
Modeling and Simulating Discrete Event Systems in Metropolis

Guang Yang

EECS 290N Report
December 15, 2004

University of California at Berkeley
Berkeley, CA, 94720, USA

guyang@eecs.berkeley.edu

Abstract

This paper describes modeling discrete event systems
in Metropolis using one of the key concepts employed by
Metropolis, orthogonalization of design aspects, which in
this particular case, is the orthogonalization between capa-
bility and cost. To support the orthogonalization, quantity
annotation mechanism is introduced. This paper formally
analyzes simulation strategies for quantity annotation using
tagged signal models. To improve simulation efficiency, tak-
ing advantages of built-in LOC constraints is discussed. Fi-
nally, a little thoughts are made for co-simulation between
Metropolis MetaModel discrete event systems and external
continuous time or hybrid systems.

1 Introduction

To deal with constantly increasing complexity and time-
to-market pressure, a paradigm calledplatform based de-
sign [1] has been proposed. In this paradigm, design reuse
is the key, but it is often hard to do so because modifying
a design or a part of the description of a model usually re-
quires extensive changes of other models in the rest of the
design.

A solution to the re-use problem is to orthogonalize con-
cerns and keep various aspects of a design separate. There
are several concerns in embedded system design that could
be orthogonalized. In particular,

• Behavior versus Architecture

• Processes versus Coordination

• Capability versus Cost

Changing any of the aspects would not affect the or-
thogonal aspect, which does increase the reusability of the
model. However, the orthogonalization has big influence
on the models of computations and on analysis tools. So
far, we have observed the influence in Metropolis, which is
based onplatform based designmethodology.

This paper will focus on the orthogonalization of capa-
bility and cost and its influence on models of computation
and analysis tools. We pick time as the cost, because it is
the most common factor in practical models. In section2,
preliminary concepts of orthogonalization and quantity an-
notation are explained. Section3 discusses discrete event
system modeling and simulation in Metropolis. Finally, in
section4, we try to come up with interfaces to make co-
simulation easy between Metropolis discrete event systems
and external continuous or hybrid systems.

2 Preliminaries

2.1 Capability vs Cost

Conceptually, within a model, typically an architecture
model, there are two aspects that could be represented sep-
arately: capability, i.e. the behavior it can implement versus
the cost it bears when it implements a given behavior. For
example, in modeling a CPU in terms of the instructions it
supports, the model would capture the behavior of each in-
struction such as addition or data move. On the other hand,
the cost of the instruction such as the number of required
clock cycles or latency in the time defined for the CPU can
be specified separately. To do this, both behavior and cost
models can be reused without any changes. For instance,
when switching from Intel Pentium 4 to AMD Atholon mi-
croprocessor, the instruction sets are the same. Just com-

pose it with different cost models.
Now, let’s get down to more details. In Metropolis

MetaModel, the Metropolis design language, systems are
modeled as concurrent processes communicating with com-
mon media. Each processp will generate a sequence
of m-events< me >p

1. An m-event is a three tuple,
(process, action, tag), consisting of which process the m-
event belongs to, an action in the specification and a partial
order tag[2]. The process is the one which generates this
m-event. An action corresponds to a statement or a part of
the statement. For example, ’a=b+c’ is an action, the right
hand side ’b+c’ is also an action. In the specification, a
block of sequential code defines a sequence of actions. It is
safe to just consider the overall execution of each process
to be a sequence of m-events. The partial order for the se-
quence of the m-events in each process is manifested by the
tags in the m-events. Note that these partial order tags have
nothing to do with actual timing information. M-event se-
quences from any two different processes can be arbitrarily
interleaved with one another, unless there are communica-
tions between the processes, which add order constraints on
the two m-event sequences.2

The capabilities of a model can be defined over m-event
sequences. A continuous sequence of m-events demon-
strates a particular behavior. In Metropolis, such sequences
can be encapsulated, named and referred to by using either
labels or functions. The cost associated with such capabili-
ties is captured by additional tags associated with m-events.
In this paper, we restrict cost to time. But in general, tags
could be any quantities that of interests, such as power, pri-
ority, etc. When annotating an m-event with a time tagt,
an m-eventv becomes a regular event(v, t)3. To simplify
the notations, if there is no annotation to an m-eventv, we
denote the event in the form of(v,⊥). In the rest of the pa-
per, we also use m-event to refer to an m-event with⊥ tag.
When we talk about tags, we mean the actual time stamps,
NOT the partial order tag inside m-events.

2.2 Quantity Managers

Due to the orthogonalization idea, in Metropolis, cost is
modeled by a separate object, which is called quantity man-
ager. Figure1 shows the quantity annotation flow. The cost
annotation flow is initiated by an m-event, who sends an an-
notation request of timet to the time quantity manger first.
If there exist multiple processes, each one will generate an

1Note that in the first Metropolis public release, all documents use the
name event. But in this paper, to remove possible confusion to later dis-
cussion, we refer to Metropolis events by m-events.

2There are other ways to constrain m-events, such as using declarative
constraints. But they are not the focus of this paper.

3We use the name event, because in most other DE systems, such as
VHDL and Verilog, an event does have a value and a tag for actual timing
information.

m-event and could send an annotation request to quantity
manager. But note that not every m-event makes quantity
annotation requests, only those designer are interested in
do. Then, time quantity manager resolves all the requests.
Because of the non-decreasing nature of time, time quan-
tity manager will disable all events except the ones with the
smallest time requests. Finally, the time is annotated to the
m-event. Had one event not been granted, it will make an
updated request again in the next round of quantity annota-
tion. With this quantity annotation mechanism, a process
ends up with a mixed sequence of m-events and regular
events. Or< e >p=< (v, t)|t = ⊥ or t =some value>p.

Figure 1. Quantity Annotation Flow

3 Discrete Event Systems in Metropolis

3.1 Discrete Event Systems Modeling

As described in the previous section, each process gener-
ates a sequence of m-events. Designers could add quantity
annotation code to associate time tags to some m-events4.
These time tags define a total order among the events (pos-
sibly from different processes) in the systems. However, not
every m-event is required to have a time tag, which results
in nondeterminism making design specification easier and
leaving optimization space.

3.2 Interleaving of Events

In discrete event (DE) systems, tags define a total or-
der among all events. This can be generalized to Metropo-
lis MetaModel using the time quantity annotation mech-
anism. Suppose there aren processp1, p2, ..., pn. Each

4In this sense, modeling discrete event system in Metropolis is similar
to that in VHDL or Verilog. Time advance is made explicit by the designer.
The ones that do not have explicit time stamps take delta time.

2

process generates a m-event sequenceme1,me2, ...,men.
Denote theith (i ∈ N) m-event inmej with mej(i), the
tag of theith m-event inmej with T [mej(i)]. Then, all
T [mej(i)] 6= ⊥ define a total order amongmej(i) them-
selves, as a consequence, they also restrict the possible in-
terleaving among segments ofmej . More precisely, define

bmej(i)c =





0, if i = 0.
i, if T [mej(i)] 6= ⊥;
bmej(i− 1)c, otherwise.

(1)

as the most recent annotated m-event inmej and prior to
mej(i). Similarly, define

dmej(i)e =




∞, if i >length(mej).
i, if T [mej(i)] 6= ⊥;
dmej(i + 1)e, otherwise.

(2)
as the next annotated m-event inmej but aftermej(i).

The range specified by (bmej(i)c, dmej(i)e) denotes
the segment of the m-events inmej(i) that have⊥ tags
therefore can be interleaved with other segments from other
processes. In order for two segments, such as (bme1(i)c,
dme1(i)e) and (bme2(i)c, dme2(i)e), to be arbitrarily in-
terleaved, another condition must be satisfied

(T [me1(bme1(i)c)], T [me1(dme1(i)e)])
∩(T [me2(bme2(i)c)], T [me2(dme2(i)e])) 6= ∅

Because otherwise the two segments occur one after the
other, no interleaving is possible. In fact, if the end point
of a segment e.g.T [mej(bmej(i)c)] falls in the time span
of the other segment, the end point itself can join in the in-
terleaving.

3.3 Challenges in DE Simulation and Solutions

Based on segment interleaving reasoning, simulation
seems to be very straightforward, because simulator can just
follow the increasing time segments and interleave them if
possible. However, in reality, there is a big limitation, i.e.
simulator just knows and processes the current m-events, it
does not save the event history. This implies that no roll
back mechanism is possible. If simulator can not decide at
a certain time point, just postpone the decision until it has
enough information to decide. A typical example is the un-
known future end point of the segments.

Suppose at some pointi, each process has amej(i) m-
event. Some of them may request time annotations from
time quantity manager, others may not, therefore they have
tags of⊥. Since we cannot predict the end point of the seg-
ments of those processes whoseT [mej(i)] = ⊥, we post-
pone the decision on the time annotation requests [3]. This

implies that whenever there is a m-event without time an-
notation requests, process that m-event, until all processes
request time annotation for their m-event at the same point,
where time quantity manager begins to resolve annotation
requests. Based on the annotation requests, some of the m-
events become events and begin to run, other m-events stay
and request time annotation again. Repeat this procedure,
simulation then proceeds gradually.

In above algorithm, we can foresee inefficiency. This is
because at each round, simulator needs to find out whether
there are m-events without time annotation requests. Also,
there are other overheads in resolving communication con-
straints among processes5. It is obvious that to finish the
same simulation, the less the number of rounds, the less the
overhead, therefore the faster the simulation speed. In or-
der for that, it is necessary to predict future time annotation
requests. This can be partially achieved by statically ana-
lyzing the system. However, this technique is rather com-
plex. On the other hand, system designers can usually give
helpful hints. For example, in the system, there may exist
test pattern generation processes, which have regular events
generation rates; a process models a MPEG decoder, which
has a certain latency, etc. If this kind of information can be
conveyed to simulator, time quantity resolution can begin
even though there exist m-events from those processes, be-
cause future time annotation requests are known. Towards
this direction, built-in logic of constraints (LOC) based on
quantities are introduced into Metropolis.6 They include
maxrate, minrate, maxdelta, mindelta and period. These
built-in LOCs are resolved in the resolve phase of time
quantity manager in figure1. Built-in LOCs can be clas-
sified into two categories. One includes period, maxdelta
and minrate. They say that an event will occur no later than
a time point. Time quantity manager could do resolution
as long as it does not progress beyond that point, otherwise
the event would be blocked forever. The other category in-
cludes mindelta and maxrate. They set a lower bound for
time only after which certain events can occur. For time
quantity manager, that means it can resolve time and ig-
nore those events until after a time point. The real value for
both categories is that time quantity manager can rely on the
built-in LOCs to predict future, start resolution sooner and
therefore decrease the number of simulation rounds.

Take period as a concrete example. Suppose there are
two processes. Processp1 has one event with period of
10. Processp2 has several events with random time stamps
less than 10. They both generate m-events with equal rates.
Before introducing LOC, it can be observed thatp1 keeps
running its m-events until arrives at the event with time an-

5Such constraints are either imposed by the design language itself or
by the designers who write declarative constraints over events

6This is also a methodology decision. Having declarative constraints
in system specification usually simplifies the model of the system signifi-
cantly, because it just states the property not the realization of the property.

3

notation period 10. However,p2 usually blocks at the time
annotation less than 10. Oncep1 gets to 10,p2 can catch up
and run its m-events and events with annotation less than
10. So, two processes take turn to proceed. The number of
rounds is almost the sum of the number of (m-)events gen-
erated by the two processes. Now, adding the LOC period
constraint, at each round, since simulator knows 10 is going
to be the next time requested byp1, even thought it is cur-
rently having an m-event, it can still resolve the time quan-
tity for p2. This way two processes overlap their rounds a
lot, therefore speed up simulation.

3.4 Experiments

In order to verify and compare the simulation strategies
described in the previous section, a producer-consumer
example is built. Figure2 shows the block diagram of the
example. There are two producers p0 and p1. They keep
writing integers into the FIFO M. The write operation takes
10 time units, which is ensured by saying the beginning and
end time of the operation. The consumer C reads integers
out of the FIFO M. The read operation takes 15 time units.
They are all governed by the same time quantity manager.
Both simulation results show the correct behavior of the
system. The following table shows the comparison between
postponed time resolution strategy and the built-in LOC
strategy. It can be seen that built-in LOC helps to decrease
the number of simulation rounds and thus simulation
time dramatically. Note that the products of the number
of simulation rounds and the average number of events
running in each rounds for the two strategies are not equal.
This is because the different event interleaving can affect
other language-related constraints like mutual exclusion.

Postpone Res. Built-in LOC
of rounds 2120 1168

Avg. # of events
run in each round 1.25283 1.49914

total simulation time 0.28s 0.19s

4 Discussion: Co-simulation between
Metropolis Discrete Event Systems and
External CT/Hybrid Systems

Although in principle, it is possible to model continuous
or hybrid systems in Metropolis with quantity managers,
Metropolis does not aim to include all of them and de-
velop its own continuous time or hybrid simulator. Instead,
it defines an interchanging format such that a continuous
time or hybrid model can be easily ported to other existing
tools and simulate it. Then, one issue becomes important:
how to interface external tools and Metropolis simulator to
co-simulate external continuous time or hybrid model with

Figure 2. Producer-Consumer Example

Metropolis MetaModel? I have attempted to build an inter-
face for this purpose. The simplest form of the interface is
that

• Let Metropolis MetaModel simulator be the master

• Before time quantity manager commits the time res-
olution resultt2, it tells the external tool to proceed
simulation time fromt1 to t2

• External tool does the job. If it generates an event
which is prior tot2, sayt3, sends it back to Metropolis
time quantity manager, and time stops att3.

• Metropolis MetaModel simulator processes the new
event from external. During the processing, new events
may be generated. Find the one with the least time
stampt4. (In general,t4 should be greater thant3, but
could be greater or less thant2). Assignt1 = t3 and
t2 = t4, then repeat the whole process.

5 Conclusion

This paper talks about modeling and simulating discrete
event systems in Metropolis. A formal analysis framework
based on tagged signal model is built to demonstrate the cor-
rectness of simulation strategy and of the simulation speed
up algorithm based on built-in LOC. Experiments are made
to demonstrate the effectiveness of the speed up algorithm.
There are still a lot of on-going work, e.g. what happens
if a process has mixed built-in LOC constraints and non-
regular time annotation requests? Can continuous time sys-
tems be simulated together with discrete event systems in-
side Metropolis? What does fix-point iteration mean then?
etc.

4

References

[1] K. Keutzer, A. Newton, J. Rabaey, and A. Sangiovanni-
Vincentelli. System-level design: orthogonalization of
concerns and platform-based design.IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits
and Systems, 19(12):1523–1543, Dec. 2000.

[2] E. Lee and A. Sangiovanni-Vincentelli. A framework
for comparing models of computation.IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits
and Systems, 17:1217–1229, Dec. 1998.

[3] J. Misra. Distributed discrete-event simulation.ACM
Comput. Surv., 18(1):39–65, 1986.

5

