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Abstract

This work focuses on establishing a semantic interpreta-
tion for discrete-event systems. In this paper we describe
some of the basic mathematical structures, building on the
tagged-signal model of [4, 3], and the term-based formal-
ism of [5].

1. Prerequisites

In this section we introduce some terminology and re-
view some fundamental concepts and results from set the-
ory and order theory [2, 1].

1.1. Isomorphisms

Let (P,≤P ), (Q,≤Q), (R,≤R) be ordered sets.
A mapϕ : P → Q is anorder-embedding, and we write

ϕ : P ↪→ Q, iff for all p1, p2 ∈ P :

p1 ≤P p2 ⇔ ϕ(p1)≤Q ϕ(p2)

An order-embeddingϕ : P ↪→ Q is an order-
isomorphismiff it mapsP ontoQ. The ordered setsP and
Q areorder-isomorphic, and we writeP ∼= Q, iff there ex-
ists an order-isomorphism fromP toQ.

The concept of isomorphism obeys laws of reflexivity,
symmetry, and transitivity. In particular,P ∼= P , P ∼= Q
impliesQ ∼= P , andP ∼= Q ∼= R impliesP ∼= R.

1.2. Well Orderings and Ordinals

Let (P,≤) be an ordered set.
The ordered set(P,≤) is well orderediff it is totally or-

dered and every non-empty subset ofP has a least element.
If p ∈ P , then the set

{
p′ | p′ < p

}
is called theinitial

segment up top and is denoted byseg p.

For any two well ordered sets, either they are order-
isomorphic or one is order-isomorphic to an initial segment
of the other.

A setA is calledtransitiveiff a ∈ b ∈ A impliesa ∈ A
for all setsa, b.

An ordinal is a transitive set that is well ordered by set
containment∈. We denote the class of all ordinals byΩ.

Every well ordered set is order-isomorphic to a unique
ordinal, called theordinal numberof the set. Two well or-
dered sets are order-isomorphic iff they have the same ordi-
nal number.

For any setA, the setA∪ {A} is called thesuccessorof
A and is denoted byA+.

For all ordinalsα andβ, eitherα ∈ β, or α = β, or
β ∈ α.

Any transitive set of ordinals is an ordinal. The empty
set∅ is an ordinal. Ifα is an ordinal, thenα+ is an ordinal.
If A is a set of ordinals, then

⋃
A is an ordinal.

For all ordinalsα andβ, α ∈ β if and only if α+ ∈ β or
α+ = β.

An ordinalα is asuccessor ordinaliff α = β+ for some
ordinalβ. Otherwiseα =

⋃
α, and eitherα = ∅ or α is a

limit ordinal.
The class of all ordinalsΩ is not a set (Burtali-Forti para-

dox).
A setA is dominatedby a setB iff there exists a one-to-

one function fromA intoB.
For any setA, there exists an ordinalα not dominated by

A (Hartogs’ theorem).
Note that we adopt von Neumann’s approach to the con-

struction of the natural numbers. Under this approach, each
natural number is the set of all smaller natural numbers.
Hence, every natural number is a finite ordinal and the set
of all natural numbersω = {0, 1, 2, . . .} coincides with the
least limit ordinal.

1.3. Complete Partial Orders

Let (P,≤) be a partially ordered set.
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An element⊥ ∈ P such that⊥ ≤ p for anyp ∈ P is
called abottomor zeroelement. A partially ordered set is
pointediff it has a bottom element.

A subsetD of P is directediff it is non-empty and every
pair of elements inD has an upper bound inD.

A pointed partially ordered set in which every directed
subset has a least upper bound is called acomplete partial
order or simplycpo.

A subsetC of P is consistentiff it is non-empty and
every finite subset ofC has an upper bound inP .

A cpo(P,≤) is consistently completeiff every consistent
setC ⊆ P has a least upper bound inP .

An elementp of a cpo(P,≤) is finite iff wheneverp ≤∨
D for a directed setD ⊆ P , p ≤ d for somed ∈ D.
A cpo (P,≤) is algebraiciff for any p ∈ P , there exists

a directed setD ⊆ P of finite elements such thatp =
∨
D.

An algebraic cpo is calledω-algebraic iff the set of all finite
elements is denumerable.

1.4. Least Fixed Points

Let (P,≤P ), (Q,≤Q) be complete partial orders.
A function f : P → Q is order-preservingiff for all

p1, p2 ∈ P such thatp1 ≤P p2, f(p1) ≤Q f(p2).
A function f : P → Q is continuousiff for every di-

rected setD ⊆ P , the set
{
f(d) | d ∈ D

}
is a directed

subset ofQ, andf(
∨

P D) =
∨

Q

{
f(d) | d ∈ D

}
. Every

continuous function is order-preserving.
An elementp ∈ P is a fixed pointof the functionf :

P → P iff f(p) = p. A fixed pointp of f is theleast fixed
point of f , and we use the expressionµx.f(x) to denote it,
iff for any fixed pointp′ of f , p ≤ p′.

If f : P → P is a continuous function, thenf has a least
fixed point andµx.f(x) =

∨
n∈ω f

n(⊥).
If f : P → P is an order-preserving function, thenf

has a least fixed point andµx.f(x) = fα(⊥) for some or-
dinalα, wherefβ+

(⊥) = f(fβ(⊥)) for any ordinalβ, and
fγ(⊥) =

∨ {
fβ(⊥) | β ∈ γ

}
if γ is a limit ordinal.

2. Signals and Tuples of Signals

2.1. Signals

Let V be a non-empty set of possiblevalues, andT a
non-empty set oftags. While we impose no structure on the
set of valuesV, we require that the set of tags be a totally
ordered set(T ,≤).

Definition 2.1 (Event). An evente is a tuple(τ, v) with τ ∈
T andv ∈ V.

We denote the set of all events byE , that isE = T × V.

Definition 2.2 (Signal). A signals is a partial function from
the set of tagsT to the set of valuesV, that iss ∈ (T ⇀ V).

Alternatively, a signals can be defined as a subset of
E , such that for all events(τ1, v1), (τ2, v2) ∈ s, v1 6= v2
impliesτ1 6= τ2. The two definitions are equivalent and will
be used interchangeably according to context. We denote
the set of all signals byS, that isS = (T ⇀ V) ⊂ PE .

The tag-setT (s) of a signals ∈ S is defined to be the
domain ofs, that isT (s) = dom s.

For notational convenience, we will writes1(τ) ' s2(τ)
iff the signalss1 and s2 are either both defined, or both
undefined at tagτ , and if defineds1(τ) = s2(τ).

Definition 2.3 (Natural Signal). A signals ∈ S is natural
iff there exists an order-embedding from its tag-setT (s) to
the set of all natural numbersω.

We denote the set of all natural signals bySω.

Definition 2.4 (Ordinal signal). A signals ∈ S is ordinal
iff its tag-setT (s) is well ordered.

Equivalently, a signal is ordinal iff there exists an order-
isomorphism from its tag-set to some ordinal. A natural sig-
nals ∈ Sω is clearly ordinal, since the existence of an order-
embedding from its tag-setT (s) to the set of all natural
numbersω implies the existence of an order-isomorphism
from T (s) to some ordinalα, where in particularα ∈ ω or
α = ω. We denote the set of all ordinal signals bySΩ. Note
that there is no ambiguity in terming the class of all ordinal
signals a set, sinceSΩ ⊆ S.

2.2. Tuples of Signals

LetV ar be an infinite set ofvariables. Letx, y, z, xi, . . .
range overV ar andI, J,K, . . . overPV ar.

Given setsI andA, the set of all functions fromI to A
is denoted by(I → A) or AI . An element ofAI can be
thought of as anI-tuple of elements ofA, and we usually
write ai instead ofa(i) for a ∈ AI , i ∈ I. If a ∈ AI and
b ∈ AJ with I ∩ J = ∅, thena ⊕ b ∈ AI∪J denotes the
(I ∪ J)-tuple satisfying:

(a⊕ b)(i) =

{
ai if i ∈ I,
bi if i ∈ J.

A tuple of signalsorsignal tuples is anI-tuple of signals
in S for some set of variablesI ⊆ V ar. Notice that the
set of all tuples of signals is essentially the set of all partial
functions from the set of all variables to the set of all signals,
that is(V ar ⇀ S).

The tag-setT (s) of a tuples ∈ SI is defined as the
union of the tag-sets of the tupled signals, that isT (s) =⋃

i∈I T (si).
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Occasionally, it will be convenient to consider an alter-
native definition for tuples of signals, according to which a
signal tuples is an element of the set(T ⇀ V ar ⇀ V).
In fact, the two definitions are equivalent in the sense that
for anys ∈ (V ar ⇀ S), there exists a uniques′ ∈ (T ⇀
V ar ⇀ V), such that for alli ∈ V ar andτ ∈ T , either
s(i)(τ) ands′(τ)(i) are both undefined, or they are both
defined ands(i)(τ) = s′(τ)(i), and vice versa.

With this definitional equivalence in mind, we will write
s1(τ) ' s2(τ) for all tupless1, s2 ∈ SI and any tagτ , iff
s1(i)(τ) ' s2(i)(τ) for all i ∈ I. Similarly, for any signal
tuples and any set of tagsT ⊆ T , we will let s � T denote
the signal tuple

{
(i, si � T ) | i ∈ dom s

}
.

Definition 2.5 (Natural signal tuple). A signal tuples ∈ SI

is natural iff there exists an order-embedding from its tag-
setT (s) to the set of all natural numbersω.

We denote the set of all naturalI-tuples of signals by
[SI ]ω. Note that this is different from the set of allI-tuples
of natural signals[Sω]I . In fact, it is easy to verify that
[SI ]ω ⊆ [Sω]I . We denote the set of all natural tuples of
signals by(V ar ⇀ S)ω.

Definition 2.6 (Ordinal signal tuple). A signal tuples ∈ SI

is ordinal iff its tag-setT (s) is well ordered.

Equivalently, a tuple of signals is ordinal iff there exists
an order-isomorphism from its tag-set to some ordinal. As
in the case of natural and ordinal signals, any natural tuple
of signals is ordinal. We denote the set of all ordinalI-
tuples of signals by[SI ]Ω. Again, this is different from the
set of allI-tuples of ordinal signals[SΩ]I , and it is easy to
verify that [SI ]Ω ⊆ [SΩ]I . We denote the set of all ordinal
tuples of signals by(V ar ⇀ S)Ω.

Proposition 2.1. If I ⊆ V ar is a finite set of variables, then
[SI ]Ω = [SΩ]I .

Proof. Consider an arbitrary tuple of signalss ∈ SI . If
T (s) is well ordered, thenT (si) will be well ordered for
anyi ∈ I, sinceT (si) ⊆ T (s). Hence,[SI ]Ω ⊆ [SΩ]I .

For the other inclusion, notice that any non-empty subset
of tagsT ⊆ T (s) can be expressed as

⋃
i∈I

(
T ∩T (si)

)
. If

T (si) is well ordered for anyi ∈ I, thenT∩T (si) will have
a least tag for anyi ∈ I. The set of these least tags will be
totally ordered and finite by assumption. Therefore it will
have a least element that is also least in

⋃
i∈I

(
T ∩ T (si)

)
.

HenceT (s) will be well ordered, and[SI ]Ω ⊇ [SΩ]I .

2.3. Ordering Signals and Tuples of Signals

Definition 2.7 (Signal prefix). A signals1 ∈ S is a prefix
of a signals2 ∈ S, and we writes1 v s2, iff s1 ⊆ s2 and
for all tagsτ1 ∈ T (s1) andτ2 ∈ T (s2) \ T (s1), τ1 < τ2.

The signal-prefix relationv ⊂ S × S is a partial order,
and for any signals ∈ S, ∅ v s.

Proposition 2.2. Two signalss1, s2 ∈ S have an upper
bound if and only if they are comparable.

Proof. If s1 ands2 are comparable, then they trivially share
an upper bound, moreovers1 t s2 ∈ {s1, s2}.

In the other direction, ifs1 = ∅ or s2 = ∅, then s1
ands2 are trivially comparable. Otherwise, assume thats1
ands2 are incomparable. Then, and without loss of gen-
erality, there exist tagsτ1 ∈ T (s1) andτ2 ∈ T (s2), such
thats1(τ1) 6' s2(τ1) andτ1 < τ2. For any signals w s1,
s ⊇ s1, and we deduce thats(τ1) 6' s2(τ1). Hences2 is
incomparable to any upper bound ofs1.

Proposition 2.3. If C ⊆ S is a non-empty set of signals,
then the following are equivalent:

(i) C is totally ordered,

(ii) C is directed,

(iii) C is consistent.

Proof. If C is totally ordered, then for any pair of signals
s1, s2 ∈ C, eithers1 v s2 or s2 @ s1 implying s1 t s2 ∈
{s1, s2} ⊆ C. HenceC is directed.

If C is directed, then every pair of signals inC has an
upper bound inC, and by straightforward induction, any
finite subset ofC will have an upper bound inC. HenceC
is consistent.

If C is consistent, then any pair of signalss1, s2 ∈ C has
an upper bound, ands1 ands2 need to be comparable by
Proposition 2.2. HenceC is totally ordered.

Proposition 2.4. The least upper bound
⊔
C of a set of

signalsC ⊆ S exists if and only ifC is totally ordered, in
which case

⊔
C =

⋃
C.

Proof. LetC be totally ordered and consider the set
⋃
C ⊆

E . We first need to show that
⋃
C is a signal. Assume

to the contrary that
⋃
C /∈ S. Then there exist events

(τ1, v1), (τ2, v2) ∈
⋃
C with v1 6= v2 andτ1 = τ2. Con-

sequently, there need to be signalss1, s2 ∈ C such that
(τ1, v1) ∈ s1 and (τ2, v2) ∈ s2, which cannot be com-
parable, contradicting the fact thatC is totally ordered.
Now for any signals ∈ C, s ⊆

⋃
C and (

⋃
C) \ s =⋃

s′∈C(s′ \ s). SinceC is totally ordered,s′ \ s 6= ∅
if and only if s @ s′. Hence, by Definition 2.7, for all
tagsτ ∈ T (s) and τ ′ ∈ T (s′ \ s), τ < τ ′. And since
T ((

⋃
C) \ s) = T (

⋃
s′∈C(s′ \ s)) =

⋃
s′∈C T (s′ \ s), we

conclude thats v
⋃
C. Therefore

⋃
C is an upper bound

of C. If u ∈ S is another upper bound ofC, then for any
signals ∈ C, s ⊆ u implying that

⋃
C ⊆ u. Suppose there

are tagsτ ∈
⋃
C andτ ′ ∈ T (u \

⋃
C) such thatτ ′ < τ .

Then there needs to be a signals ∈ C with τ ∈ T (s) and
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τ ′ /∈ T (s), which cannot be comparable withu, in contra-
diction to the fact thatu is an upper bound ofC. Hence⋃
C v u, establishing that

⋃
C is a least upper bound of

C.
For the reverse implication, notice that ifC is not to-

tally ordered, then by Proposition 2.3 it is not consistent
and therefore cannot have a least upper bound.

It is evident that the set of all signalsS is a consistently
complete cpo under the signal-prefix relation. The situation
becomes less clear in the case of natural and ordinal signals.

Proposition 2.5. The ordered set(Sω,v) is a consistently
complete cpo.

Proof. The set(Sω,v) is a pointed partially ordered set
with bottom element the empty signal∅. Let D ⊆ Sω

be a directed set. Then by Proposition 2.3,D will be to-
tally ordered, and by Proposition 2.4,

⊔
D =

⋃
D. We

need to show that
⋃
D is a natural signal. Observe that

T (
⋃
D) =

⋃
s∈D T (s). For any signals ∈ D we can

find an order-embeddingϕs : T (s) ↪→ ω from its tag-
set to the set of all natural numbers. Consider the map
ϕ : T (

⋃
D) → ω, such that for anyτ ∈ T (

⋃
D):

ϕ(τ) = min
{
ϕs(τ) | s ∈ D andτ ∈ T (s)

}
It is easy to verify thatϕ is an order-embedding. Hence⋃
D ∈ Sω and(Sω,v) is a cpo.
LetC ⊆ Sω be a consistent set. Then by Proposition 2.3,

C will be directed. Hence
⊔
C ∈ Sω and(Sω,v) is con-

sistently complete.

Proposition 2.6. The ordered set(SΩ,v) is a consistently
complete cpo.

Proof. Similar to Proposition 2.5. (under construction...)

It is a simple exercise to show that the cpo of natural
signals, and similarly the cpo of ordinal signals, is algebraic,
though we do not pursuit this here.

Let I ⊆ V ar be a set of variables. Perhaps surprisingly,
we do not use the induced pointwise order to order the set
of signal tuplesSI .

Definition 2.8 (Signal-tuple prefix). A signal tuples1 ∈ SI

is a prefix of a signal tuples2 ∈ SI , and we writes1 v s2,
iff s1(i) ⊆ s2(i) for all i ∈ I, and for all tagsτ1 ∈ T (s1)
andτ2 ∈ T (s2) \ T (s1), τ1 < τ2.

The signal-tuple prefix relationv ⊂ SI ×SI is a partial
order, and for any signal tuples ∈ SI , ∅I v s. Notice that
for all tupless1, s2 ∈ SI , s1 v s2 impliess1(i) v s2(i)
for all i ∈ I.

We can immediately deduce that(SI ,v) is a consis-
tently complete cpo. This is less obvious in the case of
natural and ordinal tuples of signals.

Proposition 2.7. The ordered set([SI ]ω,v) is a consis-
tently complete cpo.

Proof. Similar to Proposition 2.5.

Proposition 2.8. The ordered set([SI ]Ω,v) is a consis-
tently complete cpo.

Proof. Similar to Proposition 2.6.

3. Functions over Tuples of Signals

3.1. Composition

For setsI, J,K ⊆ V ar and functionsf : SI → SJ and
g : SJ → SK , the sequential compositionof f andg is
the functiong ◦ f : SI → SK such that for anys ∈ SI ,
(g◦f)(s) = g(f(s)). Then-fold composition of a function
f : SI → SI with itself is denoted byfn and defined
recursively asf ◦ fn−1, with f0 being the identity function
on SI . For setsI, J,K,L ⊆ V ar, with J ∩ L = ∅, and
functionsf : SI → SJ andg : SK → SL, theparallel
compositionof f andg is the functionf ⊕ g : SI∪K →
SJ∪L such that for anys ∈ SI∪K , (f ⊕ g)(s) = f(s �
I)⊕ g(s � K).

3.2. Causality

Let A be a non-empty set and(Γ,≤) a pointed totally
ordered set with a zero element0 ∈ Γ, such that for any
γ ∈ Γ, 0 ≤ γ. A functiond : A×A→ Γ is anultrametric
distancefunction iff for all a1, a2, a3 ∈ A:

(i) d(a1, a2) = 0 ⇔ a1 = a2,

(ii) d(a1, a2) = d(a2, a1),

(iii) d(a1, a3) ≤ max
{
d(a1, a2), d(a2, a3)

}
.

Let (Γ,≤) be a complete totally ordered set with a zero
element0 ∈ Γ, andϕ : T ↪→ Γ an order-embedding from
the set(T ,≤) to the set(Γ \

{
0
}
,≥). We define thegen-

eralized Cantor metricdC : S × S → Γ such that for all
signalss1, s2 ∈ S:

dC(s1, s2) =
∨

Γ

{
ϕ(τ) | τ ∈ T ands1(τ) 6' s2(τ)

}
It is easy to verify thatdC is an ultrametric.

We can extend the generalized Cantor metric directly to
tuples of signals with consideration to their alternative de-
finition. Hence, for any set of variablesI and all tuples
s1, s2 ∈ SI :

dC(s1, s2) =
∨

Γ

{
ϕ(τ) | τ ∈ T ands1(τ) 6' s2(τ)

}
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Definition 3.1 (Causal function). A functionf : SI → SJ

is causal iff for all tupless1, s2 ∈ SI :

dC(f(s1), f(s2)) ≤ dC(s1, s2)

Definition 3.2 (Strictly causal function). A functionf :
SI → SJ is strictly causal iff for all tupless1, s2 ∈ SI ,
s1 6= s2 implies:

dC(f(s1), f(s2)) < dC(s1, s2)

Clearly, any strictly causal function is causal. Causal
functions are closed under both sequential and parallel com-
position. A sequential composition of causal functions is
strictly causal if at least one of the composed functions is
strictly causal. A parallel composition, however, is strictly
causal iff all of the composed functions are strictly causal.

3.3. Naturality and Ordinality

Definition 3.3 (Natural function). A functionf : SI → SJ

is natural iff for any tupless ∈ [SI ]ω, f(s) ∈ [SJ ]ω.

Natural functions, while closed under sequential compo-
sition, are not closed under parallel composition.

Definition 3.4 (Ordinal function). A functionf : SI → SJ

is ordinal iff for any tupless ∈ [SI ]Ω, f(s) ∈ [SI ]Ω.

Ordinal functions are closed under sequential composi-
tion and finite parallel composition. That is, ifA is a finite
set,fa : SIa → SJa is an ordinal function for anya ∈ A,
anda 6= a′ implies Ja ∩ Ja′ = ∅ for all a, a′ ∈ A, then
⊕a∈Afa is an ordinal function. Establishing this is easy.

3.4. Fixed-point Properties

We define anordinal retractionψα for each ordinalα,
such that for any ordinal tuples ∈ (V ar ⇀ S)Ω:

ψα(s) =

{
s � seg τ if α ∼=

{
τ ′ ∈ T (s) | τ ′ < τ

}
s otherwise.

for someτ ∈ T (s). Notice that for any ordinalα, ψα is
a well defined function. For any two well ordered sets, ei-
ther they are order-isomorphic, or one is order-isomorphic
to a unique initial segment of the other. Hence, there is no
ambiguity in the choice ofτ when the ordinalα is order-
isomorphic to an initial segment ofT (s).

Ordinal retractions are easily seen to be continuous func-
tions. For all ordinalsα andβ, ψα ◦ ψβ = ψγ , with γ = α
if α ∈ β andγ = β otherwise. For any ordinalα and any
ordinal tuple of signalss, ψα(s) v s. For all ordinal tuples
of signalss1 ands2 such thats1 @ s2, if α1 is the ordinal
number ofT (s1), thenψα1(s2) = s1, and for any ordinal
β 3 α1, ψβ(s2) A s1.

It is interesting to note that the class of all ordinal re-
tractions is a set, since for any ordinalα, ψα ∈

(
(V ar ⇀

S)Ω → (V ar ⇀ S)Ω
)
.

Proposition 3.1. There exists an ordinalβ such that for all
ordinalsα, α′ ∈ β+, α 6= α′ impliesψα 6= ψ′α, and for any
ordinal γ 3 β, ψγ = ψβ = id.

Proof. Omitted.

We define theordinal approximationΦΩ as a mapping
from the ordinal functions to the restrictions of ordinal func-
tions to the set of all ordinal tuples of signals. In particular,
for any ordinal functionf : SI → SI and any ordinal tuple
s ∈ [SI ]Ω:

ΦΩ(f)(s) = ψα+(f(ψα(s)))

whereα is the ordinal number ofT (s u f(s)). Notice that
the greatest lower bound ofs andf(s) exists and is ordinal
since the cpo([SI ]Ω,v) is consistently complete. The set
T (s u f(s)) coincides withT (s) iff s v f(s), in which
caseψα(s) = s. Similarly, T (s u f(s)) coincides with
T (f(s)) iff s w f(s), in which caseψα(f(s)) = f(s).
In any case,ψα(s) = ψα(f(s)) and bothT (ψα(s)) and
T (ψα(f(s))) have ordinal numberα.

It is important to note that iff : SI → SI is a
strictly causal ordinal function, then for any ordinal tuple
s ∈ [SI ]Ω, f(ψα(s)) w ψα(s), with α being the ordinal
number ofT (s u f(s)). This follows directly by the defin-
ition of strict causality.

Lemma 3.1. If f : SI → SI is a strictly causal ordi-
nal function, then the functionΦΩ(f) : [SI ]Ω → [SI ]Ω
is order-preserving.

Proof. Consider two ordinal tupless1, s2 ∈ [SI ]Ω such
that s1 v s2. Let α1 be the ordinal number ofT (s1 u
f(s1)), andα2 be the ordinal number ofT (s2 u f(s2)).

If s1 = s2, then triviallyΦΩ(f)(s1) = ΦΩ(f)(s2).
If s1 @ s2, then dC(s1, s2) = ϕ(τ), where τ is

the least tag ofT (s2) \ T (s1). Since f is strictly
causal, dC(f(s1), f(s2)) < dC(s1, s2), which implies
f(s1)(τ ′) ' f(s2)(τ ′) for any τ ′ ≤ τ . Moreover,
ψα1(f(s1)) = f(s1) � seg τ ′′ for some tagτ ′′ ≤
τ , with T (f(s1) � seg τ ′′) being order-isomorphic to
α1. However, f(s1) � seg τ ′′ = f(s2) � seg τ ′′

and thereforeψα1(f(s2)) = ψα1(f(s1)). Clearly,
ψα1(s2) = ψα1(s1) and ψα1(f(s1)) = ψα1(s1), and
thus ψα1(s2) = ψα1(f(s2)) = ψα1(s1). Hence,
ψα1(s1) v ψα2(s2). If ψα1(s1) = ψα2(s2), then trivially
ΦΩ(f)(s1) = ΦΩ(f)(s2). Otherwise,ψα1(s1) @ ψα2(s2)
and dC(ψα1(s1), ψα2(s2)) = ϕ(τ ′′′), where τ ′′′ is the
least tag ofT (ψα2(s2)) \ T (ψα1(s1)). Strict causality
of f implies f(ψα1(s1))(τ ′) ' f(ψα2(s2))(τ ′) for any
τ ′ ≤ τ ′′′. However,ψα2(s2) v f(ψα2(s2)) and since
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τ ′′′ ∈ T (ψα2(s2)), f(ψα1(s1))(τ ′) ' ψα2(s2)(τ ′) for
any τ ′ ≤ τ ′′′. Now τ ′′′ is easily seen to be the great-
est tag ofT (ψα+

1
(ψα2(s2)), which is order-isomorphic to

α+
1 . Consequently,ψα+

1
(f(ψα1(s1))) = ψα+

1
(ψα2(s2)).

Sinceα1 ∈ α2, ψα+
1
(ψα2(s2)) v ψα2(s2) and therefore

ψα+
1
(f(ψα1(s1))) v ψα2(s2) v ψα+

2
(f(ψα2(s2))), yield-

ing ΦΩ(f)(s1) v ΦΩ(f)(s2).

Lemma 3.2. If f : SI → SI is a strictly causal ordinal
function, then any fixed point ofΦΩ(f) is a fixed point off .

Proof. Consider an ordinal tuples ∈ [SI ]Ω such thats 6=
f(s). Let α be the ordinal number ofT (s u f(s)), andβ
be the ordinal number ofT (s).

If α = β, thenψα(s) = s and s @ f(s). Hence,
ΦΩ(f)(s) = ψα+(f(s)) A s.

If α+ = β, thenψα(s) @ s anddC(ψα(s), s) = ϕ(τ),
whereτ is the greatest tag ofT (s). Notice thatT (s) has
a greatest element in this case sinceβ is a successor or-
dinal. Sincef is strictly causal,dC(f(ψα(s)), f(s)) <
dC(ψα(s), s), which impliesf(ψα(s))(τ ′) ' f(s)(τ ′) for
any τ ′ ≤ τ . However,f(s)(τ ′) 6' s(τ ′) for someτ ′ ≤ τ
and thereforef(ψα(s))(τ ′) 6' s(τ ′). Hence,ΦΩ(f)(s) =
ψα+(f(ψα(s))) 6= s.

If α+ ∈ β, then trivially ΦΩ(f)(s) =
ψα+(f(ψα(s))) 6= s.

Theorem 3.1. Letf : SI → SI be a strictly causal ordinal
function. Thenµx.ΦΩ(f)(x) is the unique fixed point off .

Proof. The functionΦΩ(f) will be order-preserving, by
Lemma 3.1, and will therefore have a least fixed point
µx.ΦΩ(f)(x). By Lemma 3.2,µx.ΦΩ(f)(x) will be a fixed
point of f . To establish its uniqueness, consider an ordinal
tuples ∈ [SI ]Ω such thats 6= µx.ΦΩ(f)(x), and suppose
to the contrary thats = f(s). Sincef is strictly causal,
dC(f(µx.ΦΩ(f)(x)), f(s)) < dC(µx.ΦΩ(f)(x), s),
in contradiction to dC(f(µx.ΦΩ(f)(x)), f(s)) =
dC(µx.ΦΩ(f)(x), s) as derived by direct substitution.
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