
Distributed Execution of Ptolemy Models

Yang Zhao and Thomas H. Feng

EECS 290N Report
November 18, 2004

University of California at Berkeley
Berkeley, CA, 94720, USA

{ellen zh,tfeng}@eecs.berkeley.edu

Abstract

In this paper, we offer an overview of distributed model
execution with Ptolemy. Our discussion focuses on the Pro-
cess Network domain, while the platform that we propose
is domain-independent. Components such as DNS and PtA-
gents are introduced as separate processes in addition to
Ptolemy with models running in it. They provide services
important to the execution of the system, such as dynamic
name lookup, data relay, and life-time measurement.

1 Introduction

Distributed modeling and simulation are an active re-
search area. It has received increasing concern, particularly
because high-speed networks and cluster computer systems
become widely available. There are many good reasons for
using such distributed systems in model execution, some of
which are:

• to make full use of the combined power of the comput-
ing resources available in a network by involving them
in a simulation, which is too slow or too large to fit into
a single affordable machine;

• to simulate a real application featuring the ability of
high-speed distributed computation;

• to build distributed collaborative shared data spaces;
and

• to model the behavior of a P2P (peer-to-peer) or CS
(client-server) network, to analyze its performance
with a simulation identical to its real behavior, and fi-
nally to optimize it and re-engineer it.

Ptolemy II is a modeling, design, and simulation frame-
work suitable for concurrent systems [1]. It supports a
component-based construction of systems and it uses well-
defined models of computation to govern the interaction
between components. To leverage this framework to pro-
vide a formal specification and run time environment for
distributed systems, and to incorporate the ability of high-
speed distributed computation into Ptolemy II, we develop
a platform for handling distributed deployment, remote in-
teraction, and life-cycle management. We also explore how
to integrate it with Ptolemy II cleanly (without substantial
modification to the current framework) to execute a dis-
tributed system obeying some model of computation. We
begin by defining the problem and requirements in section
2. We then discuss the platform design in section 3. Section
4 addresses some implementation issues. Section 5 con-
cludes the paper.

2 Problem Statement

The goal of this project is to extend the Ptolemy frame-
work to support distributed computation without requiring
the user to know much techniques of distributed computa-
tion or to build up the low level communication mechanism
from scratch. Assume a user has designed a system as a
Ptolemy model and wants to distributedly execute it on mul-
tiple machines. The problem we address here is how to dis-
tribute the model transparently without requiring the user
to modify the design, how to automatically deploy the sys-
tem according to specific configurations, how to set up the
remote communication mechanism, how to manage the ex-
ecution life-cycle, and how to provide monitoring support
for the user to monitor and debug the system.

We assume there are a set of computers in a network



that are available for executing Ptolemy models. This set of
computers may change over time due to computers connect-
ing and disconnecting. In each of these computers, a entity
called PtAgent is running, which is used for model distribu-
tion and remote communication. There is a global domain
name service (DNS), and each PtAgent has the knowledge
of locating it in order to find other PtAgents. Both the DNS
and the PtAgents are implemented as separate processes in-
teracting with each other with a network protocol, such as
Java RMI, CORBA and HTTP.

A user can design a system as a Ptolemy model on any
of these computers. A configuration specifies where to ex-
ecute which actor, and whether an actor should be repli-
cated to multiple computers. The configuration can either
be manually fed in by the user or be determined by an algo-
rithm based on some criteria, e.g. load balancing. The user
is then able to press some button in Ptolemy and request to
distribute the model and execute it automatically. We call
the model for the whole system the master model. During
the execution, the user may monitor the progress from the
master model.

In order to support automatic deployment and execution,
a set of tasks need to be addressed:

• Discovery Mechanism for each component to discover
available resources.

• Parser to parse the master model and generate the sub-
models that will be deployed on the hosts according to
the given configuration. This can be done by applying
an XSLT transformer to the MoML file of the master
model.

• Launch Service to launch a model on request and man-
age it’s execution.

• Remote Communication for handling distributed inter-
action.

• Monitor Service for the user to monitor the execution.

• Fault Tolerance to handle host failures (future work).

3 The Design

In this section, we will discuss two approaches we have
tried. Approach I experiments with Java RMI and extends
the current Ptolemy infrastructure to mainly explore how to
realize communication between distributed Ptolemy mod-
els. Approach II develops the discovery mechanism, launch
service, monitor service and refines the remote communica-
tion mechanism.

Figure 1. An example

3.1 Approach I

In this approach, we use a producer/consumer style of
distributed communication for sending tokens to a remote
process. We will focus on developing the infrastructure that
supports remote communication between Ptolemy mod-
els. For this purpose, we assume we know which machine
is available and we manually modify the master model’s
MoML file to generate the sub-models according to a con-
figuration.

We choose Kahn Process Network (PN) as our inter-
ested model of computation for a set of distributed appli-
cations. Figure 1 shows a simple PN model and the two
sub-models on Host1 and Host2. This example may be
too simple to make sense for distributed execution, but the
concept we want to highlight here is the distributed exe-
cution conforming to the PN semantics. The configuration
for the Ramp actor is shown as Host1 : Host2 which
means it will be distributed to both machines. We sup-
port such kind of replication since the Ramp data source
is deterministic, and not computation intensive, the user
may want to distribute it to both Host1 and Host2 so
that no communication between it and the two down sam-
ple processes needs to be carried over the network. The
gray icons represent processes running on a remote ma-
chine. The component representing the remote process is
instantiated as a special actor: DummyActor. As its name
suggests, this actor carries no computation, i.e. the actual
computation is executed only on the machine that hosts
the component. It is used here to represent the model’s
topology. Besides this, the DummyActor is also used to
delegating data tokens received on its receiver to the cor-
responding remote process. In order to send the token to
the remote process’s receiver, we create a distributed object
called DistributedReceiver. Here we chose Java

2



RMI as our underlying middleware for its implementation.
The DummyActor’s receiver works as a producer and the
DistributedReceiver on the remote process works as a con-
sumer. When ever there is token received on the Dummy-
Actor’s receiver, the token is forwarded to the Distribut-
edReceiver via a remote method call. The DummyActor
has a special receiver, called DelegatingReceiver for
handling the remote method call. To enforce the PN seman-
tics on this model, we implement blocking read and block-
ing write between participants of message send and mes-
sage receive over the network. The blocking on the receiver
is realistically reflected on the sender side, as if they were
executed on the same machine.

One difficulty we have with this kind of point-to-point
distributed communication is to handle the starting sequenc-
ing. Note that Host1 has some DelegatingReceiver
needed to bind to some DistributedReceiver on
Host2 and vice versa. To find a distributed object,
it needs to be created and registered with the nam-
ing service first. So we need take care of when
to register a DistributedReceiver and when to
bind to a DistributedReceiver. We first as-
sume the DistributedReceiver is created during
the pre-initialization phase and delay the binding until a
DelegatingReceiver receives the first token (the ear-
liest time could happen is in initialize phase). This also re-
quires synchronizing the demons to start the execution after
all of them have done the pre-initialization phase.

These experiments help us understand the problems and
requirements for a distributed execution environment. How-
ever, it has some flaws. The strict start sequencing require-
ment reduces the flexibility and it could contribute to a big
part of distributed exceptions. In the next approach, we will
discuss a more flexible architecture that breaks down the
dependency nicely and also facilities the discovery service
and monitoring service.

3.2 Approach II

Figure 2 illustrates the main components in the PtAgent,
and how they interact with Ptolemy sub-models. We assume
each machine will run exactly one PtAgent process. There
are four main module in the PtAgent:

• Launcher is responsible for distributing, loading, start-
ing, and stopping a sub-model.

• Discovery provides the functions for Ptolemy to dis-
cover available computers or resources.

• Relay provides service for Ptolemy to transfer data to
the sub-models located on other machines.

RelayProxy RelayProxy

Laucher

Relay
Logging

start the 
model

PtAgent

Laucher

Relay
Logging

start the 
model

send 
token

PtAgent

Discovery Discovery

RelayProxy RelayProxy

Laucher

Relay
Logging

start the 
model

PtAgent

Laucher

Relay
Logging

start the 
model

send 
token

PtAgent

Discovery Discovery

Figure 2. Interaction between 2 sub-systems

• Logging records the models’ execution information
and can be queried for debugging and monitoring pur-
poses.

Each PtAgent may register itself to the DNS so that
other PtAgents can find it. When a user wants to distribute
a model (the master model), the DistributeHelper
class will parse the model to sub-models and contact its
local PtAgent (the only PtAgent running on the same ma-
chine) to distribute the model, which will in turn contact the
related PtAgents to load and start the sub-models.

After a sub-model is started, it may need to trans-
fer data to a remote sub-model, As shown in Figure 2,
the DelegatingReceiver will contact an entity in
Ptolemy called RelayProxy to send the data, which asks
the PtAgent to relay the data to the corresponding remote
PtAgent. Then the data is sent to the right port via the
RelayProxy in the remote sub-model. This looks a bit
complex, but there are several reasons to have it work this
way. First, using PtAgents to relay data rather than sending
the data directly to the remote receiver helps to break down
the dependency loop as pointed in approach I. The idea is
quite similar to CORBA using Event Channels to decouple
the communication between a Producer and Consumer [2],
except that here we distribute the Event Channels also, ac-
cording to the configuration. Second, the RelayProxy is
used to decouple the design of PtAgent and Ptolemy. Third,
the RelayProxy can be domain specific to guard the ex-
ecution semantics. For example, although it is possible to
depend on some distributed middleware’s blocking mecha-
nism to throttle a “fast” process in PN, it is quite expensive.
The RelayProxy can then be used to block the process
locally. Fourth, the agent may record the data sending via it
for debugging and monitoring.

3



Figure 3. Class View

4 Implementation

We classify the three types of processes in our system
as DNS, PtAgents and applications such as Ptolemy with
(sub-)models running in it (Figure 3).

The DNS can be regarded as a repository to look up
available resources in a given domain. It is assumed that
there is only one single DNS. All other components have
the knowledge of locating the DNS initially, so as to use
resources in the domain or to be used as a resource. Crite-
ria are used to query the DNS to locate other components
in the system. We have designed several kinds of criteria,
such as name query, interface query and behavioral keyword
query. For example, a sub-model may issue a name query
with a regular expression. The query is sent to the DNS via
the PtAgent on the same machine as the sub-model. The
set of sub-models with names matching the regular expres-
sion is then returned. (It may be empty when no matching
sub-model has been registered in the DNS.) This result also
contains the information required to initiate connections to
the PtAgents on the machines of those sub-models. Lookup
criteria may be specified in the configuration, or they may
also be generated by the execution of the sub-model. This
makes the lookup mechanism very flexible.

A PtAgent acts as a startup agent, a relay, and a fire-
wall for Ptolemy model(s). We restrict that any applica-
tion can only communicate through a PtAgent for the rea-
sons stated in Section 3.2. To register itself to the DNS
or to look up other sub-models, Ptolemy may not directly
contact DNS but it sends commands to the PtAgent. Sim-
ilarly, messages sent between two sub-models must cross
two PtAgents, the one working with the sender and the one
on the receiver side. Instead of merely relaying commands
or messages, PtAgents also provide useful functions for the
startup and maintenance of the distributed system. One im-
portant function is life-time management. By periodically
sending an “isAlive” message to Ptolemy and waiting

for its response, the PtAgent timely detects the malfunction
of Ptolemy processes. Another example of such functions
is authentication checking every time when a sub-model is
being connected to.

5 Conclusion

We have discussed the high-level design of a distributed
platform for Ptolemy II. This platform enables distributed
model execution without requiring much experience of the
user. The use of a global name system and a PtAgent for
each machine greatly improves the flexibility of a dynami-
cally deployed system.

We limit our current implementation to the PN domain,
but we are also careful enough to make our platform eas-
ily extensible to other domains supported by Ptolemy. For
distributed execution of timed domains, fault tolerance and
backtracking techniques are required. These issues will be
studied extensively in our future work.

References

[1] S. S. Bhattacharyya, E. Cheong, J. D. II, M. Goel,
C. Hylands, B. Kienhuis, E. A. Lee, J. Liu, X. Liu,
L. Muliadi, S. Neuendorffer, J. Reekie, N. Smyth,
J. Tsay, B. Vogel, W. Williams, Y. Xiong, Y. Zhao, and
H. Zheng. Heterogeneous concurrent modeling and de-
sign in java volume 1: Introduction to ptolemy II. Tech-
nical report, July 2003.

[2] C. O’Ryan and D. L. Levine. Applying a scalable
CORBA events service to large-scale distributed inter-
active simulations. In Proceedings of the Fifth Inter-
national Workshop on Object-Oriented Real-Time De-
pendable Systems, 1999.

4


	Introduction
	Problem Statement
	The Design
	Approach I
	Approach II

	Implementation
	Conclusion

