
Implementing Metropolis Quantity Managers in Ptolemy II

Haibo Zeng

EECS 290N Report
December 17, 2004

University of California at Berkeley
Berkeley, CA, 94720, USA

zenghb@eecs. berkeley.edu

Abstract

This paper proposes an approach to implement Metropo-
lis quantity manager mechanism in Ptolemy II, by utilizing
the AspectJ which adds to Java aspect-oriented program-
ming (AOP) capabilities. The benefits and limitations of
this approach are also discussed.

1 Introduction

Ptolemy II is a set of Java packages supporting heteroge-
neous, concurrent modeling and design. It is mainly focus-
ing on the research related to embedded software. There-
fore, it emphasizes very much on the execution (simu-
lation) of different models of computation[2]. Metropo-
lis, on the other hand, will be addressing synthesis (soft-
ware/hardware), verification and architecture exploration
in addition to simulation. Currently, what is available
in Metropolis design environment includes the Metropo-
lis meta-model (MMM) language, a Metropolis compiler,
a simulation backend, and a SPIN based formal verification
backend[1].

AspectJ [4] is a simple and practical extension to the Java
programming language that adds to Java aspect-oriented
programming (AOP) capabilities. AOP allows developers to
reap the benefits of modularity for concerns that cut across
the natural units of modularity. In object-oriented programs
like Java, the natural unit of modularity is the class. In
AspectJ, aspects modularize concerns that affect more than
one class. The user can compile her/his program using the
AspectJ compiler and then run it, supplying a small run-
time library. The AspectJ technologies include a compiler
(ajc), a debugger (ajdb), a documentation generator (ajdoc),

a program structure browser (ajbrowser), and integration
with many Java tools such as Eclipse, Sun-ONE/Netbeans,
GNU Emacs/XEmacs, JBuilder, and Ant.

2 Metropolis Quantity Manager Mechanism

One of the key innovations in Metropolis is the notion
of quantity managers[1]. An important question to be ad-
dressed in a design is to specify performance constraints,
and to do it, behaviors must first be annotated with metrics,
such as time, power, or other Qualities of Service. In the
Metropolis meta-model, such physical annotations are de-
fined with a concept calledquantity. In addition, quantities
is also defined for something like the arbitration of shared
resources. Each quantity has an associated type, for exam-
ple, double for time. For each quantity there is an object
called aquantity managerwhich is responsible for assign-
ing annotation to behaviors, or restricting the execution of
the behaviors.

Quantity managers contain codes that are invoked when
a request is made to annotate a process transition with the
quantity it is responbile. Such requests are made, for ex-
ample, on certain points in the program which is defined as
events, such as the beginning or ending of the execution of
a statement or a communication action over a medium. A
formal definition of events is given in Section3. As an ex-
ample, a special case of quantity manager is the global time
manager, which is used to implement a discrete event se-
mantics, where events are processed in chronological order.
To model that the delay between two eventse1 ande2 is 10,
the process makes a request that a time-stamp ofe2 must be
equal to the time-stamp ofe1 plus 10. It is the responsibil-
ity of a quantity manager to collect all requests and satisfy
them. If a request cannot be satisfied, the manager must



disable the event for which that request was made. For ex-
ample, if one process wants to execute evente1 and request
for it time-stamp 10, and the other process wants to exe-
cutee2 with time-stamp 20, time manager must set the cur-
rent time to 10, lete1 occur, and disablee2. This example
also demonstrates that quantity managers not only annotate
events, but also determine which events should occur, i.e.
they schedule the execution of the model. That is why the
collection of quantity managers (and some other related ob-
jects) is called thescheduling network, and the network it
schedules is referred to as thescheduled network.

In addition to imperative implementation of a quantity
manager, the user may also use certain logic formula to ex-
press constraints on the sequences of scheduled network ex-
ecution. In this way, a given sequence of annotated state
transitions is a legal behavior of a meta-model restriction if
and only if:

1. it satisfies all the constraints specified by logic formu-
las,

2. it can be generated by the execution of the scheduled
network restricted by the imperative code of schedul-
ing network.

2.1 Operational Semantics

In Metropolis, processes in the scheduled network are
active, in that each of them has its own thread of control.
A key reason for this choice is the desire to model several
aspects of a system, including particularly its performance
when mapped to hardware resources. The separate threads
of control model parallel hardware systems well. A natu-
ral question to implement the quantity manager mechanism
in this type of system is when and how to let the quantity
managers annotate and restrict the execution of the pro-
cesses and media in the scheduled networks. In Metropolis,
the operational semantics of quantity manager mechanism
is the quantity request/resolution network execution model,
which defines the following two-phase execution sequence
of a network containing a scheduled network and a schedul-
ing network:

1. Quantity Request: each process in the scheduled net-
work runs to an evente (meaning this process is stalled
there), and finds all the quantity constraints one.

2. Quantity Resolution: find a set of candidate events and
quantities annotated with each of these events, such
that all the axioms of the quantity types are satisfied.

To generate an annotation request for an event it is as-
sociated with, some piece of codes is inserted within the
enclosure of this event. This type of codes is also called
request making code, or RM codefor short. It typically in-
volves some computation, and then a call to therequest()

function of some quantity manager. Thus in Metropolis, a
quantity manager has to implement the interface function

void request(event e, RequestClass rc);
whereRequestClassis a container used to package requests
for various quantity managers.

A quantity manager in Metropolis also needs to imple-
ment functions

void resolve();
void postcond();
booelan isStable();

Typically, in the resolve() function, a quantity manager
looks at the pending requests, and decides if they can or can-
not be granted. If the request cannot be granted, the man-
agers disables the corresponding events. For example, if
several events request a time-stamp, the time manager must
set the current time to the lowest of all request, and it must
disable all the events requesting a higher time-stamp.

Repeatedly callingresolve()functions of all the quan-
tity managers will decrease the number of enabled events.
Eventually, there will be a single enabled event for each pro-
cess. At this point, the vector of events that will occur has
been set, and the quantity managers can assign annotations
to these events. This is the primary of the functionpost-
cond(). Other typically uses of this function is to clean up
data used in the resolution.

Since many managers need to cooperate in selecting an
event vector that can be annotated consistently with all
made requests, the functionresolve()is often called many
times. If during a particular call, the quantity manager dis-
ables some event, or makes some annotation, then a subse-
quent call to functionisStable()should returnfalse; other-
wise it returnstrue. In other words,isStable()is useful to
decide if the resolution process has converged, i.e. it has
reached the point at which further calls toresolve()will not
change enabled events.

3 Implementing Quantity Managers in
Ptolemy

Basically the quantity manager mechanism involves
specification of system level quantitative concerns. In
Object-Oriented language such as ordinary Java, it is diffi-
cult to modularize design concerns like system-wide error-
handling, distribution concerns, feature variations, and
context-sensitive behaviors[4]. The code for these con-
cerns tends to be spread out across the system. Because
these concerns won’t stay inside of any one module bound-
ary, meaning that theycrosscutthe system’s modularity. In
Metropolis meta-model, to support exploring design con-
cerns in quantity manager mechanism which are typically
crosscutting, some new concepts and built-in syntax are
added, such asaction, events, andRequest-Making code,

2



as briefly introduced in Section2. However, this will re-
quire the insertion of event declaration and related request-
making codes in a process, which may break thedomain-
polymorphism[2] of the actors in Ptolemy. AspectJ adds
constructs to Java which is the implementation language
of Ptolemy II, thus enabling the modular implementation
of crosscutting concerns[4] and keeping the actors domain-
polymorphic.

The remaining of this section is organized as following:
in Section3.1 the necessary constructs of AspectJ to sup-
port implementation of quantity manager mechanism are
explained and compared with similar concepts in Metropo-
lis. In Section3.2, an implementation of quantity manager
mechanism in Ptolemy utilizing AspectJ is proposed, and
the limitations of this proposal is discussed in Section3.3.

3.1 AspectJ Constructs

In Metropolis, a typical request-making code inserted in
a process are like the following syntax:

labela{$
Ä[beg{< begin code >}]
Ä[{statement}]
Ä[end{< end code >}]
$}

By their position in the code, these inserts are always as-
sociated with anaction labelled aslabela. More precisely,
actionsare executions of the pieces of code in the scheduled
network. Function calls to media are predifined observable
actions, and each statement in the code of the scheduled
network can be claimed as actions by labelling it as in the
example. With each actiona there are two type ofevents
associated with it,a+ indicates the start of an execution
of a, anda− indicating the end. The request-making code
< begin code > is associated with the begin event of the
action labela, and< end code > associated with the end
event. Both of these codes make annotation requests for
their respective events.

Similar to the concept ofactionsin Metropolis, in As-
pectJ ajoin point is a well-defined point in the program
flow, such as reading or writing a field, calling or execut-
ing an exception handler, method or constructor. Apointcut
picks out certain join points and values at those points. A
piece ofadviceis the code executed before, after or around
a join point is reached. As the name suggests,before ad-
vice runs before the join point executes, which is similar
to the begin event and its associated request-making code in
Metropolis.After adviceexecutes after the join point, which
is similar to the end event and its associated request-making
code. The power of advice comes from its ability to access
values in the corresponding join points, although advice is
in different modular class from these joint points.

3.2 Implementing Quantity Manager using As-
pectJ

In Ptolemy[3], a similar concept to Quantity Managers is
Directors. A composition of actors is guided by a director,
which represents a specificModel of Computation(MoC).
In Ptolemy II, a Model of Computation is also called a
domain. A director may control the execution of actors
through anExecutable interface. A director, together with
all receiverswhich is contained by input ports and imple-
ments the communication mechanisms among actors, de-
fines aframework. To obey a specific model of computa-
tion, a director and receivers must match.

An important Ptolemy framework design choice ishier-
archical heterogeneity. This approach constrains each level
of interconnected actors to be locally homogeneous, while
allowing different models of computation to be specified at
different levels in the hierarchy. A well-defined model of
computation at the same level improves the understandabil-
ity of the system, and may allow certain parts of the system
to be correct by construction, because of the formal proper-
ties obtained by that specific MoC.

Unfortunately this approach is inconsistent with the as-
sumption under quantity manager mechanism, thus dis-
abling most of its power. In quantity manager mechanism,
it allows multiple quantity managers in the same hierarchi-
cal level. Each individual quantity manager can be writ-
ten independently from each other, without knowing the
existence of the other quantity managers. The cooperation
among quantity managers are done through the current set
of enabled events, which is stored as the state of the sched-
uled network and can be accessed by the scheduling net-
work through the connection between them. In each call
of the resolve()function, a quantity manager looks at the
pending requests associated with the current set of enabled
events, and decides if they can or cannot be granted. If the
request cannot be granted, the quantity manager disables the
corresponding events, meaning it will delete these events
from the state of the scheduled network. The following res-
olution of quantity managers will realize the decision of the
previous ones by basing their decision on the current set
of enabled events only. The design choice in Metropolis is
to keep more power than hierarchical heterogeneity by al-
lowing multiple quantity managers in the same hierarchical
level, assuming that the user has a good understanding of
the system she/he wants to model and follows the guideline
of quantity manager mechanism.

To implement the Metropolis quantity manager mech-
anism unchanged in Ptolemy, it is natural to keep the in-
terface functions a quantity manager must implement as in
Section2.1 and implementation of each quantity manager
the same as in Metropolis. In addition, an AspectJ program
is written to take care of the rest of the work, which in-

3



cludes:

1. Mimic the event naming and associated request-
making codes by pointcuts and advices

2. Record and update the state of each actors

3. Alternate between quantity request/resolution phases

3.3 Discussion

There are certain limitations to this approach imposed by
the different design choices in Metropolis and Ptolemy. In
Ptolemy, the abstract semantics of control is based on the
Executable interface, and the abstract semantics of com-
munication is based on theIOPort/Receiver interface. The
abstract semantics that binds most Ptolemy domains (with
the exception of PN and CSP) is significantly different from
Metropolis. Instead of processes, components are actors
with three-phase firings. The objective of this abstract se-
mantics is to be able to definedomain polymorphicac-
tors, meaning that they can interact with other components
within a wide variety of domains. As can be seen, different
domains impose different requirements for actors. Some
actors, however, can work in multiple domains. These ac-
tors are called domain-polymorphic actors. The Metropo-
lis meta-model is more fixed about control semantics, i.e.
components are process based, but allows a richer interface
to communications media, since a media can expose arbi-
trary interfaces to components. This design choice makes
communication refinement easier since the interface to a
media can change, but makes it more difficult to build
domain-polymorphic components since media often have
different interfaces. Metropolis also emphasizes process-
oriented concurrency that often exists at the top-level of a
system. The quantity manager mechanism fits well with the
Metropolis framework, for example, to disable an event, the
quantity manager just stalls the thread of the corresponding
process.

Metropolis quantity managers can disable events, thus
stalling the thread. But not all the domains in Ptolemy are
thread-oriented, such as SDF, Giotto, and DE. In these do-
mains, the meaning of stalling a thread is ambiguous, since
there might be only one thread in the whole model. The
only thread-oriented domains in Ptolemy are PN, CSP, and
DDE.

Second, in Ptolemy components are actors with three-
phase firings. To keep a consistent state among actors, it is
not always safe or possible to stall their execution even if
they have their own thread of control. In many models of
computation, there is a natural time[3]: between iterations,
which is beforeprefire() or afterpostfire(). These are the
only types of safe advice the user can assume for actors in
all Ptolemy domains.

Please notice that this discussion is only imposed on the
quantity managers that may stall the execution of actors.
For quantity managers that only annotate performance num-
bers to events such as a power manager which computes
the power consumption of the system, the approach in Sec-
tion 3.2has no limitation on the applicable domains or joint
points.

In PN domain, actors can have a richer set of joint points:
all threads must be stalled on read, or on write to full
buffers, or block themselves with a wait() function. The cur-
rent implementation of SDF domain in Ptolemy is single-
threaded. As an example, an alternative is to take a model
in the multi-thread PN domain, which is also compatible
with SDF domain, i.e. statically schedulable. An AspectJ
program is written to stall the actors beforeprefire(); And
the sequence of actor iteration follows the execution queue
the SDFScheduler in the kernel of Ptolemy, meaning that
each time an actor finishes its iteration, the next actor in the
execution queue gets notified.

4. Conclusion

This paper proposed an approach utilizing AspectJ to im-
plement the quantity manager mechanism in Ptolemy which
allows multiple quantity managers coordinate in the same
hierarchical level, without touching the code of the actors
in Ptolemy II, thus keeping the design property in Ptolemy
II: domain-polymorphic actors.

Certain limitations are also imposed by different design
choices in Metropolis and Ptolemy: this approach is safely
applicable only to thread-oriented domains i.e. PN, CSP,
DDE and large granulated joint points in the actors.

References

[1] The Metropolis Project Team. The Metropolis Meta
Model Version 0.4. Technical Memorandum No.
UCB/ERL M04/38, University of California, Berkeley,
CA 94720, USA, September 14, 2004.

[2] Edward A. Lee. Overview of the Ptolemy Project.
Technical Memorandum No. UCB/ERL M03/25, Uni-
versity of California, Berkeley, CA, 94720, USA, July
2, 2003.

[3] Jie Liu, Johan Eker, Xiaojun Liu, John Reekie, and Ed-
ward A. Lee. Actor-Oriented Control System Design:
A Responsible Framework Perspective. IEEE Transac-
tions on Control System Technology, Pages 250-262,
Volume 12, Issue 2, March, 2004.

[4] AspectJ Project Website. http://eclipse.org/aspectj/, the
AspectJ Team.

4


