
A Schedulability-Preserving Transformation Scheme from Boolean- Controlled
Dataflow Networks to Petri Nets

Cong Liu Edward A. Lee

University of California at Berkeley
Berkeley, CA, 94720, USA

{congliu,eal}@eecs. berkeley.edu

Abstract

This paper presents a transformation scheme from
Boolean-controlled dataflow (BDF) networks to Petri nets
(PN) that has the following properties. A BDF has a
bounded length schedule, if and only if the transformed
Petri net has a bounded length schedule. A BDF has
a bounded memory schedule if the transformed PN has
a bounded memory schedule. The existence of bounded
memory schedule of BDF is proved to be undecidable.
This transformation scheme provides a way to construct
a bounded memory schedule of a BDF using exsiting PN
scheduling techniques. In BDF models tokens are asso-
ciated with data, and actors communicate through FIFO
channels. A general PN semantics does not distinguish
tokens and does not preserve the order of tokens in a
place. The proposed method uses different places to hold
the Boolean tokens with different values. The ordering of
Boolean tokens at each control input port is preserved by
enforcing that new Boolean tokens are not produced until
the previous Boolean token is consumed. Initial Boolean
control tokens are handeled by use of a preamble. Further-
more, based on the transformation, the consistence notion
originally defined in BDF is extended to PN.

1 Introduction

The ever-increasing complexity of embedded systems re-
quire designers to use formal models to precisely describe
system behaviors and hide implementation details. Con-
current models, such as dataflow networks [6], Kahn pro-
cess networks [4][5], and Communicating Sequential Pro-
cesses [3], are often used because they explicitly express
the inherent concurrency in most embedded system appli-
cations. In a concurrent model, a system is consisted of a
set of processes which communicate with the environment

and other processes, and run at their own speed. These
concurrent processes often share a physical resource (e.g.
CPU). Hence, their implementation often requires solving
a fundamental scheduling problem, i.e. sequencing the op-
erations of concurrent processes under certain constraints
(e.g. bounded memory). Depending on when the schedul-
ing decision are made, scheduling algorithms are classified
as three categories. Static scheduling makes all decisions
at compile-time. Quasi-static scheduling computes a static
schedule as much as possible while leaving data-dependent
choices resolved at run-time. Dynamic scheduling make
all decisions at run-time. Static scheduling is restricted to
specifications without run-time choices, such as the specifi-
cations modeled by synchronous dataflow (SDF) networks
[6]. Lee and Buck extended SDF to Boolean-controlled
dataflow (BDF) network [1] by introducing actors that have
conditional production and consumption rate. It can model
specification with run-time data-dependent choices. In fact,
BDF is proved to be equivalent to a universal Turing ma-
chine. It means any program can be modeled by a BDF.
However, the scheduling problem, the existence of bounded
memory schedule, is undecidable. It means no algorithms
can prove or disprove schedulability of an arbitrary BDF
in finite time. All existing BDF scheduling techniques,
such as bounded length scheduling, clustering, and state-
enumeration, are based on heuristics. They can successfully
construct schedules only for a subset of schedulable BDF.

This paper presents a transformation scheme from BDF
to Petri Nets (PN) [7]that has the following properties. A
BDF has a bounded length schedule, if and only if the
transformed Petri net has a bounded length schedule. A
BDF has a bounded memory schedule if the transformed
PN has a bounded memory schedule. Hence, this transfor-
mation scheme provides a way to construct a bounded mem-
ory schedule by taking advantage of exsiting PN scheduling
techniques.

The most recent advancement [2] on quasi-static

scheduling of PN adopts a T-invariant-guided state space
search. A T-invariant is a set of instances of transitions. If
they are fired, the resulting state is the same as before the
firings. In this approach, the heuristic used to prune the
search space considers the pre-history of a state and is not
based on a local property, such as the place bound. Hence, it
is more justifiable than those using simple bounding box on
state space. Directly apply the PN scheduling techniques to
BDF or any state enumeration based BDF scheduling algo-
rithms have the state explosion problem, because the state
of a BDF is determined not only the number of tokens on
each arc, which corresponds to the state of a PN, but also
the value and the order of the tokens. This problem makes
direct state enumeration inefficient.

In BDF models tokens are associated with data, and ac-
tors communicate through FIFO channels. A general PN
semantics does not distinguish tokens and does not preserve
the order of tokens in a place. The proposed method uses
different places to hold the Boolean tokens with different
values. The ordering of Boolean tokens at each control in-
put port is preserved by enforcing that new Boolean tokens
are not produced until the previous Boolean token is con-
sumed. The tranformed PN is equivalent to the original
BDF with the constraint that the control arcs, which con-
nects to control port, have a bound of exact one. This im-
plies that the traces contained in the PN is subset of traces
contained in the BDF. Note that we do not impose bounds
on arcs except control arcs. So if there are more than one
initial Boolean control tokens in a BDF, it may be possible
that after a finite number of firings the BDF reach a state
where there is at most one Boolean tokes on each control
arc. Then the proposed transformation still applies. Fi-
nally the consistence notion originally defined in BDF is
extended to PN. This is due to the fact there is a one-to-one
correspondence between the complete cycles in a BDF and
the T-invariants in the transformed PN. The transformation
scheme preserves consistence.

The following of the paper is organized the following. In
Section 2, we introduce basic definitions and notations of
BDF and Petri nets and their scheduling. A tranformation
scheme from a BDF to a Petri net is described in Section 3.

2 Preliminaries

2.1 Boolean-controlled dataflow network

A BDF extends SDF by introducing dynamic actors that
has conditional inputs or output ports. These actors satisfies
the following properties:

• The number of tokens consumed by an input port, or
produced by an output port per firing is a two-valued
function of the value of a Boolean token that is re-
cieved by another input port (thecontrol port) of the

1

T F
SELECT

T

ENABLED FIRED

T F
SWITCHF

T F
SWITCH

ENABLED FIRED

T F
SELECT

T F
SELECT

F

ENABLED FIRED

T F
SELECT

T F
SWITCHT

T F
SWITCH

ENABLED FIRED

Figure 1. Structure and semantics of SWITCH and SE-
LECT actors.

same actor. Such an input port is called aconditional
port. One of the two values of the function is zero.

• The control port could be an output where the control
token’s value annouces whether there are data on the
conditional port.

• Control ports are never conditional ports, and always
consume exactly one Boolean token per firing.

The canonical examples of such actors are SWITCH and
SELECT. The structure and semantics are of the two actors
are illustrated in Figure 1.

2.2 Petri nets

A Petri net is a 5-tuplePN = (P, T, F, W, M0), where
P is a finite set ofplaces, T is a finite set oftransitions;
F ⊆ (P×T)∪(T×P) is a set ofarcs; W : F → {1, 2, ...}
is a weight function; M0 : P → {0, 1, ...} is the initial
marking.

Given a transitionti and a placepj , if (ti, pj) ∈ F , ti is
called aninput transitionof pj , andpj is called anoutput
placeof ti. Similarly if (pj , ti) ∈ F , ti is called anoutput
transitionof pj , andpj is called aninput placeof ti. The set
of input transitions ofpj is denoted by•pj . The set of out-
put transitions ofpj is denoted byp•

j . The set of input places
of ti is denoted by•ti. The set of output places ofti is de-
noted byt•i . A markingis a mappingM : P → {0, 1, ...}. It
represents the state of a PN. A transitionti is calledenabled
if ∀pj ∈• ti,M(pj) ≥ W (pj , ti). A transition may or may
not fire whenever it is enabled. Afiring of an enabled tran-
sition ti at marking M is denoted byM [ti > M ′,∀pj ∈•

ti,M
′(pj) = M(pj) − W (pj , ti),∀pk ∈ t•i ,M

′(pk) =
M(pk) + W (ti, pk). A markingMn is said to bereachable
from the inital markingM0 if there exists afiring sequence
β = titj ...tk such thatM0[ti > M1[tj > M2...[tk > Mn

or simply M0[β > Mn. The incidence matrixA = [aij]
is a |T | × |P | matrix, whereaij = F (ti, pj) − F (pj , ti).

2

A vectorx ∈ N|T | is called aT-invariant if AT x = 0. A
T-invariantx is said to beminimal if there exists no other
T-invariantx′ 6= x with x′ ≤ x.

2.3 Quasi-static schedules

A quasi-static scheduleor bounded memory scheduleis
a finite list of guarded firings where:

• The system executing the schedule returns to its initial
state, regardless of the outcome of the conditions or
choices.

• Firing rules are satisfied at every point in the schedule.

A bounded-length scheduleis a quasi-static schedule where
the number of firings required to return the system to its
initial state is bounded by a constant. If each firing is asso-
ciated with execution time, bounded-length schedule can be
used to estimate if a hard deadline can be met in real-time
applications. Generating bounded-length schedule starts
with finding the cyclic firing sequences that the system state
after the firings is the same as before the firings. Such cy-
cles must exists for all possible outcomes of conditions or
choices.

3 Transformation Scheme

It is known SDF is equivalent to a special case of PN,
maked graph. More specifically, there is a transformation
scheme that one-to-one maps actors and acrs of a SDF to
transitions and places of a PN. So we restrict our atten-
sion to the following BDF actor: SWITCH, SELECT, and
Boolean stream generators.

3.1 SWITCH and SELECT actors

The transformations of SWITCH and SELECT actors
are shown in Figure 2. If there is atrue Boolean token
present at the control port of the actors in a BDF, a to-
ken will be present inpT of the transformed PN. For the
SWITCH actor, if transitionA, transformed from the actor
A, is fired, transitionT or F is enabled dependending on
whether there is a token inpT or pT , respectively. Note
that pT andpT can not both have tokens, because it cor-
responds to possible out of order execution of the orignal
BDF. It is avoided by introducing a synchronization mech-
anism discussed later. Presence of a token in placepTa or
pFa is used to indicate that the BDF actor finishes execu-
tion. They can not both have tokens because of the synchro-
nization mechanism.

1

FT

pFapTa

A B

pT pF

C

SELECT
F T

C

A B

FT

pFapTa

SWITCH
F T

B C
B C

pT pF

A

A

Figure 2. Transformation of SWITCH and SELECT actor
to PN.

1

Boolean
stream

A

A

FT

pT pF

pTa paF

Figure 3. Conversion of Boolean stream actor to PN.

3.2 Boolean control stream generators

The transformation of Boolean control stream generator
is shown in Figure 3. The core part is a synchronization and
delivery machinary. It is triggered by the transitionA, trans-
formed from the actorA, and non-deterministically chooses
to fire transitionT or F , which corresponds to the Boolean
generator generate atrue or falsetoken. The token will be
routed to the corresponding placepT or pF , respectively.
In order to ensure the ordering of tokens, the machinary can
continue to generate new tokensonly when it recieves ac-
knoledgement from the controlled actors. The acknolege-
ment is repsented by the presence of a token in placepTa
or pFa.

3.3 Initial Boolean tokens

It can be seen from the above transformation, we pre-
serve the ordering of tokens by synchronization, i.e. at
most one control token is present at the control port. So
if there are more than one initial Boolean tokens in a BDF,
the above transformation would not be able to generate a
PN. However, it is possible that the initial Boolean tokens
can be consumed by a number of firings of actors. That is,
a BDF with initial Boolean tokens after a finite number of

3

1

SWITCH
F T

B

C

A

F SELECT
F T

SWITCH
F T

B

C

A

SELECT
F T

Figure 4. Transformation of BDF by use of a preamble.

firings reaches a state where there are no or one Boolean
token at its control ports. For example, the left BDF in Fig-
ure 4 is transformed to the right BDF by firing actorA and
SELECT . The finite firing sequence is called a pream-
ble. By use of a preamble, we redefined the initial state
of a system. However, if the PN transformed from the new
BDF has a bounded-memory schedule, we can construct the
schedule for the orignal BDF by adding the preamble as a
prefix of the schedule. The rationale of imposing bounds on
Boolean control arcs also comes from the fact that each fir-
ing of SWITCH or SELECT actor will consume exactly one
Boolean token. So accumulating Boolean tokens at control
ports will not help enabling actors.

3.4 Tansformation Algorithm

Algorithm 1 Transformation Algorithm
if (initial Boolean tokens> 1) then

transform BDF by preamble;
end if
transform SDF actors;
transform SWITCH actors;
transform SELECT actors;
transform Boolean actors;
handeling initial tokens;

First, the BDF is checked with the number of initial
Boolean tokens. If it is more than one, a preamble-based-
transformation is invoked. The transformation procedure
starts with replacing SDF actors to transitions, and re-
placing arcs with places. The SWITCH, SELECT and
Boolean actors are transformed to the PN structures men-
tioned above. Finally, the initial

3.5 Schedulability

Proposition 1 A BDF has a bounded length schedule, if
and only if the transformed PN has a bounded length sched-
ule.

Sketch of the proof:Leftarrow, basde on the above trans-
formation it can be shown the transformed PN is equivalent
to a BDF with bounds of the control arcs to be exact one.
Hence every firing sequence of the PN corresponds to a fir-
ing sequence of the BDF, but not vice versa. In other words,
the PN contains firing sequences which are a subset of fir-
ing sequences of the BDF. Thus, the same schedule gener-
ated for the PN can be applied to the BDF.Rightarrow,
the necessary and sufficient condition for a BDF to have a
bounded-length schedule is: First, it must have complete
cycles for all possible outcomes of conditions and choices.
Second, for all possible Boolean sequences, it is possible
to construct a corresponding acyclic precedence graph. We
can show that the first condition is equivalent to existence
of T-invariants for all possible choices. The second con-
dition decomposes the BDF to a regular SDF. The PN can
corrspondingly decompose to marked graph components. It
is easy to check the equivalence of a SDF to the correspond-
ing marked graph. �

Proposition 2 A BDF has a bounded memory schedule if
the transformed PN has a bounded memory schedule.

Sketch of the proof: the PN contains firing sequences which
are a subset of firing sequences of the BDF. Thus, the same
schedule generated for the PN can be applied to the BDF.�

3.6 Consistence

A strongly consistentBDF is one where there exists a
solution to the balance equation regardless of possible val-
ues of the symbolic variables. Aweakly consistentBDF is
one where there exist a solution to the balance equation only
for some values of the symbolic variables. Weakly consis-
tence implies the correlation between different conditions
enforced by the complete cycles. For example, if two sym-
bolic variables must have the same value so that the balance
equation have a solution. It means the two conditions are
either the same or opposite in a complete cycle. In a trans-
formed PN, it means for every T-invariantx, if the true tran-
sition of the first choice is contained inx, the true or false
transition of the second choice is contained inx.

Definition 1 (Pairwise transition dependency)
Given two transitionsti, tj of a Petri net,ti is said to be
dependentontj if tj appears in every (minimal) T-invariant
containingti, i.e., R1 = {(ti, tj) ∈ T 2 | ∀x ∈ χ, ti ∈
‖x‖ ⇒ tj ∈ ‖x‖}.

4

For example, the BDF in Figure 5 is weakly consistent.
The symbolic variables associated with the SWITCH and
SELECT actor must have the same value so that the bal-
ance equation has a solution. The transformed PN, there
are two minimal T-invariants. One minimal T-invariant con-
tains bothT transitions, and the other one contains bothF
transitions.

4 Conclusion and future research directions

This paper presents a transformation scheme from BDF
to PN that has the following properties. A BDF has a
bounded length schedule, if and only if the transformed
Petri net has a bounded length schedule. A BDF has a
bounded memory schedule if the transformed PN has a
bounded memory schedule. However, whether the schedu-
lability of the BDF implies the schedulability of the trans-
formed PN or not remains an open question. Future re-
search directions includes exploration of other transforma-
tion schemes, and comparing the schedulability of the BDF
and PN.

References

[1] J. T. Buck. Scheduling dynamic dataflow graphs with
bounded memory using the token flow model. PhD the-
sis, University of California, Berkeley, 1993.

[2] J. Cortadella, A. Kondratyev, L. Lavagno, C. Passerone,
and Y. Watanabe. Quasi-static scheduling of indepen-
dent tasks for reactive systems. InProceedings of

1

FT

D

FT

B C

A

SELECT
F T

D

SWITCH
F T

B C

AE

E

FT

pT1 pF1

pTa1 paF1

pT2

pTa2

pF2

paF2

Figure 5. Conversion of if-then-else BDF to PN.

the 23rd International Conference on Applications and
Theory of Petri Nets, pages 80–100, 2002.

[3] C. A. R. Hoare.Communicating Sequential Processes.
International Series in Computer Science. Prentice-
Hall, 1985.

[4] G. Kahn. The semantics of a simple language for par-
allel programming. InInformation processing, pages
471–475, Aug 1974.

[5] G. Kahn and D. B. MacQueen. Coroutines and net-
works of parallel processes. InInformation processing,
pages 993–998, Aug 1977.

[6] E. A. Lee and D. G. Messerschmitt. Static scheduling
of synchronous data flow graphs for digital signal pro-
cessing.IEEE Transactions on Computers, Jan. 1987.

[7] T. Murata. Petri nets: properties, analysis, and appli-
cations.Proceedings of the IEEE, 77(4):541–580, Apr.
1989.

5

	Introduction
	Preliminaries
	Boolean-controlled dataflow network
	Petri nets
	Quasi-static schedules

	Transformation Scheme
	SWITCH and SELECT actors
	Boolean control stream generators
	Initial Boolean tokens
	Tansformation Algorithm
	Schedulability
	Consistence

	Conclusion and future research directions

