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Abstract 
 
Designing embedded software for complex, safety critical, real-
time feedback control applications is a complex task.  Typical 
applications, like a steer-by-wire application, contain a model of 
the components computing control laws and interacting with a 
plant using sensors and actuators.  Well-defined mathematical 
models are often useful in the design of such systems because they 
allow formal validation, techniques like code generation, and 
reduces the ambiguity in specifications amongst a team of 
designers.  An experimental model of computation called Fault 
Tolerant Data Flow is explored for safety critical, real-time 
feedback control systems.  This report describes the operational 
semantics and structure of this model of computation, and its 
implementation in the Ptolemy II design environment. 
 
1   Introduction 
 

Designing software for complex, safety-critical feedback 
control systems has prompted researchers and scientists to 
look at fault tolerant design methodologies to describe the 
behavior of such systems under fault coverage and design cost 
constraints [1].  In the automotive domain one example where 
failure to a sub-system, like a steer-by-wire subsystem, may 
yield disastrous results.  In [1], an automatic synthesis-based 
approach is taken to design a methodology that allows a 
designer to explore the trade-off between cost and fault-
coverage, and it is based on a formal mathematical model, or 
model of computation, that is amenable for specifying fault-
tolerant, periodic feedback control systems. 

Fault-tolerance is often viewed as an approach to increasing 
the reliability property of safety-critical systems.  The 
approach assumes that components will inevitably lead to 
faults or system failure, but it attempts to neutralize the 
inevitability of faults that leads to system failures by 
employing redundancy in system components.  Furthermore, 
executions of applications in this domain are expected to 
execute periodically on a possibly infinite stream of input data 
on an execution platform within bounded memory.  An 
execution platform is a hardware/software system that may 
include software components, such as a real-time operating 
system or middleware services, and a hardware layer that may 
include a processor, drivers, and communication channels.  

Fault Tolerant Data Flow (FTDF) is an experimental model 
of computation designed to address the specification of fault-
tolerance in safety-critical, real-time feedback control systems, 
and it is first introduced in [1].  FTDF is a data flow variant 
that targets efficient executions and alleviating ambiguous 
specifications in the modeling, design, and validation phases 
of a fault-tolerant system.  The structure of FTDF enables 
formal analysis and automatic synthesis tools and techniques.  
In this paper, FTDF structure and operational semantics are 
reviewed.  Finally, an implementation of the FTDF domain in 
the Ptolemy II design environment for modeling, simulation, 
and code generation is discussed. 

The rest of this paper is organized below.  Section 2 
discusses previous work with FTDF and a closely related 
model of computation, Statically Scheduable Data Flow.  
Section 3 reviews the operational semantics and structure of 
an FTDF graph.  Section 4 discusses the implementation of 
FTDF in Ptolemy II and gives a simple example.  Section 5 
concludes with concluding observations and future work. 

 
2   Previous Work 
   

In [1], FTDF is the founding programming model of an 
automatic synthesis-based methodology for the design of real-
time, safety-critical feedback control applications.  The 
purpose of the programming model is to provide a model of 
computation for which design environments can be built that 
formally analyzes and validates safety-critical applications.  A 
library for the specification of FTDF applications is developed 
for use in the Metropolis Meta Model design environment [4].   

FTDF is closely related to Statically Schedulable Data 
Flow (SSDF), also known as Synchronous Data Flow [2], [3]. 
SSDF has been used to describe signal-processing systems.  
Under SSDF, functional units, or actors [6], are scheduled 
statically prior to run-time.  That allows for a more efficient 
execution of a possibly infinite sequence of inputs that is 
guaranteed to run in bounded memory and will execute 
without deadlocks.  FTDF is designed to allow bounded 
memory and deadlock-free executions, but it also allows the 
designer to design actors that can accept a subset of inputs.  
This violates the ability to use balance equations to determine 
a completely static schedule before run-time, as is done in 
SSDF.  The work presented in this paper will leverage an 



  

 

existing set of expressive components in the Ptolemy II design 
environment [5] to allow users to experiment with the use of a 
FTDF domain.  The goal is to allow the specification and 
simulation of an FTDF model that may be integrated with 
other validation tools or used for code generation. 
 
3   Operational Semantics 
 

This section reviews the fundamental components of a 
FTDF model.  The fundamental components include tokens, 
actors, and communication media.  These components are 
discussed in terms of their operational semantics in a precisely 
defined FTDF graph. 
 
3.1 Tokens 

 
Tokens are encapsulations of data.  This allows for type 

polymorphism on the data that is passed between actors.  In 
addition, in the FTDF domain, tokens are appended with a 
valid field.  This token field is used as the result of an actor 
that may perform an error detection scheme, or a designer who 
wishes to set the valid field based on whether or not an invalid 
token is produced by an actor.  An invalid token may be a 
token with an invalid value due to some error or fault detected 
at an actor.  In this case, an actor receiving a token can check 
the token’s validity and choose whether or not to use the 
token. 
 
3.2   Actors 

 
In general, actors are functional components that consume 

a finite number of input tokens per firing and produces a finite 
number of output tokens over a possibly infinite sequence of 
firings.  Formally, we can define an actor, as given in the 
lecture notes, as being a data flow process where F: Sn → Sm, 
as a mapping between a n-tuple set of input signals to a m-
tuple set of output signals where S = T**  and T**  is the set of 
finite and infinite sequences, including ⊥n, of data type T.  In 
addition a firing rule that dictates when an actor can fire, given 
as U ⊂ Sn such that ∀ u ∈ U, each u is finite and no two 
elements of U are joinable, and a firing function, f: Sn → Sm, 
such that ∀ u, f(u) is defined and finite.  These elements yield 
a data flow process, F such that F(s) = f(u).F(s') if ∀ u ∈ U, 
such that s = u.s', otherwise F(s) = ⊥n, where ⊥n ∈ Sn is the n-
tuple of empty sequences.  Given that definition of data flow 
process, an actor can be defined by a firing function that fires 
on a valid set of firing rules.  Repeatedly firing an actor to find 
a least point based on the actor’s firing function such that the 
firing rules are satisfied, precisely defines the operational 
semantics of a data flow process.  For FTDF, a repeated firing 
of all actors in the model defines the operation of the FTDF 
model. 

Actors are typed, and as such, only four types of actors will 
be briefly discussed in this paper.  Two types of actors result 
from actor-oriented languages.  These are source and sink 
actors.  They represent sensors and actuators respectively.  
Regular actors have inputs and outputs, and the firing rule for 
regular actors typically must fire when all inputs are available.  
More formally, the typical firing rule for regular actors is u1 = 
[*, *, …, *] for an N-input regular actor where u1 ∈U.  Firing 

on all inputs is typical of other data flow languages.  The final 
type of actor is the input actor.  The input actor can fire on a 
subset of inputs.  An example of an input actor that may fire if 
at least two of three inputs are available is shown in Figure 1.  
The set of possible firing rules are, U =  [{ *, *, *} , { ⊥, * , * } , 
{ *, ⊥, *} , { *, *, ⊥} ]. 
 

 
 

 
 
 
 

Figure 1:  This is an example of an input actor with three inputs that may fire 
if at least two inputs are available. 
 
 

3.2 Communication Media 
 

Communication media acts as unidirectional channels that 
transmit tokens between actors. Communication media is the 
same as arcs in SSDF graphs, and as such, are implemented in 
Ptolemy II with bounded buffers.  In real applications, 
communication media are potential sources of error.  For 
simplification in modeling in the Ptolemy II environment, 
communication media are assumed to transmit tokens from 
source to receiver with no faults in the media.   

 
3.3 Rules of Composition 
 

The composition of actors and communication media can 
be formulated as a directed, acyclic graph called a FTDF 
graph.  This defines the semantics of the composition of actors 
and communication media.  These semantics can be viewed as 
a set of constraints on the model that must be obeyed by the 
designer to yield an implementation of FTDF.  Given a set of 
actors, say A, and a set of communication media M, a FTDF 
graph, G is given as G = (V, E), where V is the set of vertices 
where V = A and E, the set of directed edges connecting V, is 
E = M.  Furthermore, it is important to note that in the FTDF 
semantics, a FTDF graph is legal if the following conditions 
hold: 

 
• Graph G contains no causality cycles 
• ∀ v ∈ A I, where A I = actors of type input, inputs can 

come from actors of the source or regular actors 
• A cycle of G must begin with at least one as, where as 

∈ As, the set of all source actors, and a cycle must end 
with at least one aact, where aact ∈ Aact, the set of all 
sink actors 

• All actors in G must fire once before starting a new 
cycle 

 
FTDF actors exchange tokens on each cycle under 

synchronous semantics [7], according to the last rule.  The 
other rules simply require a model to begin with a source actor 
and end with a sink actor.  The FTDF graph must not contain 
any cycles, either.  Based on these constraints on construction 
of an FTDF graph, the data dependencies of the actors in the 
graph can be determined.  This information can be used to 



  

 

construct a schedule that knows the order of execution of 
actors in the FTDF graph. 

The information presented in this section described the 
structure and semantics of FTDF.  It describes what an FTDF 
graph does, how it is structured, and allows the reader to gain 
insight into how this should be implemented.  In the following 
section, the implementation of FTDF is described using the 
Ptolemy II framework. 

 
4   Implementation in Ptolemy II and Results 

 
This section highlights the implementation of the FTDF 

domain in Ptolemy II design environment [5].  Constraints on 
constructing a legal FTDF graph are discussed in the previous 
section in terms of composition rules.  The implementation of 
a FTDF model in Ptolemy when constructing a model is 
guided by constraints on graph construction.  If the FTDF 
graph is legal, and for each actor in the model, a firing 
function and firing rules are specified, then a FTDF model can 
be constructed and executed in bounded memory and with no 
deadlocks.   

Ptolemy II offers a rich environment and underlying 
semantics that allows ease of integrating new models of 
computation.  The approach taken to extend Ptolemy II to 
support the FTDF domain is to extend the SSDF domain 
(known as the SDF domain in Ptolemy II) and restrict some 
semantics of that domain to leverage the implementation of 
the FTDF domain.  An advantage of extending the SSDF 
domain is that much of the underlying software architecture 
supports the semantics of FTDF.  This reduces the amount of 
code that must be implemented to create an executable FTDF 
domain.  Also, a rich set of regular actors, or domain 
polymorphic actors in Ptolemy II, can be used.  Input type 
actors can be implemented in the FTDF domain in Ptolemy II.  
The functions can be any function that executes a sequential 
block of code.  Examples functions that are relevant to this 
domain might be deterministic or non-deterministic merges, 
averages, sums, etc.  The functions to implement are up to the 
model designer, FTDF domain simply supports the semantics 
discussed in the previous sections.  Figures 2 and 3 give an 
example model that is created in Ptolemy II under the FTDF 
domain that utilizes an input type actor.   

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2:  This model is a simple example of an input actor with three inputs.  
The firing rules of the input actor, 2-of-3 are the same as the actor in Figure 1.  
The function of the actor is to simply take the last token that is present on the 
input port and place on the output port.  The model executes with no problems 
when all inputs are available.   

 

 

 

 

 

 

 

 

 

Figure 3:  This model is a simple example of an input actor with three inputs, 
the same model as in Figure 2.  Here, it is shown that without one of the 
inputs, the actor can still produce an output.  However, note that if two of the 
three inputs were not available, the model throws an exception. 

In Figure 2, the function of the 2-of-3 actor is to check each 
input port in order from the top input to the bottom input, and 
the output is the last token that was present.  As shown in the 
display, the last token was from the bottom port, input port 3.  
In Figure 3, the function is the same as in Figure 2.  Here, it is 
shown that with the missing input, the actor still is able to fire.  
In the absence of two of the three signals, the FTDF Director 
would throw an exception. 

The operational semantics of FTDF offers a simple 
constraint-based execution of a FTDF model.  So, for 
example, the first three composition rules are checked before 
the model is executed during the FTDF Director’s  
preinitialize() phase.  The preinitialize() phase also constructs 
the schedule for a FTDF model.  If any composition rules are 
violated, an exception is thrown.  It becomes the job of the 
model designer to correct the problem before the model can be 
executed. 

The SSDF scheduler assumes static production and 
consumption rates of actors in a model.  In FTDF, the SSDF 
scheduler is replaced by a scheduler that schedules actors in a 
model based on a topological sort.  The sort yields an order of 
execution of actors from source actors to sink actors such that 
the data is available at the input ports of downstream actors.  
This allows for actors to be scheduled in a single thread of 
execution, and a non-blocking communication style for the 
domain.  Therefore, if a token is not available at an input, it is 
assumed that a fault occurred with the upstream actor that 
delivers a token to that input port.  Based on the actor’s firing 
function and firing rules, the actor can fire or not fire.  In the 



  

 

case that an actor does not have the required number of tokens 
available at its inputs to fire, an exception is thrown by the 
FTDF Ptolemy II Director.  Under these restrictions, an actor 
does not have to wait for out-of-order tokens from upstream 
actors.  Furthermore, the last composition rule of a FTDF 
model only executes each actor in the model once in a cycle.  
This constraint is imposed in the scheduler as the actors are 
executed.  So, unlike the SSDF domain in Ptolemy II, the 
model designer is not allowed to change the rate of production 
of an actor.  As a result, only one token is produced per output 
port of each actor in a FTDF model, and similarly, the 
downstream actor consumes only one token.  This type of 
schedule is called a homogenous schedule [2] in the SSDF 
domain.  Allowing a homogenous schedule restricts the 
designer to single-rate actors.  However, the scheduler is 
able to compute an admissible schedule that may be 
executed in bounded memory, in fact, using single place 
buffers.  It also guarantees a deadlock-free execution since 
the actors communicate using non-blocking reading and 
writing mechanisms. 

 
5   Conclusions and Future Work 

 
FTDF has been described as a model of computation for 

modeling fault-tolerance in safety critical, real-time feedback 
systems.  If a legal FTDF graph is constructed that adheres to 
constraints imposed by the operational semantics of a FTDF 
graph, then the model can be executed in bounded memory 
and with no deadlocks.  A simplified description of how the 
FTDF domain is implemented in the Ptolemy II framework is 
discussed and examples are offered to demonstrate.  
Implementing FTDF in the Ptolemy II design environment as 
an extension of SSDF domain leverages the capabilities and 
components that may be used in the FTDF domain and 
reduces the amount of code to implement. 

For future work, one assumption made in the development 
of the FTDF domain is that actors can only produce and 
consume one token per arc on each invocation of an actor 
during a single cycle.  This assumption may be relaxed to 
handle multi-rate actors. In practical fault-tolerant systems, 
software is mapped to hardware and possibly either hardware 
and/or software components may be replicated in a model.  
This suggests the notion of multiple “processing elements” .  In 
this paper, it is assumed that only one processor is in the 
model, thus each actor can be considered as being mapped to a 
single processor.  However, future work may include 
introducing a processing element as a special type of actor in 
the FTDF domain.  This will allow multiple processing 
elements in a model.  Additional work may consist of 
integrating FTDF domain in Ptolemy II with other design 
environments and tools, such as Metropolis or a tool 
constructing fault trees based on the topology of the FTDF 
model. 
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