodes can preserve energy by entering
sleep mode when no interesting events are happening. In
this type of execution, events drive the behavior of the sys-
tem. TinyOS [7] is an event-driven, component-based run-
time environment for the Berkeley/Crossbow sensor net-
work nodes known asmotes. TinyOS components are writ-
ten in an object-oriented style using nesC [4], an extension
to the C programming language. TOSSIM [8] is a TinyOS
simulator for the PC that can execute nesC programs de-
signed for a mote. It contains a discrete event simulation en-
gine which allows modeling of various hardware and other
interrupt events. Although a TinyOS program consists of a
graph of mostly pre-existing components, users must write
their programs in a multi-file, text-based format, whereas a
graphical block diagram programming environment would
be much more intuitive. Additionally, TOSSIM is not de-
signed to simulate a heterogeneous architecture; the same
nesC code must be run on every simulated mote.

Ptolemy II [2] is a software system for modeling, design-
ing, and simulating heterogeneous, concurrent, real-time,
embedded systems. Application developers can design and
model various types of systems in Ptolemy II by choos-
ing the execution semantics (called adomain) that best fits
their particular type of application domain. Ptolemy II sup-
ports hierarchical nesting of heterogeneous models of com-
putation. Ptolemy II includes VisualSense, a network-level
modeling environment for sensor networks based on the dis-
crete event (DE) domain. However, there is currently no
mechanism for transitioning from a sensor network appli-
cation developed in VisualSense to an implementation for
real hardware without rewriting the code from scratch for
the target platform.

Integrating TinyOS/TOSSIM and Ptolemy II combines
the best of both worlds. TinyOS/TOSSIM provides a plat-
form that works on real hardware with a library of compo-
nents that implement low-level routines. Ptolemy II pro-
vides a graphical modeling environment that supports het-
erogeneous systems. This paper describes the integration of
the programming and execution models and the component
libraries of these two systems, which is necessary for build-
ing an integrated tool chain for designing, simulating, and
deploying sensor network applications.

Section 2 describes the TinyOS and TOSSIM program-
ming models. Section 3 describes the architecture of the in-
tegrated Ptolemy II and TinyOS toolchain and investigates
the semantics of this interface. Sections 4 and 5 conclude
with a discussion of related and future work.



2 TinyOS/TOSSIM Programming Models

A TinyOS program consists of a set of nesC compo-
nents that are “wired” together. Figure 1a shows a pro-
gram called SenseToLeds that displays the value of a pho-
tosensor in binary on the LEDs. TinyOS includes a library
of nesC components, including the ones listed in Sense-
ToLeds, such as Main, SenseToInt (shown in Figure 1b),
IntToLeds, TimerC, and Sensor.

A component exposes a set of interface methods. The
component implements itsprovides methods and ex-
pects another component to implement itsuses methods.
In nesC, interfaces can also be parameterized to provide
multiple instances of the same interface in a single com-
ponent. In Figure 1a, the TimerC.Timer interface is param-
eterized. The Timer interface of SenseToInt connects to a
unique instance of the corresponding interface of TimerC.
If another component connects to the TimerC.Timer inter-
face, it would be connected to a different instance. Each
timer could be initialized with different periods.

In TinyOS, there is a single thread of control managed
by the scheduler, which may be interrupted by hardware
events. Component methods encapsulate hardware interrupt
handlers. Methods may transfer the flow of control to an-
other component by calling auses method. Computation
performed in a sequence of method calls must be short, or
it may block the processing of other events. A long running
computation can be encapsulated in atask, which a method
poststo the scheduler task queue. The TinyOS scheduler
processes the tasks in the queue in FIFO order whenever it
is not executing an interrupt handler. Tasks are atomic with
respect to other tasks and do not preempt other tasks.

When a user compiles a TinyOS program for a mote, the
nesC compiler automatically searches the TinyOS compo-
nent library paths for included components, including direc-
tories containing the components that encapsulate the hard-
ware components specific to the mote platform, such as the
clock, radio, and sensors. The nesC compiler generates a
pre-processed C file, which can then be sent to thegcc
cross compiler for the specific type of mote.

TinyOS programs can also be compiled for simulation on
a PC. In this case, the nesC compiler follows the same pro-
cedure but replaces the TinyOS scheduler and device drivers
with TOSSIM code. TOSSIM allows one or more nodes
with the same TinyOS program to be simulated by main-
taining a copy of each component state for each simulated
node. Support for these copies is built into the nesC com-
piler so that the user does not need to modify the TinyOS
program source code.

The TOSSIM scheduler contains a task queue sim-
ilar to the regular TinyOS scheduler. However, the
TOSSIM scheduler also contains an ordered event queue.
Events in this queue have a timestamp implemented as a

configuration SenseToLeds {
} implementation {

components Main, SenseToInt, IntToLeds,
TimerC, DemoSensorC as Sensor;

Main.StdControl -> SenseToInt;
Main.StdControl -> IntToLeds;

SenseToInt.Timer ->
TimerC.Timer[unique("Timer")];

SenseToInt.TimerControl -> TimerC;
SenseToInt.ADC -> Sensor;
SenseToInt.ADCControl -> Sensor;
SenseToInt.IntOutput -> IntToLeds;

}

module SenseToInt {
provides {

interface StdControl;
}
uses {

interface Timer;
interface StdControl

as TimerControl;
interface ADC;
interface StdControl

as ADCControl;
interface IntOutput;

}
} implementation {

...
}

Figure 1. Sample nesC source code.

long long (a 64-bit integer on most systems). The small-
est time resolution is equal to 1 / 4MHz, the original CPU
frequency of the Rene/Mica motes. In the main scheduling
loop, the TOSSIM scheduler first processes all tasks in the
task queue in FIFO order. If there is an event in the event
queue, it then updates the simulated time to the timestamp
of the new event and processes the event. Upon initializa-
tion, TOSSIM inserts a boot up event into the event queue.
The processing of an event may cause tasks to be posted to
the task queue and creation of new events with time stamps
possibly equal to the current time stamp.

3 PtinyOS

PtinyOS is the integration of TinyOS and Ptolemy II
and allows for graphical development of a heterogeneous
set of TinyOS programs.nc2momllibis a pre-runtime tool
that converts nesC files in the TinyOS component library
into the MoML (Modeling Markup Language) format re-
quired by Ptolemy II. Ptolemy II uses this XML-based for-
mat to display TinyOS components as graphical blocks. The
PtinyOS Directoris a runtime tool that contains facilities for
code generation, simulation, and target code deployment.1

1The initial versions of the nesC visualization and code generation fa-
cilities in Ptolemy II were written by Yang Zhao and Edward A. Lee.

Figure 2. SenseToLeds in Ptolemy II.

2



Static semantics In Ptolemy II, basic executable code
blocks are called actors and may contain input and output
ports. An input port may be a simple port that allows only a
single connection, or it may be amultiport that allows mul-
tiple connections. The code block is stored in a class, and an
actor is an instance of the class. PtinyOS is built in Ptolemy
II and inherits these semantics.

In PtinyOS, nesC components are represented by classes,
and component interfaces and interface methods are rep-
resented by ports.uses methods are represented by out-
put ports, andprovides methods are represented by in-
put ports. Parameterized interfaces in nesC with a single
index are represented by multiports. For multiple connec-
tions to a simpleprovidesinterface, each caller will call the
same callee. For multiple connections to aprovidesparam-
eterized interface, each caller will call its own copy of the
callee. The semantics for ausesparameterized interface
are not defined, since they are neither well-defined nor used
in TinyOS. PtinyOS does not support multiply indexed pa-
rameterized interfaces (it is not used in any existing TinyOS
components).

nesC components are converted into Ptolemy II classes
via nc2momllib, which I have implemented as an extension
to the nesC compiler. For each valid component file in the
TinyOS library,nc2momllibgenerates an XML file contain-
ing MoML syntax that specifies the name of the component,
as well as the name and input or output direction of each
port, and whether it is a multiport.

Figure 2 shows a graphical representation in Ptolemy II
of some of the classes created bync2momllib. The figure
shows the equivalent wiring diagram for the SenseToLeds
configuration shown in Figure 1a. Note that the TimerC
component contains a parameterized interface, or multiport,
as indicated by the white triangle. A simple interface, or
simple port, is represented by a black triangle.

Runtime semantics The PtinyOS Director controls code
generation and compilation, simulation, and target code de-
ployment for a single node. Running the model shown in
Figure 2 causes the Director to generate a nesC component
file for SenseToLeds, equivalent to that shown in Figure 1a.
It then uses the nesC compiler to generate a C file contain-
ing modified TOSSIM scheduler functions that can be com-
piled into a shared library and loaded into Ptolemy II and
run via JNI method calls. The Director generates a makefile
to perform the compilation, as well as a Java class to per-
form the loading. The PtinyOS Director allows the user to
easily change a compilation parameter to compile and de-
ploy code for a specific mote target from within Ptolemy
II.

All TOSSIM components call the
queue_insert_event() function to insert new
events into the TOSSIM event queue. When simulating

with PtinyOS, this function also makes a call to Ptolemy II
to insert equivalent events into the Ptolemy II event queue
using fireAt() with the TOSSIM system time as the
argument. At each event timestamp, Ptolemy II will call
the PtinyOS version of the TOSSIM scheduler to process
the event.

The PtinyOS version of the TOSSIM scheduler up-
dates the TOSSIM system time, processes an event in the
TOSSIM event queue, and then processes all tasks in the
task queue. If the TOSSIM event queue contains another
event with the current TOSSIM system time, the scheduler
processes the event along with any tasks that may have been
generated. This last step is repeated until there are no other
events with the current TOSSIM system time. Note that
the order in the main loop is the opposite that of the nor-
mal TOSSIM, which processes all tasks before updating the
time and processing an event in the TOSSIM event queue.
This change is required in order to guarantee causal execu-
tion in PtinyOS, since tasks may generate events with the
current TOSSIM time stamp. Otherwise, new events may
have a time stamp that is before the current Ptolemy II sys-
tem time.

The PtinyOS Director and the nesC components for
the program graph can be embedded in a PtinyOSActor.
The PtinyOSActor can be embedded in the DE domain
of Ptolemy II. The physical environment can be simu-
lated in DE and the data can be fed to the simulated mote
through the PtinyOSActor interface, which serves to con-
vert Ptolemy II token data types into nesC/TOSSIM data
types. For example, most actors used in the DE domain
of Ptolemy II communicate via tokens with values of type
double. The ADC channel of a mote uses 10-bit unsigned
values. The PtinyOSActor automatically performs the lossy
conversion from double to an unsigned integer value that is
masked for 10-bit usage. The PtinyOSActor also performs
conversions from a char representing a LED or radio signal
value in TOSSIM into a boolean-valued token for Ptolemy
II.

By embedding multiple PtinyOSActors, each controlled
by a different PtinyOS Director, in the discrete event (DE)
domain of Ptolemy II, multiple nodes with different pro-

Figure 3. Multiple nodes in Ptolemy II.

3



grams can be simulated at the same time. Separately com-
piled and loaded shared libraries prevent name space col-
lision between different simulated TinyOS programs. Fig-
ure 3 shows a simulation of two nodes, one containing the
SenseToLeds program, and other containing the CntToLeds
program which displays an increasing count in binary on
the LEDs.

4 Related Work

GRATIS II [1] is a Graphical Development Environment
for TinyOS built on top of GME 3 (Generic Modeling En-
vironment). The TinyOS component library is available as
graphical blocks with GRATIS II. Given a valid model, the
GRATIS II code generator can transform all the interface
and wiring information into a set of nesC target files. How-
ever, GRATIS II was developed mainly for static analysis of
TinyOS component graphs and does not support simulation.

TinyViz [8] is a Java-based graphical user interface for
TOSSIM. Other simulators used in the TinyOS commu-
nity for cycle accurate simulation/emulation of the Atmel
AVR (processor used in the motes) instruction set include
ATEMU [9] and Avrora [10]. However, these tools do
not support graphical development of TinyOS component
graphs and do not support heterogeneous nodes.

Em* [5] is toolsuite for developing sensor network ap-
plications on Linux-based hardware platforms called mi-
croservers. It supports deployment, simulation, emulation,
and visualization of live systems, both real and simulated.
EmTOS [6] is an extension to Em* that enables an entire
nesC/TinyOS application to run as a single module in an
Em* system. The EmTOS wrapper library is similar to the
TOSSIM simulated device library. Em* modules are imple-
mented as user-space processes, which means the minimum
granularity of a timer is 10ms, corresponding to the Linux
jiffy clock that is part of the scheduler in the Linux 2.4 ker-
nel. Thus, EmTOS modules are restricted to using the Linux
scheduler as the main programming model.

5 Conclusion and Future Work

This paper describes the integration of TinyOS and
Ptolemy II to form a seamless toolchain for developing,
simulating, and deploying sensor network applications on
the motes. It describes methods for parsing and generating
nesC files and also discusses how the programming mod-
els of TOSSIM and Ptolemy II fit together. The PtinyOS
domain currently has facilities for simulating output to the
LEDs and radio channel and simulating input to the ADC
(analog-to-digital) channels. Radio channel input simula-
tion is still under development.

The radio and ADC channels can easily be integrated
with the wireless channels of VisualSense in Ptolemy II.

PtinyOS provides a bridge between the network-level mod-
eling and simulation of VisualSense and the bit-level sim-
ulation of TinyOS. A user could simulate and test high-
level protocols in VisualSense and transition to testing an
actual implementation for the motes through simulation in
PtinyOS with eventual deployment to the target hardware.
Simulation speed and memory requirements could be im-
proved by taking advantage of the TOSSIM ability to simu-
late multiple homogeneous nodes, which PtinyOS does not
use currently.

The PtinyOS environment also provides a good basis for
investigating actor-oriented models for sensor node soft-
ware. TinyOS/nesC component interfaces use call/return
semantics. In some applications, a message-based actor-
oriented interface may be more suitable. galsC [3] is a ex-
tension to nesC that provides an actor-oriented model on
top of the regular nesC programming model. galsC is cur-
rently targeted for the motes only. An extension to PtinyOS
for galsC would provide a good simulation environment.
Another interesting area of future research would be inte-
grating Em* with PtinyOS, since Em* allows for simulation
with real radios rather than simulated channels and also al-
lows for simulation of heterogeneous architectures (a com-
bination of motes and microservers), rather than the homo-
geneous motes required by TOSSIM.

References

[1] GRATIS. http://www.isis.vanderbilt.edu/projects/nest/gratis/.

[2] Ptolemy project. http://ptolemy.eecs.berkeley.edu.

[3] E. Cheong and J. Liu. galsC: A language for event-
driven embedded systems. InDATE05 (to appear).

[4] D. Gay et al. The nesC language: A holistic approach
to networked embedded systems. InPLDI’03.

[5] L. Girod et al. Emstar: A software environment for
developing and deploying wireless sensor networks.
In USENIX 2004 Annual Technical Conference.

[6] L. Girod et al. A system for simulation, emulation,
and deployment of heterogeneous sensor networks. In
SenSys’04.

[7] J. Hill et al. System architecture directions for net-
worked sensors. InASPLOS 2000.

[8] P. Levis et al. TOSSIM: accurate and scalable simula-
tion of entire tinyos applications. InSenSys’03.

[9] J. Polley et al. Atemu: A fine-grained sensor network
simulator. InSECON’04.

[10] B. Titzer et al. Avrora: Scalable sensor network simu-
lation with precise timing. online manuscript, 2004.

4


