

Design of Fault Tolerant Data Flow in Ptolemy II

Mark L. McKelvin, Jr.
mckelvin@eecs.berkeley.edu

EECS 290N Report
December 17, 2004

University of California at Berkeley

Berkeley, CA 94720, USA

Abstract

Designing embedded software for complex, safety critical, real-
time feedback control applications is a complex task. Typical
applications, like a steer-by-wire application, contain a model of
the components computing control laws and interacting with a
plant using sensors and actuators. Well-defined mathematical
models are often useful in the design of such systems because they
allow formal validation, techniques like code generation, and
reduces the ambiguity in specifications amongst a team of
designers. An experimental model of computation called Fault
Tolerant Data Flow is explored for safety critical, real-time
feedback control systems. This report describes the operational
semantics and structure of this model of computation, and its
implementation in the Ptolemy II design environment.

1 Introduction

Designing software for complex, safety-critical feedback
control systems has prompted researchers and scientists to
look at fault tolerant design methodologies to describe the
behavior of such systems under fault coverage and design cost
constraints [1]. In the automotive domain one example where
failure to a sub-system, like a steer-by-wire subsystem, may
yield disastrous results. In [1], an automatic synthesis-based
approach is taken to design a methodology that allows a
designer to explore the trade-off between cost and fault-
coverage, and it is based on a formal mathematical model, or
model of computation, that is amenable for specifying fault-
tolerant, periodic feedback control systems.

Fault-tolerance is often viewed as an approach to increasing
the reliability property of safety-critical systems. The
approach assumes that components will inevitably lead to
faults or system failure, but it attempts to neutralize the
inevitability of faults that leads to system failures by
employing redundancy in system components. Furthermore,
executions of applications in this domain are expected to
execute periodically on a possibly infinite stream of input data
on an execution platform within bounded memory. An
execution platform is a hardware/software system that may
include software components, such as a real-time operating
system or middleware services, and a hardware layer that may
include a processor, drivers, and communication channels.

Fault Tolerant Data Flow (FTDF) is an experimental model
of computation designed to address the specification of fault-
tolerance in safety-critical, real-time feedback control systems,
and it is first introduced in [1]. FTDF is a data flow variant
that targets efficient executions and alleviating ambiguous
specifications in the modeling, design, and validation phases
of a fault-tolerant system. The structure of FTDF enables
formal analysis and automatic synthesis tools and techniques.
In this paper, FTDF structure and operational semantics are
reviewed. Finally, an implementation of the FTDF domain in
the Ptolemy II design environment for modeling, simulation,
and code generation is discussed.

The rest of this paper is organized below. Section 2
discusses previous work with FTDF and a closely related
model of computation, Statically Scheduable Data Flow.
Section 3 reviews the operational semantics and structure of
an FTDF graph. Section 4 discusses the implementation of
FTDF in Ptolemy II and gives a simple example. Section 5
concludes with concluding observations and future work.

2 Previous Work

In [1], FTDF is the founding programming model of an
automatic synthesis-based methodology for the design of real-
time, safety-critical feedback control applications. The
purpose of the programming model is to provide a model of
computation for which design environments can be built that
formally analyzes and validates safety-critical applications. A
library for the specification of FTDF applications is developed
for use in the Metropolis Meta Model design environment [4].

FTDF is closely related to Statically Schedulable Data
Flow (SSDF), also known as Synchronous Data Flow [2], [3].
SSDF has been used to describe signal-processing systems.
Under SSDF, functional units, or actors [6], are scheduled
statically prior to run-time. That allows for a more efficient
execution of a possibly infinite sequence of inputs that is
guaranteed to run in bounded memory and will execute
without deadlocks. FTDF is designed to allow bounded
memory and deadlock-free executions, but it also allows the
designer to design actors that can accept a subset of inputs.
This violates the ability to use balance equations to determine
a completely static schedule before run-time, as is done in
SSDF. The work presented in this paper will leverage an

existing set of expressive components in the Ptolemy II design
environment [5] to allow users to experiment with the use of a
FTDF domain. The goal is to allow the specification and
simulation of an FTDF model that may be integrated with
other validation tools or used for code generation.

3 Operational Semantics

This section reviews the fundamental components of a
FTDF model. The fundamental components include tokens,
actors, and communication media. These components are
discussed in terms of their operational semantics in a precisely
defined FTDF graph.

3.1 Tokens

Tokens are encapsulations of data. This allows for type

polymorphism on the data that is passed between actors. In
addition, in the FTDF domain, tokens are appended with a
valid field. This token field is used as the result of an actor
that may perform an error detection scheme, or a designer who
wishes to set the valid field based on whether or not an invalid
token is produced by an actor. An invalid token may be a
token with an invalid value due to some error or fault detected
at an actor. In this case, an actor receiving a token can check
the token’s validity and choose whether or not to use the
token.

3.2 Actors

In general, actors are functional components that consume

a finite number of input tokens per firing and produces a finite
number of output tokens over a possibly infinite sequence of
firings. Formally, we can define an actor, as given in the
lecture notes, as being a data flow process where F: Sn → Sm,
as a mapping between a n-tuple set of input signals to a m-
tuple set of output signals where S = T** and T** is the set of
finite and infinite sequences, including ⊥n, of data type T. In
addition a firing rule that dictates when an actor can fire, given
as U ⊂ Sn such that ∀ u ∈ U, each u is finite and no two
elements of U are joinable, and a firing function, f: Sn → Sm,
such that ∀ u, f(u) is defined and finite. These elements yield
a data flow process, F such that F(s) = f(u).F(s') if ∀ u ∈ U,
such that s = u.s', otherwise F(s) = ⊥n, where ⊥n ∈ Sn is the n-
tuple of empty sequences. Given that definition of data flow
process, an actor can be defined by a firing function that fires
on a valid set of firing rules. Repeatedly firing an actor to find
a least point based on the actor’s firing function such that the
firing rules are satisfied, precisely defines the operational
semantics of a data flow process. For FTDF, a repeated firing
of all actors in the model defines the operation of the FTDF
model.

Actors are typed, and as such, only four types of actors will
be briefly discussed in this paper. Two types of actors result
from actor-oriented languages. These are source and sink
actors. They represent sensors and actuators respectively.
Regular actors have inputs and outputs, and the firing rule for
regular actors typically must fire when all inputs are available.
More formally, the typical firing rule for regular actors is u1 =
[*, *, …, *] for an N-input regular actor where u1 ∈U. Firing

on all inputs is typical of other data flow languages. The final
type of actor is the input actor. The input actor can fire on a
subset of inputs. An example of an input actor that may fire if
at least two of three inputs are available is shown in Figure 1.
The set of possible firing rules are, U = [{ *, *, *} , { ⊥, * , * } ,
{ *, ⊥, *} , { *, *, ⊥}].

Figure 1: This is an example of an input actor with three inputs that may fire
if at least two inputs are available.

3.2 Communication Media

Communication media acts as unidirectional channels that
transmit tokens between actors. Communication media is the
same as arcs in SSDF graphs, and as such, are implemented in
Ptolemy II with bounded buffers. In real applications,
communication media are potential sources of error. For
simplification in modeling in the Ptolemy II environment,
communication media are assumed to transmit tokens from
source to receiver with no faults in the media.

3.3 Rules of Composition

The composition of actors and communication media can
be formulated as a directed, acyclic graph called a FTDF
graph. This defines the semantics of the composition of actors
and communication media. These semantics can be viewed as
a set of constraints on the model that must be obeyed by the
designer to yield an implementation of FTDF. Given a set of
actors, say A, and a set of communication media M, a FTDF
graph, G is given as G = (V, E), where V is the set of vertices
where V = A and E, the set of directed edges connecting V, is
E = M. Furthermore, it is important to note that in the FTDF
semantics, a FTDF graph is legal if the following conditions
hold:

• Graph G contains no causality cycles
• ∀ v ∈ A I, where A I = actors of type input, inputs can

come from actors of the source or regular actors
• A cycle of G must begin with at least one as, where as

∈ As, the set of all source actors, and a cycle must end
with at least one aact, where aact ∈ Aact, the set of all
sink actors

• All actors in G must fire once before starting a new
cycle

FTDF actors exchange tokens on each cycle under

synchronous semantics [7], according to the last rule. The
other rules simply require a model to begin with a source actor
and end with a sink actor. The FTDF graph must not contain
any cycles, either. Based on these constraints on construction
of an FTDF graph, the data dependencies of the actors in the
graph can be determined. This information can be used to

construct a schedule that knows the order of execution of
actors in the FTDF graph.

The information presented in this section described the
structure and semantics of FTDF. It describes what an FTDF
graph does, how it is structured, and allows the reader to gain
insight into how this should be implemented. In the following
section, the implementation of FTDF is described using the
Ptolemy II framework.

4 Implementation in Ptolemy II and Results

This section highlights the implementation of the FTDF

domain in Ptolemy II design environment [5]. Constraints on
constructing a legal FTDF graph are discussed in the previous
section in terms of composition rules. The implementation of
a FTDF model in Ptolemy when constructing a model is
guided by constraints on graph construction. If the FTDF
graph is legal, and for each actor in the model, a firing
function and firing rules are specified, then a FTDF model can
be constructed and executed in bounded memory and with no
deadlocks.

Ptolemy II offers a rich environment and underlying
semantics that allows ease of integrating new models of
computation. The approach taken to extend Ptolemy II to
support the FTDF domain is to extend the SSDF domain
(known as the SDF domain in Ptolemy II) and restrict some
semantics of that domain to leverage the implementation of
the FTDF domain. An advantage of extending the SSDF
domain is that much of the underlying software architecture
supports the semantics of FTDF. This reduces the amount of
code that must be implemented to create an executable FTDF
domain. Also, a rich set of regular actors, or domain
polymorphic actors in Ptolemy II, can be used. Input type
actors can be implemented in the FTDF domain in Ptolemy II.
The functions can be any function that executes a sequential
block of code. Examples functions that are relevant to this
domain might be deterministic or non-deterministic merges,
averages, sums, etc. The functions to implement are up to the
model designer, FTDF domain simply supports the semantics
discussed in the previous sections. Figures 2 and 3 give an
example model that is created in Ptolemy II under the FTDF
domain that utilizes an input type actor.

Figure 2: This model is a simple example of an input actor with three inputs.
The firing rules of the input actor, 2-of-3 are the same as the actor in Figure 1.
The function of the actor is to simply take the last token that is present on the
input port and place on the output port. The model executes with no problems
when all inputs are available.

Figure 3: This model is a simple example of an input actor with three inputs,
the same model as in Figure 2. Here, it is shown that without one of the
inputs, the actor can still produce an output. However, note that if two of the
three inputs were not available, the model throws an exception.

In Figure 2, the function of the 2-of-3 actor is to check each
input port in order from the top input to the bottom input, and
the output is the last token that was present. As shown in the
display, the last token was from the bottom port, input port 3.
In Figure 3, the function is the same as in Figure 2. Here, it is
shown that with the missing input, the actor still is able to fire.
In the absence of two of the three signals, the FTDF Director
would throw an exception.

The operational semantics of FTDF offers a simple
constraint-based execution of a FTDF model. So, for
example, the first three composition rules are checked before
the model is executed during the FTDF Director’s
preinitialize() phase. The preinitialize() phase also constructs
the schedule for a FTDF model. If any composition rules are
violated, an exception is thrown. It becomes the job of the
model designer to correct the problem before the model can be
executed.

The SSDF scheduler assumes static production and
consumption rates of actors in a model. In FTDF, the SSDF
scheduler is replaced by a scheduler that schedules actors in a
model based on a topological sort. The sort yields an order of
execution of actors from source actors to sink actors such that
the data is available at the input ports of downstream actors.
This allows for actors to be scheduled in a single thread of
execution, and a non-blocking communication style for the
domain. Therefore, if a token is not available at an input, it is
assumed that a fault occurred with the upstream actor that
delivers a token to that input port. Based on the actor’s firing
function and firing rules, the actor can fire or not fire. In the

case that an actor does not have the required number of tokens
available at its inputs to fire, an exception is thrown by the
FTDF Ptolemy II Director. Under these restrictions, an actor
does not have to wait for out-of-order tokens from upstream
actors. Furthermore, the last composition rule of a FTDF
model only executes each actor in the model once in a cycle.
This constraint is imposed in the scheduler as the actors are
executed. So, unlike the SSDF domain in Ptolemy II, the
model designer is not allowed to change the rate of production
of an actor. As a result, only one token is produced per output
port of each actor in a FTDF model, and similarly, the
downstream actor consumes only one token. This type of
schedule is called a homogenous schedule [2] in the SSDF
domain. Allowing a homogenous schedule restricts the
designer to single-rate actors. However, the scheduler is
able to compute an admissible schedule that may be
executed in bounded memory, in fact, using single place
buffers. It also guarantees a deadlock-free execution since
the actors communicate using non-blocking reading and
writing mechanisms.

5 Conclusions and Future Work

FTDF has been described as a model of computation for

modeling fault-tolerance in safety critical, real-time feedback
systems. If a legal FTDF graph is constructed that adheres to
constraints imposed by the operational semantics of a FTDF
graph, then the model can be executed in bounded memory
and with no deadlocks. A simplified description of how the
FTDF domain is implemented in the Ptolemy II framework is
discussed and examples are offered to demonstrate.
Implementing FTDF in the Ptolemy II design environment as
an extension of SSDF domain leverages the capabilities and
components that may be used in the FTDF domain and
reduces the amount of code to implement.

For future work, one assumption made in the development
of the FTDF domain is that actors can only produce and
consume one token per arc on each invocation of an actor
during a single cycle. This assumption may be relaxed to
handle multi-rate actors. In practical fault-tolerant systems,
software is mapped to hardware and possibly either hardware
and/or software components may be replicated in a model.
This suggests the notion of multiple “processing elements” . In
this paper, it is assumed that only one processor is in the
model, thus each actor can be considered as being mapped to a
single processor. However, future work may include
introducing a processing element as a special type of actor in
the FTDF domain. This will allow multiple processing
elements in a model. Additional work may consist of
integrating FTDF domain in Ptolemy II with other design
environments and tools, such as Metropolis or a tool
constructing fault trees based on the topology of the FTDF
model.

6 References

[1] C. Pinello, L. P. Carloni, and A. L. Sangiovanni-
Vincentelli. "Fault-tolerant deployment of embedded software
for cost-sensitive real-time feedback-control applications,"

Proc. Conf. Design, Automation, and Test in Europe (DATE),
2004.

[2] E. A. Lee and D. G. Messerschmitt. "Static scheduling of
synchronous data flow programs for digital signal processing,"
IEEE Trans. on Computers, January, 2004.

[3] E. A. Lee and D. G. Messerschmitt. "Synchronous data
flow," Proc. of the IEEE, vol. 75, no. 9, September, 1987.

[4] The Metropolis Project Team. "The Metropolis Meta
Model Version 0.4," Technical Report UCB/ERL M04/38,
University of California, Berkeley, CA USA 94720,
September, 2004.

[5] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao,
H. Zheng, "Heterogeneous concurrent Modeling and design in
Java (Volume 1: Introduction to Ptolemy II)," Technical
Memorandum UCB/ERL M04/27, University of California,
Berkeley, CA USA 94720, July, 2004.

[6] E. A. Lee and S. Neuendorffer. "Classes and Subclasses
in Actor Oriented Designs," Proc. of the Conference on
Formal Methods and Models for Codesign (MEMOCODE),
June, 2004.

[7] A. Beneviste, P. Caspi, S. Edwards, N. Halbwachs, P. Le
Guernic, and R. de Simone. The Synchronous Language
Twelve Years Later,” In Proc. of the IEEE, March 1997.

