
A Framework for Dynamic Volume Rendering in Ptolemy II

Tiffany Crawford

EECS 290N Report

University of California at Berkeley
Berkeley, CA, 94720, USA

tiffcraw@eecs.berkeley.edu

Abstract

The framework for Dynamic Volume Rendering in
Ptolemy II and the issues that arise with it are introduced in
this paper. The motivation for volume rendering in Ptolemy
II, is for the application of medical imaging. A toolkit for
medical imaging was an initial goal of this work. How-
ever, the author slowly realized that having a deeper under-
stand of the existing work, Ptolemy II and the API Java 3D
was necessary. This paper attempts to develop a foundation
from which the author can build upon to add the suggested
functionality to Ptolemy II.

1 Introduction

Ptolemy II is a research software that is in development
at the University of California, Berkeley. It is a package of
java classes written and integrated in a way that addresses
the needs and demands of embedded systems. This is done
via Models of Computation (MoC) that define the semantics
of the components, or actors that make up a system.

2 Background

2.1 Java 3D

Ptolemy II uses the Java API, Java 3D to create graphics.
Java 3D is a unique API that has some overhead user learn-
ing and places constraints on the code design. A functional
Java 3D program has two main components, a scene graph
and a Canvas3D. The scene graph structure allows the user
to describe components of a scene and how they relate to
one another. For example, in defining the motion of an arm,
the motion of the hand most have some motion relative to

the hand in which it is attached to. Canvas3D is the window
in which the scene created can be viewed.

Figure 1, is an example of a simple scene graph in
Java3D, very similar to that used in the Ptolemy II graph-
ics models. At the very top of all Java 3D scene graphs is
the Universe, which represents everything a viewer sees in
the world. At the next level, there is a locale which gives a
frame of reference as to where the user exists in the world.
Below the locale there are two BranchGroups.

The BranchGroup on the left leads to other Groups
and/or Nodes that define objects that will be viewed in the
space. Nodes are associated with NodeComponents. The
ovals in the figure represent these components, they are not
stand alone. Specifically in the volume rendering case, there
is a Node that represents the 3D object, and then two Node-
Components, Geometry and Appearance. The path on the
righ leads to the ViewPlatform. The ViewPlatform is the
’camera’ of the scene graph. Once there is a scene and a
camera in which to view it, the View tells what to render.

The importance of understanding Java 3D is important
in this research because it places unique demands on the
Model of Computation used for graphics models.

3 Related Work

There are two existing toolkits in Ptolemy II that provide
actors and/or infrastructure that will be used in this work.
An image processing library was done as a Master’s
Project by James Yeh, and the Graphics Toolkit was done
in collaboration with a large contribution by C. Fong.

3.1 Image Processing Toolkit

The image processing toolkit takes advantage of the Java
Advanced Imaging API to implement many of its actors. It



Figure 1. Java3D scene graph (Sun Microsys-
tems)

defines a class JAIImageToken that creates a token that
contains a javax.media.jai.RenderedOp. This class extends
ImageToken an abstract class that creates an empty token
that is compatible with java.awt.image. The importance of
this will become apparent.

3.2 Graphics Toolkit

The graphics toolkit takes advantage of the Java3D API to
implement many of its actors. Due to the nature of Java
3D, discussed above, this toolkit defines its own director
that performs static scheduling. This director, the token
SceneGraphToken, the actor ViewScreen, and a base class,
GRShadedShape, will be very important in our discussion
of volume rendering. A brief synopsis of their function and
contribution follows.

3.2.1 GRDirector

The actors in this library do not have any meaning without
an instantiation of GRDirector. GRDirector, is a director in
Ptolemy II that extends StaticSchedulingDirector. It
performs a topological sort of a directed acyclic actor
graph. The calling of the prefire, fire and postfire methods
of the actors in this graph are all called from within the
director. Currently the director does not perform any sort
of updates to its schedule. Once it begins firing the actors,
it stays in this loop until it is time to exit the session.

3.2.2 ViewScreen

All GR domain actor graphs must contain a ViewScreen.
The ViewScreen provides the Universe, Locale,
BranchGroup, ViewPlatform and Canvas3D needed to
create a Java3D scene. The other actors in the Ptolemy II
actor graphs, act as Nodes and/or Transform Groups (see
Background). In this design most of the scene graph is
inside the ViewScreen. This makes the behavior of the
actor graph someone intuitive, considering the other actors
behave like nodes to be added to the scene. The constraint
that arises that is not present in Java 3D, is the presence of
only one ”‘Window”’ to the world. In Java 3D you may
have multiple.

3.2.3 GRSceneGraphToken

GRSceneGraphToken is a token type defined specifically
for the GR domain. At least one output port of all actors
that extend GRShadedShape, GRTransform and the input
ports to both GRTransform and ViewScreen are compatible
with this token type. References to nodes to be added to
the scene graph are handled via this token.

3.2.4 GRShadedShape

GRShadedShape is a base class used to define 3D shapes
in Ptolemy II. It is somewhat analogous to the triangle in
Figure 1. The base class creates the NodeComponent,
Appearance, in its initialize method, by calling
createmodel(). In its fire method which is currently called
once it sends a referencce to this node to be added to the
scene graph. The NodeComponent, Geometry, is defined
by the actors that extend GRShadedShape.

4 Platform

4.1 Data

DICOM (Digital Imaging and Communications in
Medicine) is a data format developed by ACR and NEMA
to provide a medical imaging standard [4]. It is becoming
more and more widely used in medical imaging. The
newer MRI machines automatically output DICOM images
instead of the proprietary formats formerly used. The
Medical Imaging Toolkit in Ptolemy will read in DICOM
images and create an AWTImage token. AWTImageToken
is a class in Ptolemy II that contains a java.awt.image.

4.2 ImageJ

The medical imaging toolkit takes advantage of a Java API.
This API, ImageJ, was developed by Wayne Rasband at the
National Institute of Health (NIH). ImageJ is an

2



Figure 2. MRI Image encoded and converted
to JPEG using ImageJ

open-source package of Java classes that read and analyze
medical images. ImagePlus is a class within ImageJ whose
subclasses can read different image formats including
DICOM. ImagePlus implements a java.awt.Image
interface. Figure 2, is a image read by this program.

4.3 GR Domain

Needless to say the rendering will be done using the GR
MoC in Ptolemy II. As mentioned earlier, the GR domain
has certain constraints placed upon it by Java 3D and other
constraints due to its design. In building the platform,
considering changes that may be neccessary to the existing
structure need to be adressed.

4.3.1 GRDirector

The GRDirector, performs a static scheduling at
initialization and keeps this schedule throughout the entire
session. In the current design the fire method does not call
any update method to update the schedule. In the new
platform, at the beginning of each fire of the director an
update method will be called to check the workspace graph
for changes and if changes exist buildActorTable(), will be
called again.
These changes will allow new data and/or actors to be
added to the scene graph during a session and allow the
ViewScreen to display it, without reinitialization.

4.3.2 ViewScreen

The current design of the GR domain requires one and
only one ViewScreen to execute properly. As models are

built it may be useful to have two ViewScreens in one
session. This may be achieved via composite GR actors
inside of another domain.

4.3.3 GRShadedShape

GRShadedShape will be the base class of Axis2DRenderer
and Axis3DRenderer if that path is pursued. Java3D has a
feature called capabilities. The capabilities vary according
the the class being called, but for this discussion the
capabilities deal with read and write access. The default is
false, due to a more optimal implementation of the
program with this setting.
Dynamic volume rendering requires write access and also
the ability to update the reference to the node, so that the
ViewScreen can display the update. GRShadedShape
makes a scene graph connection in its fire method, and is
never called again. The new design require for fire method
to be called at each iteration. During fire() a test for a
change in parameter will be perforemed and return true if
changes have been made. A return of true will lead to a call
of the proper update methods.

5 Future Work

5.0.4 ImagePlusReader

Extends ImageReader. Reads JPEG, TIFF, DICOM, BMP,
and PGM file formats. The image is read in from a file via
a parameter and has two outputs. One output will be able
to produce multiple images if a file contains more than one
image. This will be done via a parameter, stacksize. The
second output will contain the image’s metadata

5.0.5 Axis2DRenderer

This actor will produce a 3-D image from a stack of image
slices. The details of how Axis2DRenderer will receive
and handle its data are still being explored, however a
probable method to present the idea follows. It may have
two inputs, a single image or a stack of images, and one
output, a 3-D image. One input will receive images from
ImagePlusReader. The second input will receive the
metadata from ImagePlusReader. The actor will use this
metadata to properly form a 3-D output from the 2-D
slices. Image can be updated, but will be redrawn

5.0.6 Axis3DRenderer

Another possible alternative to Axis2DRenderer which
allows the image to be dynamically updated without being
redrawn is Axis3DRenderer. This can perform volume
rendering using a 3D texture. This method is preferable for

3



the above reasons however, a lot more computationally
demanding and thus slower.

5.0.7 Image Segmentation

This actor will attempt to locate abnormalities within the
image slices. This actor will have one input, a 2D slice, as
in the output of ImagePlusReader. It will also have a set of
parameters as needed.

6 Conclusion

A set of actors which will add to two existing Ptolemy II
domains, is being created. The demands that some of the
actors place on the Model of Computation and how they
are being adressed are discussed. It is now hopeful that the
framework and background provided will allow for the
future work to be more approachable.

References

[1] Shuvra Bhattacharyya, et. al”Heterogeneous Concur-
rent Modeling and Design in Java (Volume 3:Ptolemy II
Domains) ,” C. Brooks, E. A. Lee, X. Liu, S. Neuen-
dorffer, Y. Zhao, H. Zheng, ” Technical Memorandum
UCB/ERL M04/17, University of California, Berkeley, CA
USA 94720, USA, June 24, 2004.
[2] James Yeh, ” Image and Video Processing Libraries in
Ptolemy II,” Master’s Report, Technical Memorandum No.
UCB/ERL M03/52, University of California, Berkeley,
CA, 94720, USA, December 16, 2003.
[3] C. Fong, S. Neuendorffer. Source code comments.
ptolemy.domains.gr.kernel.GRDirector.
[4] http://medical.nema.org/dicom/2004/0401PU.PDF
[5] http://www.java3d.org

4


	Introduction
	Background
	Java 3D

	Related Work
	Image Processing Toolkit
	Graphics Toolkit
	GRDirector
	ViewScreen
	GRSceneGraphToken
	GRShadedShape


	Platform
	Data
	ImageJ
	GR Domain
	GRDirector
	ViewScreen
	GRShadedShape


	Future Work
	ImagePlusReader
	Axis2DRenderer
	Axis3DRenderer
	Image Segmentation


	Conclusion

