
Expressing Giotto in xGiotto and Related Observations on
Schedulability Analysis

Arkadeb Ghosal

ABSTRACT
xGiotto is programming language for hard real-time event-
triggered applications. Like its predecessor Giotto, xGiotto
is based on the Logical Execution Time model of tasks;
the programmer specifies when the outputs of a task be-
come available, and the compiler checks if the specification
can be implemented on a given platform. xGiotto han-
dles both periodic time-based events and aperiodic asyn-
chronous events. Events are the main structuring princi-
ple of the language and through a mechanism called event
scoping allows a broad range of event expressiveness and en-
vironment assumption embedding. The xGiotto compiler
performs three checks on the programs; race condition detec-
tion, memory size requirements and schedulability analysis.
However the schedulability analysis is expensive (exptime-
complete). The present works focusses on finding a suit-
able sub-class of xGiotto for which the schedulability check
would be less expensive.

1. INTRODUCTION
Real-time systems for embedded applications are charac-
terized by limited memory, distributed nodes, interprocess
communication, fast context switches and concurrency [1];
the most important of them being predictability and timing.
The execution of a safety critical system must be predictable
(determinacy in program variables) and the evaluation of a
task should be available when it is due (neither before the
deadline nor after). Several programming paradigms have
been used for implementing controllers for real-time systems.
The traditional one is the scheduling based approach [2]
where each task is assigned a priority. Another well-known
approach is programming with synchrony assumption [5]
where all tasks are assumed to execute in logical zero time.
A third programming approach is based on task model with
Logical Execution Time. In the LET model, when a task is
released on a platform its corresponding LET is specified by
a termination event. The task output is available only when
the termination event occurs. Even if the task completes
its execution before the termination event arrives, the task
output is not released. A trace of the execution is time-safe
if all tasks released along the trace completes their execu-
tion before the arrival of the respective termination event. A
program is schedulable if all the traces are time-safe. While
this allows an efficient way to introduce assumption on ex-
ecution times of tasks and suits the need for distributed
computing, the program execution is time-deterministic (no
jitter) and value-deterministic (no race conditions) and thus
makes program verification and analyses easier than the tra-
ditional scheduling model. Giotto [6] is a language based
on LET model and implements real-time systems with multi-
model time-periodic behavior. Timed-Multitasking [10] ex-
tends this model to event driven aperiodic systems. The lan-
guage xGiotto [3] is based on LET model and handles ape-
riodic, asynchronous events like Timed-Multitasking. How-
ever xGiotto introduces the concept of event scoping for
efficient handling of events and embedding environment con-
straints in an succinct manner [3, 4].

Determinacy (absence of races) and time safety (schedula-

bility within logical execution times) can be formally proved
for xGiotto programs. The check for determinism is for-
malized as a reachability over exponential state space (and
is pspace-complete) while the schedulability check can be
formalized as a game in exponential state space (and is
exptime-complete) [3]. The target of the report is to identify
a sub-class for xGiotto for which checking time safety is
substantially simpler (at least polynomial in the size of the
program).

Motivation. The present work is motivated by two results.
First is the interesting case of Giotto programs for which
the schedulability check for necessary condition is pspace-
complete while a check for sufficiency can be done in poly-
nomial time in the size of the program [7]. Giotto programs
for which all modes are reachable the sufficiency check is also
necessary. Second is the result presented for typed E pro-
grams in [9]. Giotto runs on the virtual machine E Ma-
chine [8]. Typed E programs (programs for E Machine) al-
low simple schedulability analysis and any Giotto program
can be compiled into typed E programs [9].

The project targets time-triggered xGiotto programs. The
information of time is essential to do a meaningful schedu-
lability analysis. Given a task with release and termination
event being A and B respectively, prediction on schedulability
can not be performed unless the worst-case-execution-time
of the task is 0; this is because in the worst case B can happen
immediately after A. Only if an assumption is provided that
the two events are separated by a time interval (say 3 time
units), a schedulability analysis can be performed which pre-
dicts the scenario to be schedulable only if the wcet of the
task is less than 3 time units. The focus is to identify a
sub-class that is at least as expressive as Giotto and has
simple schedulability analysis. The next focus would be to
extend the schedulability analysis to event driven programs
(possibly with some constraints).

The other formulation of the schedulability analysis is to
provide constraints for the environment behavior. Hence
for the above task scheduling scenario the question to be
asked is: Given the worst-case-execution-time for the task,
what should be the minimum time difference between the
occurrence of events A and B. This would be an interesting
focus for future research.

Overview. Section 2 briefly describes xGiotto. Section
3 presents the idea behind Giotto to xGiotto transla-
tion and the limitations of the syntax and semantics of the
present definition of xGiotto. Section 4 presents a brief
overview on the proposal for modifications in the definition
of xGiotto. Section 5 presents the observations on schedu-
lability test.

2. XGIOTTO
There are three basic constructs: reaction, trigger and re-
lease. The reaction react b until e defines a reaction
block with body b and termination event e. The body b
consists of triggers and releases. The second construct trig-
ger when e react r invokes a reaction r at the event e. The
reaction r may be a single reaction block or multiple reaction
blocks composed in parallel. When the event e occurs all the



reaction blocks defined by the reaction r are invoked in par-
allel. The third construct is the release statement release
t where t is a task. The task t is released as soon as the re-
action block (defining the release statement) is invoked and
is terminated when the reaction block terminates.

A reaction block in xGiotto defines an event-scope. An
event scope consists of the until event and the when events of
the triggers of a reaction block. Upon invoking the reaction
block of one of the when statements, the current event scope
is pushed onto a stack (i.e., it becomes passive) and a new
event scope is created which becomes the active scope. In
xGiotto multiple reaction blocks can be invoked in parallel;
the scope of the parent block is pushed onto the stack and
the scopes of all parallel blocks become active. Therefore we
have a tree of scopes with the root of the tree being the initial
scope, and the leaves of the tree being the active scopes. The
function of the parallel reaction blocks are independent of
their siblings.

An event of an active scope either, in the case of a when
event, invokes a reaction, or in the case of an until event,
terminates the corresponding scope. If an event e of an
active scope can both invoke a reaction as well as terminate
the scope, then the termination action has precedence. An
event of a passive scope can be handled in the following
three ways: it may be ignored (keyword forget); or it may
be postponed until its scope becomes active again, once all
descendent blocks have terminated (keyword remember); or
it may disable all descendent blocks, thus speeding up their
termination (keyword asap). Note that only active until
events can terminate active tasks; in particular, active tasks
cannot be prematurely terminated by passive asap events.

Syntactical Features. An xGiotto program defines a
set of ports (or program variables), a set of events, a set of
tasks and a set of reaction block definitions. A reaction block
consists of a set of (possibly guarded) trigger statements and
a set of (possibly guarded) task releases. This defintion has
been referred to as core-xGiotto in [3]. The semantics of
the core-xGiotto is provided below. Refer to [3] for the
complete syntax and semantics; any xGiotto program can
be translated to core-xGiotto.

Semantical Notions. The execution of an xGiotto pro-
gram yields a possibly infinite sequence of configurations.
Each configuration consists of the values of all program vari-
ables (ports) and a tree of scopes. Each scope contains a
termination event, a trigger set and a ready set. The active
scopes are the leaves.The trigger queue contains the enabled
reactions, each associated with an invocation event: if the
invocation event for an enabled reaction of an active scope
arrives, then the first such reaction is invoked, and for each of
its parallel reaction blocks, a new scope is added as a child to
the present scope, rendering that scope passive. The ready
set of a scope contains the tasks that have been released in
the scope; their termination event is the termination event
of the scope. Each when statement of a reaction block adds
an event-reaction pair to the trigger set; each release state-
ment adds a task to the ready set. The termination event
of an active scope removes the scope.

The execution can be represented by a state-transition graph
whose states are the program configurations, and whose
transitions correspond to the occurrence of a new event, the
termination of a scope, and the invocation of a reaction.
When a new event arrives, first an event transition records
the event occurrence in all scopes; then a sequence of ter-
mination transitions removes (possibly nested) scopes that

have terminated and finally a sequence of reaction transi-
tions adds (possibly nested) new scopes by invoking enabled
reaction blocks. If no more reaction blocks can be invoked,
the configuration is called waiting, and the arrival of the
next event is awaited. All transitions take place in logical
zero time; time advances only in waiting configurations. No
two unrelated events arrive at the same time.

Implementation. The xGiotto compiler compiles the
program, performs analyses (like race condition detection
and schedulability check) and generates code for the run-
time system. The run-time implementation consists of a vir-
tual machine (Embedded Virtual machine or EVM), a real-
time platform and the environment. The code generated by
the compiler (EVM code) is interpreted by the EVM. An
implementation of the EVM requires three components: a
dynamical data structure to keep track of the scopes (event
filter), a processor which computes the reaction to an event
(reactive machine) and a scheduler. The event filter com-
putes the event and the termination transitions on the tree
of event scopes. Next it passes a set of EVM code addresses
(which correspond to the invoked reaction blocks) to the re-
active machine. The reactive machine interprets the EVM
code (thus performing reaction transitions) and enables new
triggers and releases new tasks. When all invoked reactions
have been processed by the machine, the scheduler chooses a
task to execute from the ready set of the active event scopes,
and whenever such a task completes, the EVM is notified.
The platform interacts with the environment through ac-
tuators and sensors. The actuators are driven by the task
outputs and the sensors generate events which are handled
by the event filter.

3. GIOTTO TO XGIOTTO
In this section the translation procedure for Giotto modes
and mode switches to xGiotto has been provided using two
examples. The details of the description (types of event or
types of parallelism) have been ignored and the idea behind
the translation has been focussed.

Consider the Giotto mode shown in Figure 1. The mode
period is 6 and releases two instances of task t1 and three
instances of task t2. The mode period is divided into units
(the idea is taken from [7]) which is the least common mul-
tiple of the frequencies; the number of units here is 6 with
unit span being 1 time unit. The idea would be generate
a reaction block that starts at an unit and terminates at
the end of the mode period. The corresponding xGiotto
modes and tasks have been shown in Figure 1; the reaction
blocks are named according to the unit at which they are re-
leased and the corresponding line to a reaction block shows
the span of the reaction block. Thus reaction block R0 is
released at time 0 and terminated at time 6.

m

R0
t1
t2

R1
R2

t1

t2

t2

R3

R4

R5
t1t1

t2t2t2

0 1 2 3 4 5 6

0 1 2 3 4 5

Figure 1: Giotto mode

Reaction block R0 invokes parallel reaction blocks to release
tasks t1 and t2. These correspond to the first instance of



the corresponding tasks in mode m. R0 invokes block R1 at
the next time unit (the units of the mode correspond to the
time units here). At unit 1 there is no task release; so R1
invokes R2 at the next time unit. R2 invokes a reaction to
release task t2 (corresponding to the second instance of the
task in m) and invokes reaction R3 at the next time unit. R3
invokes a reaction to release task t3 (corresponding to the
second instance of the task in mode m) and triggers R4 at the
following time unit. R4 releases the last instance of task t2
and triggers R5 (an empty reaction block) at the next time
unit. Note all the reaction blocks terminate simultaneously
at time unit 6 and a new instance of mode m is started.

m

R0
t1
t2

R1
 R2

t1

t2

t2

R3

R4

R5

t1t1

t2t2t2

0 1 2 3 4 5 6

0 1 2 3 4 5

n
t1t1

t3t3t3

0 1 2 3 4 5 6

t3
Q4

Q5

Figure 2: Giotto mode switch

A case of mode switch has been considered in Figure 2. The
modes m (identical to the last example) and n (same struc-
ture as m except that the task t2 has been replaced by task
t3) switches between each other; for both the modes, the
mode switch frequency is 3. The possible points of mode
switches have been marked by black dots on the time line
of the modes. The figure shows the implementation of the
mode switch for the switch at time unit 4 for mode m. The
reaction blocks and task release remain same for blocks R1,
R2 and R3. However the reaction block at the next time unit
should check for mode switch condition and a conditional
branch is added. If the switch condition is false, blocks R4
and R5 are invoked; if the switch condition is true, blocks Q4
and Q5 are invoked and task t3 is released.

Consider the following Giotto program with two modes:

start m {
mode m() period 6 ms { mode n() period 12 ms {
exitfreq 2 do n(c); exitfreq 3 do m(c);
taskfreq 1 do t1(); taskfreq 2 do t1();
taskfreq 2 do t2(); } taskfreq 3 do t3(); } }

Lets consider the reaction blocks required to implement mode
n; we need 6 units (so six nested reaction blocks) or 12 time
units to translate the mode. At time unit 4, the switch from
n to m has to be implemented. For the switch true branch:
a jump to end of the mode m is implemented. As 12 time
units have already been assigned to mode n, we are still left
with 6 time units and a mode of m has to be implemented
in that time. However one has to consider the mode switch
case at the start of mode m; for the switch true case an-
other instance of mode n has to be implemented with time
span of 12 time units. The above scenario of mode switch
has also to be implemented for this second instance of mode
n. This causes the potential problem of allocating period
of n infinitely. This is a problem with the present syntax.
The shortcomings are mainly due to facts that all xGiotto
modes need to have finite termination event and there can be
no cyclic calls between reaction blocks. Both the constraints

are required for meaningful program analysis but makes the
present syntax incapable of expressing the complete Giotto
domain.

The translation procedure outlined above works for 3 special
cases of Giotto programs: 1, all modes have same period,
2, all modes have at least one task with frequency 1, and
3, all modes have harmonic set of tasks. The detailed pro-
cedure for such a transform has been formally presented in
the extended abstract.

4. PROPOSED MODIFICATIONS
In this section i will present an outline of a modified syn-
tax and semantics for xGiotto which can express Giotto
and is amenable to simple schedulability analysis. My focus
would be on purely time triggered implementations. The
modifications will focus on two concepts: out-of-scope ac-
tivation and use of implicit parallelism instead of explicit
parallel operators.

In this new syntax, trigger statements with when construct
is not supported. Instead only calls to reaction block is
allowed; thus react r until e invokes a reaction block r
with until event e. No parallel construct is allowed; however
implicit parallelism can be defined (this would be discussed
later). The reaction blocks may release tasks and /or invoke
reactions sequentially. The call to reaction blocks may be
guarded.

The until event of a reaction block has been extended to
two events: termination event and continuation event. The
termination event specifies the event of termination for the
tasks released in the reaction block. The continuation event
specifies when the next call to reaction is invoked. The con-
tinuation event may occur earlier or at the same time as the
termination event but not later. Consider the code fragment
in the left:

react R1 until 3 continue 2 react R12 until 3 continue 2;
react R2 until 2 continue 1 react R2 until 2 continue 1;

react R1 until 3 continue 1;
react R2 until 2 continue 2;

The tasks in block R1 are terminated only at time 3. How-
ever the next statement is executed at time 2 i.e. R2 is exe-
cuted at time 2. This has two implications. First, the scope
is defined by the continuation event and the LET of the
tasks released is given by the termination event. Second,
parallelism is implicit; e.g. in the above case R1 and R2 runs
in parallel for the interval between time unit 2 and 3. To
assist in simple schedulability check another constraint is
added. All the nested reaction blocks in R1 have to termi-
nate by its continuation event and the termination event of
R2 be equal to or later than the ‘pending’ termination event
of R1. The first constraints implies that the schedulability of
nested reaction blocks in R1 does not depend on the struc-
ture of R2 and vice versa. The second constraint implies
that the tasks released by R1 has same or earlier deadline
than the tasks in R2. The two constraints can be verified
by a mix of syntactic definition and program analysis. The
constraints helps in defining a simple schedulability analysis
and would be further analyzed in the next section.

The code for Giotto mode m is shown in the right. Reaction
R12 releases task t1 (the until event implies it would be
terminated at time 3). A nested reaction block in R12 (not
shown) releases task t2 with termination at time 2 (and
obeys the constraint that the termiantion event of nested
block should not be later than the continuation event). At
time 2 the control executes the following statement (call to



R2). Now if R2 and R1 release tasks t2 and t1 then the code
invokes t1 and t2 in a non-harmonic fashion similar to mode
m.

The specific case of Giotto program which could not be
translated into xGiotto can be translated in the new syntax
and the code has been shown below:

/* main */

if (mode = m) react m;
if (mode = n) react n;

--------

/* mode m */

react r0 until 6 continue 3;
if (sw12) {

react {} until 1;
react q5 until 2;

} else
react r1 until 3;

/* mode n */
react q0 until 6 continue 4;
if (sw21)
react {} until 2;

else {
react q2 until 4 continue 2;
react q3 until 6 continue 2;
if (sw21) {

react {} until 1;
if (sw12) {

react {} until 1;
react q5 until 2;

}
else
react r1 until 3;

}
else
react q4 until 4;

}

Figure 3: Giotto modes in the new syntax of xGiotto

The main reaction block invokes two reaction blocks m and n
depending upon the value of a port which stores the present
mode. Note that no until information is used while invok-
ing these two blocks (this potentially frees the programmer
in identifying the termination event required to schedule a
mode). In rest of the structure, at each step time allocated
is equal to the period of the lowest frequency task.

5. SCHEDULABILITY
For a time-triggered xGiotto program without any branch-
ing and no parallel invocation there is always a single thread
of reaction invocations. This is equivalent to scheduling a
set of aperiodic tasks with varying arrival times. Horn found
a scheduling algorithm for a set of independent tasks on a
single processor, where tasks have dynamic arrivals and pre-
emption is allowed [2]. This algorithm is known as Earliest
Deadline First (EDF). For any algorithm that schedules a
set of tasks with dynamic arrival times (with preemption al-
lowed) EDF is optimal [2]. For the above class of xGiotto
programs a complete set of task arrival and termination pat-
terns i.e. a table of tasks with arrival time, deadline and
WCET for each task instance can be derived. Then the
Horn’s algorithm can be used to check the schedulability
and if the program is schedulable then EDF can be used as
the scheduling strategy.

   r0 [0, 6]

r0_t2 [0, 3]

r1 [3, 6]

q5 [4, 6]

   q0 [0, 6]

q0_t3 [0, 4]

q2 [4, 8]

 [4, 6]

q3 [6, 12]  [8, 9] r1 [9, 12]

q5 [10, 12]q4 [8, 12]

Figure 4: Giotto mode switch

However parallelism and conditional branches make the prob-
lem complex. The idea is to use a mix of utilization test and
Horn’s algorithm to decide for schedulability. A reaction call
graph is generated from an xGiotto program. This graph
bears the information of reaction calls including conditional
branches. The RDG for the program in Figure 3 has been
shown in Figure 4. The dots represent the branching points
and the non-named intervals are the one with no task re-
lease. The procedure would be to reduce the graph to one
path per branch depending on the utilization ratio. Once

the whole graph is reduced such that no branches exist, it is
traversed to generate the call pattern of tasks (release and
termination time) and finally Horn’s algorithm is used to
check the feasibility of scheduling such a task pattern. How-
ever fairness of choosing the branches is an important issue.
It can be shown that for unrestricted parallelism choosing
the path with the worst utilization is not enough. Specifi-
cally even if the program is schedulable; a path with lower
utilization may still make the program unschedulable. This
is because the parallel reactions are not compositional in the
sense that the schedulability of the blocks depends on the
internal structure of the sibling blocks. In this situation the
constraints on the termination and continuation event pro-
vides the required fairness to decide the conditional branch.
This is specifically because they impose disjoint-ness in the
LET of tasks for parallel reaction blocks. For parent-child
pair the LETs may overlap; in this case the termination of
child is guaranteed to be at the same time or later than the
parent. The RDG being port-state abstracted the test would
be sufficient if all reaction blocks are not reachable (the test
considers all branches to be equally possible). However if all
reaction blocks are reachable the test would be necessary.

Future Direction. In future the focus would be to formal-
ize the proposed syntax and semantics and to automate the
translation of Giotto to xGiotto. The other interesting
question is to investigate the expressiveness of the language.
The final focus would be to extend this definition to event
driven systems and systemizing the schedulability check.

6. REFERENCES
[1] A. Burns and A. Wellings. Real-Time Systems and

Programming Languages. Addison Wesley, 3rd edition,
2001.

[2] G. Buttazzo. Hard Real-Time Computing Systems.
Kluwer Academic Publisher, 1997.

[3] A. Ghosal, T. A. Henzinger, C. M. Kirsch, and
M. A. A. Sanvido. Event-driven programming with
logical execution times. In HSCC 04: Hybrid Systems
Computation and Control, Lecture Notes in Computer
Science 2993, pages 357–371. Springer-Verlag, 2004.

[4] A. Ghosal. Event-driven programming with logical
execution times. Technical report, UC Berkeley, 2004.

[5] N. Halbwachs. Synchronous Programming of Reactive
Systems. Kluwer Academic Publisher, 1993.

[6] T. A. Henzinger, B. Horowitz, and C. M. Kirsch.
Giotto: A time-triggered language for embedded
programming. Proceedings of the IEEE, 91:84–99,
2003.

[7] T. A. Henzinger, C. M. Kirsch, R. Majumdar, and
S. Matic. Time-safety checking for embedded
programs. In EMSOFT 02: Embedded Software,
Lecture Notes in Computer Science 2491, pages 76–92.
Springer-Verlag, 2002.

[8] T. A. Henzinger and C. M. Kirsch. The Embedded
Machine: Predictable, portable real-time code. In
Proceedings of Programming Language Design and
Implementation, pages 315–326. ACM Press, 2002.

[9] T. Henzinger and C. Kirsch. A typed assembly
language for real-time systems. In Proc. International
Conference on Embedded Software(EMSOFT), LNCS.
Springer, 2004.

[10] J. Liu and E. A. Lee. Timed multitasking for real-time
embedded software. IEEE Control Systems Magazine,
23(1):65–75, 2003.


