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Abstract

Kahn process networks (KPN) is an elegant model of
computation for deterministic concurrent processes. The
denotational semantics of KPN is based on the theory of
partially order sets. This report explores the application of
this approach to the semantics of discrete event systems.

1 Introduction

In Kahn process networks [3], computation is performed
by a set of independent processes. Processes communicate
streams of data asynchronously through unbounded FIFO
channels. In the denotational semantics of KPN, a prefix
ordering is defined on tuples of streams, which then form a
CPO. If processes are continuous functions from their input
tuple of streams to output, then Kahn’s principle applies:
any network of processes is a continuous function from its
input to output.

The derivation of Kahn’s principle is valid as long as the
signals between processes are a CPO and the processes are
continuous. In section 2, we use the tagged signal model
[5] to give a very general definition of signals and a prefix
order. The set of signals with the prefix order is a CPO. An
extended Kahn’s principle follows naturally.

Only limited timing information is present in a KPN —
the ordering within each stream of data. Yates and Gao
[6] extended Kahn’s principle to networks of real-time pro-
cesses. The processes communicate timed streams. A timed
stream is a sequence of time-stamped tokens. The time
stamps in a timed stream are strictly increasing and have
a minimum time interval. A real-time process is a function
from its input streams to output streams, and is required to

introduce a minimum delay. Some common processes, such
as timed merge, are not monotonic (hence not continuous),
so Kahn’s principle cannot be applied directly. A novel def-
inition of the network functional – for real-time networks
that may contain nonmonotonic processes – is presented
and shown to be continuous. From this, Kahn’s principle is
extended to real-time networks. We present an alternative
approach in section 3, applying the general signal definition
to discrete event (DE) signals. Compared to [6], ours is a
more direct extension of the principle, and is more general
in some respects. For example, processes are not required
to have a minimum delay.

Our work is part of the Ptolemy project [1]. One focus
of the project is to study the simulation and programming
models of various models of computation (MoC). In section
4 we turn to the operational semantics of real-time processes
and DE systems. Our formulation of DE semantics leads to
an alternative development of the Chandy-Misra approach
[2] to distributed DE simulation, and suggests a way to han-
dle multirate signals and delta delays in DE systems.

An alternative approach to the semantics of real-time
processes is presented in [4]. It uses the theory of metric
spaces to study the semantics of real-time networks. The
connection and contrast between the two approaches will
be presented in a future report.

2 Tagged signal model and prefix order

A partially ordered set oftagsT capture the timing or
ordering information in signals. For example, a tag may be
the time stamp of an event, or the sequence number of a
token in a stream of data. LetL(T ) be the set of lower sets
(also called down sets) ofT . L(T ), treated as a poset with
the subset order, is a complete lattice.



Definition 1 (Signal) Given a tag setT and a value setV ,
a signal is a functions : L → V whereL ∈ L(T ). Let
S(T, V ) denote the set of all signals with domain inL(T )
and codomainV .

Sometimes a value setV is augmented with a special
elementε denoting the absence of value,Vε = V ∪{ε}, or⊥
denoting unknown or undefined,V⊥ = V ∪{⊥}. Following
are some examples of tag sets and signals:

• Any set A can be treated as a poset with the discrete
order. S(A, V ) is the set of all partial functions from
A to V .

• T is R+, the set of nonnegative real numbers with the
usual order.S(R+, Zε) is the set of DE signals with
integer values.

Definition 2 (Prefix order) For any posetT of tags and set
V of values, the prefix order relation≤p on S(T, V ) is,
givens1 : L1 → V ands2 : L2 → V ,

s1 ≤p s2 ⇐⇒ L1 ⊆ L2 and ∀t ∈ L1, s1(t) = s2(t)

Claim 1 For any posetT of tags and setV of values,
(S(T, V ),≤p) is

• a poset.

• a CPO.

• a complete lower semilattice.

Proof.
It is straightforward to verify that≤p is a partial order.
Let S be a directed subset of(S(T, V ),≤p). For any

two signalss1 : L1 → V ands2 : L2 → V , there exists
s3 : L3 → V in S such that

s1 ≤p s3 and s2 ≤p s3

For all t ∈ L1 ∩ L2, s1(t) = s3(t) = s2(t). Defines′ ∈
S(T, V ) where

dom(s′) =
⋃
s∈S

dom(s)

s′(t) = s(t), s ∈ S and t ∈ dom(s)

s′ is the LUB ofS. (S(T, V ),≤p) is a CPO.
To prove that(S(T, V ),≤p) is a complete lower semilat-

tice, we need to show that any subsetS′ ⊆ S(T, V ) has a
GLB. Let E ⊆

⋂
s∈S′ dom(s) be

E = {t ∈ T | ∀s1, s2 ∈ S′, s1(t) = s2(t)}

Define ŝ ∈ S(T, V ) where dom(ŝ) is the largest lower set
of T contained inE, and

ŝ(t) = s(t), s ∈ S′ and t ∈ dom(s)

ŝ is the GLB ofS′.

Claim 2 (Generalized Kahn’s principle) If all processes
in a network are continuous functions from input signals
to output signals, then the network computes a continuous
function from its input to output. The function is the least
fixed point of a continuous functional determined by the net-
work structure and the functions computed by the processes.

The proof is a straightforward extension of that for the orig-
inal Kahn’s principle [3].

3 Discrete event semantics

3.1 DE signals

The tag set of discrete event signals isR+, a totally or-
dered set.

Lemma 1 If the tag setT is totally ordered, then any di-
rected subset ofS(T, V ) is a chain.

When specifying a DE signals, we use the convention
that for all t ∈ dom(s), s(t) is absent (= ε) if not defined
explicitly. Some examples of DE signals are:

• clock : R+ → Zε

clock(n) = 1,∀n ∈ N (1)

• zeno: R+ → Zε

zeno(t) = 1,∀t ∈ N ∪ {1− 2−n | n ∈ N} (2)

• reverse-zeno: R+ → Zε

reverse-zeno(t) = 1,∀t ∈ N ∪ {2−n | n ∈ N} (3)

3.2 DE processes

Most common DE processes are continuous with respect
to the prefix order in definition 2. For example,

• add
Given the addition function+ : V × V → V , define
+ε : Vε × Vε → Vε as

+ε v1 ε
v2 v1 + v2 v2

ε v1 ε

Defines = add(s1, s2) as

dom(s) = dom(s1) ∩ dom(s2)

s(t) = s1(t) +ε s2(t),∀t ∈ dom(s)
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dom(s) =
{

L1 ∩ L2 ∪ {q | q ≥ p and ∀t ∈ [p, q], s1(t) ∈ V } if p 6∈ L2

L1 ∩ L2 ∪ {q | q ≥ p and ∀t ∈ (p, q], s1(t) ∈ V } if p ∈ L2

s(t) =
{

s1(t) if t ∈ dom(s) and s1(t) ∈ V
s2(t) if t ∈ dom(s) and s1(t) = ε

(4)

• delay1
Defines′ = delay1(s) as

dom(s′) = [0, 1) ∪ {t + 1 | t ∈ dom(s)}

s′(t) = s(t− 1),∀t ∈ dom(s′) ∩ [1,∞)

• merge
Let L1 = dom(s1), L2 = dom(s2), andp = supL2.
Defines = merge(s1, s2) as in equation 4.

3.3 Applying Kahn’s principle

Consider a DE system model with 3 signalsx, y, andz,
satisfying the following equations:

x = reverse-zeno
y = merge(z, x)
z = delay1(y)

(5)

The behavior of this model is the least fixed point solution
of these equations:

y(t) = 1, ∀t ∈ {k + 2−n | k, n ∈ N}
z(t) = 1, ∀t ∈ {k + 2−n | k, n ∈ N, k ≥ 1} (6)

If we change the last equation in 5 to

z = lookahead1(y)

the system becomes non-causal. The behavior is still well-
defined, with

dom(y) = dom(z) = ∅

3.4 Continuity and causality

It is important to note that continuity does not imply
causality – the process that “looks ahead by 1” is contin-
uous but not causal, nor does causality imply continuity –
the process that produces an event after counting an infinite
number of input events is causal but not continuous.

3.5 Discrete signals

S(R+, Vε) contains many “weird” signals that do not ap-
pear in modeling physical systems, such as (takingV = Z)
the reverse-zeno signal.

Definition 3 (Discrete signal) A signals ∈ S(R+, Vε) is
discreteif s−1(V ), the preimage ofV , is order-isomorphic
to a lower set ofN, and ifs−1(V ) is an infinite set,

dom(s) =
⋃

t∈s−1(V )

[0, t]

Let D(R+, Vε) denote the set of discrete signals.
According to this definition, the signald : [0, 1) → Zε

with
d(t) = 1,∀t ∈ {1− 2−n | n ∈ N} (7)

is discrete, but the signalnd : [0, 1] → Zε with

nd(t) = 1,∀t ∈ {1− 2−n | n ∈ N} (8)

is not. As will become clear later in section 4.3, the discrete
signals are the subset of DE signals that can be represented
by timed streams.

Claim 3 (D(R+, Vε),≤p) is a poset, a CPO, and a com-
plete lower semilattice.

3.6 Multirate systems

Some DE processes may produce multiple output events
with the same time stamp, such asrepeatand a version of
mergethat does not discard any simultaneous input events.
For such processes, we use the tag setTDE = R+ × N
with the lexicographical order – a total order – to define
DE signals. It is straightforward to generalize the previous
definitions and claims. The generalization can handle the
delta delay operations in VHDL as well.

4 Operational semantics

4.1 Signal representation

We can represent a discrete signal by a sequence of time-
stamped tokens. For example, a representation of the clock
signal defined in equation 1 is{(n, 1) | n ∈ N}. Only in-
cluding the “present” events in the sequence is not adequate.
Consider these signals

u0 : [0, 1] → Zε such that u0(0) = 1
u1 : [0, 1] → Zε such that u1(0) = u1(1) = 1 (9)

u0 6≤p u1. If the signal representation only includes present
events, then the representation ofu0 is {(0, 1)}, a prefix of
that ofu1 – {(0, 1), (1, 1)}.
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4.2 Null events

We solve this problem by including “null events” in the
signal representation. The representation ofu0 becomes
{(0, 1), (1, ε)}, making it clear thatu0 is not a prefix ofu1.

4.3 Timed streams

It is also necessary for the signal representation to distin-
guish betweenu0 and

u2 : [0, 1) → Zε such thatu2(0) = 1 (10)

Definition 4 (Time stamp) A time stampis: t ∈ R+, or
t− for t ∈ R+ \ {0}, or ∞. LetTS denote the set of time
stamps. Extend the usual order onR+ to TS by letting

r < t− < t,∀r < t

Definition 5 (Timed stream) A timed streamis an element
of (TS×Vε)∗∗ (a finite or infinite sequence of tuples(ts, v)
with ts ∈ TS andv ∈ Vε) such that the time stamps in the
sequence are strictly increasing.

We can represent the signalu2 with the timed stream
{(0, 1), (1−, ε)}. We can formulate a (many-to-one) map-
ping from timed streams to discrete signals, and show that
the discrete signals are the subset of DE signals repre-
sentable by timed streams.

We define an equivalence relation between timed streams
as: two streams are equivalent if they represent the same
discrete signal. We can later show that a DE process
computes equivalent output streams from equivalent input
streams.

4.4 Discrete event process networks

We extend KPN by replacing data streams with timed
streams, and Kahn processes with DE processes. Ours is an
alternative development of the Chandy-Misra approach.

4.5 Snapshots of DE processes

Given any causal DE processP and its input up tot, its
input-output behavior att is a (continuous) Kahn process.
The simulation of a DE system att can be treated as a Kahn
process network.

5 Conclusion and future work

Using the tagged signal model, we propose a general def-
inition of signals and a prefix order of signals. We show that
the signals form a CPO, and present a generalized Kahn’s

principle. We apply the general principle to study the se-
mantics of discrete event systems. We plan to implement a
DE simulator using the proposed operational semantics and
compare it with other strategies.
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