
Timed Simulation with Multiple Resource Schedulability Analysis

Yang Zhao, Slobodan Matic
EECS 290N Project Report

University of California at Berkeley
ellen zh, matic@eecs.berkeley.edu

Abstract

Target applications we consider in this project are
model-based computer controlled systems, for which the re-
quired system response is deterministic both in value and
time. Specification of real-time software components for
multiple resources and multi-domain timed simulation is
discussed. We describe a simulation framework in the
Ptolemy modeling environment that takes into account tim-
ing requirements of the model software components and al-
lows for schedulability analysis. In this framework both a
static and dynamic scheduling mechanism is proposed.

1 Introduction

We are motivated by the current gap between algo-
rithm development (functional level) and tuning of strin-
gent timing constraints (architecture level). The first part
of the design is supported by widely accepted modeling
and design environments such as MATLAB/Simulink, MA-
TRIXx/SystemBuild or Ascet-SD. The correctness of the
model verified at the functional level is preserved by tools
for code generation such as Real-TimeWorkshop Embed-
ded Coder or dSpace TargetLink. However, no analysis of
timing constraints, let alone worst case execution analysis
of the generated code is performed. Very often the out-
come of the process are design errors that show up only after
deployment. The most common error is that sophisticated
control algorithms cannot be implemented with acceptable
performance (e.g. sampling time) on the selected platforms.
Therefore, the separation of the design environments for
functionality and for time, together with the limited sup-
port provided by the existing tools make the process quite
inefficient. Moreover, in most tools the automatic code gen-
eration scheme works only for models whose components
have periodic (possibly multirate) activation patterns.

To some extent platform dependent properties must be
considered in the design phase. Through appropriate design
annotations the part of a model that describes real-time soft-
ware components could specify: 1. component timing prop-

erties (triggering pattern, execution time, deadline), 2. con-
current interaction of components (precedence constraints
graph), 3. resource allocation (component to host alloca-
tion) and 4. scheduling mechanism. We briefly discuss
each of these components with respect to the framework
proposed in the project.

1. We build our programming model upon the Ptolemy
timed multitasking (TM) event-triggered model [1],
that controls timing properties through a deadline of
an actor (a task in this model) which specifies the time
when the actor computational results are produced to
the physical world or to other actors. Unlike the highly
periodic Giotto models [2], a task in TM is executed
when there is an input event (trigger) that fulfills cer-
tain conditions specified by the actor. Since any de-
ployment introduces noneglibile processing delays a
model should state task execution (computation) times.
Precise estimation of these is a challenging problem
and we do not consider it here.

2. The software model also describes the tasks and their
relations. An actor assumes a simple task without in-
ternal synchronization and blocking. Events that oc-
cur between tasks hence represent either data passing
or execution precedences. We think that a particularly
useful abstraction is acompositeTM actor specified
with a directed acyclic precedence graph ofatomic
TM actors. Only composite actors have trigger con-
ditions and deadline, whereas each contained atomic
actor specifies its execution time and computational re-
source it is allocated to. The entire model consists of a
network of composite TM and other actors (say, from
the continuous time CT domain).

3. Resource utilization must also be exposed in the model
since the tasks compete at least for CPU time. In fact,
the emphasis of the project is on the simulation of
the multiple resource models, i.e. on multi-resource
scheduling strategies.

4. Usually, real-time operating systems provide static

1



priority-based scheduling mechanism. It is also com-
mon both to perform the schedulability analysis and
to generate the schedule off-line (static table-based
scheduling) and only to dispatch tasks on-line. This, of
course, requires fixed and known actor activation pat-
tern. Finally, both scheduling and dispatching can be
performed on-line (dynamic planning-based). In our
programming environment we allow annotation of a
simulation model with a scheduling mechanism and in
the next two sections we further describe possible so-
lutions for the two scheduling mechanisms mentioned
last.

2 Periodic TM Model

In this section we assume that activation pattern of com-
posite TM tasks is periodic and we offer a static table-based
scheduling solution. Formally, letC be the set of composite
TM actors. Each composite actorc ∈ C is specified with its
period of invocationp(c), and a directed acyclic precedence
graph of simple task actors having the same period. We first
assume that deadline of a composite task is equal to its pe-
riod, but we later discuss the case when it is not. LetA(c)
be the set of all atomic actors defined in the composite actor
c ∈ C, A =

⋃
c∈C A(c) be the set of all atomic actors and

let R be the set of all computation resources that an actor
can use. We assume that the tasks are nonpremptible and
that task to host (resource) mapping has been already deter-
mined. Each task actora ∈ A is specified with execution
time t(a) ∈ Reals and is uniquely assigned to a resource
r(a) ∈ R.

In the context of multiprocessors and nonpreemptive
scheduling almost all problems are NP-complete [3]. The
schedulability problems for task models similar to the one
described above are often represented in a form of mixed
integer programs [4], where integer variables describe the
order of execution of tasks. However, in case of an infea-
sible instance, we want to detect a reason for the infeasi-
bility in order to be able to relax the instance in such a
way that it becomes feasible. There is no obvious way for
getting such information from the mixed integer program
branch-and-bound tree. That is why in this project we stud-
ied and adapted a different approach, which, to the best of
our knowledge, was so far not used in real-time scheduling
problems. We briefly present the approach and its applica-
tion for our setting.

Assume for now that all composite actors have the same
period T , i.e. assumep(c) = T for all c ∈ C. In that
case all atomic actors will be periodic with periodT . Let
us interpret the setA as a set of periodic events, and let
τ be a function that maps each eventa ∈ A to the event
timeτ(a) ∈ [0, T ) which represents actor start time-instant.
Finally, let for the ordered pair(a1, a2) ∈ A2 of events

d(a1, a2) = [d−(a1, a2), d+(a1, a2)] be an interval from
[0, T ). We say that the pair(a1, a2) satisfies thespan con-
straint specified withd(a1, a2) if there exists an integer
k(a1, a2) such that

d−(a1, a2) ≤ τ(a2)− τ(a1) + k(a1, a2)T ≤ d+(a1, a2).
(1)

A span constraint is a generalization of a precendence con-
straint for periodic events. For example, letT = 12 and
d(a1, a2) = [5, 7]. If τ(a1) = 0 andτ(a2) = 6 then the
event pair(a1, a2) satisfies the constraint fork(a1, a2) = 0
(left side of Figure1). However, ifτ(a2) = 0 andτ(a1) =
6 then the event pair(a1, a2) again satisfies the constraint,
but now fork(a1, a2) = 1 (right side of Figure1).

Figure 1. Event pair and span constraint

The problem of determining functionτ for a set of peri-
odic events and the set of span constraints is called Periodic
Event Scheduling Problem (PESP). Let setA be the set of
periodic events and setE ⊆ A2 the set that specifies span
constraint event pairs. Formally, an instance of the PESP
consists of a periodT ∈ Reals, directed constraint graph
(A,E) and interval functionsd−, d+ : E → [0, T ). A so-
lution of a PESP instance areevent-timefunctionτ : A →
[0, T ) andmodulofunctionk : E → Integer such that all
span constraints given byE are satisfied. Although it may
be shown that PESP is NP-complete an algorithm for it has
been devised which exhibits a satisfactory average compu-
tational behavior [5].

The algorithm starts with determining a minimum span-
ning tree of the problem graph with respect to the cost func-
tion (d+ − d−). An event-time function is then computed
such that span constraints are satisfied for all edges of the
spanning tree. The algorithm then successively adds each
of the chords (edges not part of the tree) and modifies the
event-time function such that the constraints are preserved
also on the added edges. The algorithm either finds a feasi-
ble schedule, if it exists, or it finds edges that have too tight
constraints to allow a feasible schedule to exist.

We formulate our periodic TM scheduling problem as a
PESP instance. There are two types of constraints in the
problem, mutual exclusion on a shared resource and prece-
dence constraints specified in the definition of the particular
composite actors. We next express these constraints as span
constraints. The processing times of two different atomic

2



actorsa1 anda2 on the same resourcer ∈ R cannot over-
lap,

t(a1) ≤ τ(a2)− τ(a1) + k(a1, a2)T ≤ T − t(a2), (2)

for all a1 anda2 such thatr(a1) = r(a2) = r. Let a se-
quence ofn atomic actorsa1, a2, ..., an be a path from a
source to a sink node of a composite actor. Then the task
precedence constraints for this path can be represented as

t(ai) ≤ τ(ai+1)−τ(ai)+k(ai, ai+1)T ≤ t(ai)+D, (3)

for all i = 1, 2, ..., n− 1, and

t(an) ≤ τ(a1)−τ(an)+(1−
n−1∑

i=1

k(ai, ai+1))T ≤ t(an)+D,

(4)
where

D = T −
n∑

i=1

t(ai). (5)

Note that for the set of constraints to be complete there must
be a condition of the form (3) for each task precedence rela-
tion from the model. The constraints (2) and (3) match the
form of span constraint (1). However, that is not the case
for the constraint (4), so we adapted algorithm presented in
[5].

Direct formulation of the PESP algorithm assumes that
all events have the same period. We extend the framework
for multi-rate systems where different composite actors can
have different periods. The resulting set of span constraints
is written for the period that is equal to the least com-
mon multiple of all composite actor periodslcmc∈C{p(c)}.
Span constraints for each composite actor are multiplicated
accordingly and additional constraints between successive
instances of atomic actors are added. Figure2 illustrates
how to transform a span constraint withd = [d−, d+] and
periodT to a set of span constraints if the least common
multiple is2T .

Figure 2. Span constraint transformation for
tasks with multiple periods

The span constraint formulation is general enough to
describe other scheduling problems with minor modifica-
tions. If a deadline∆ of a composite actor is not equal to
the periodT then the equation (5) should be changed to
D = ∆ −∑n

i=1 t(ai). If an actor needs more than one re-
source with exclusive access then constraints described by
equation (2) should be written for each such resource.

3 Aperiodic TM Model

If invocation pattern of a composite actor is not known
in advance, the task (actor) release times can only be de-
termined during model execution. Consequently, computa-
tion of task execution order, i.e. the schedule generation,
is dynamic and can only be suboptimal. If the schedule
is not feasible we can only detect missed deadlines once
they are reached during the simulation, but we cannot per-
form schedulability analysis. Here we generate schedule
according to appropriately chosen atomic actor deadlines.
Since in an aperiodic TM model only entire composite ac-
tors are given with their end-to-end deadlines, we perform
a deadline distribution technique for all tasks in the prece-
dence graphs [6, 7]. It can be shown that deadline dis-
tribution problem is NP-complete, so here we use alax-
ity heuristic procedure. Let a sequence ofn task actors
a1, a2, ..., an be a path from a source to a sink node of a
composite actor and let∆ be the deadline of this composite
actor. The laxity of this path is defined as slack per path
task: L = (∆ − ∑n

i=1 t(ai))/n. The path with the least
laxity determines the critical task sequence of the compos-
ite actor. So, to maximize the minimal laxity we would first
compute deadlines for actors on the critical path. In each
iteration of the procedure a path with the least laxity is cho-
sen, removed from the graph and the deadlines of its tasks
are determined such that they all have the same slack. Fig-
ure3 illustrates the deadline distribution for the composite
actor whose task precedence graph is given with the left
graph. The execution timest(ai) are given as node labels
and the path with the least laxity is shown in boldface. The
deadlines are shown on the right graph which is obtained
after removal of the path.

Figure 3. Iteration of the deadline distribution
procedure

During the execution of the aperiodic TM model when-
ever a composite actor is triggered we perform the described
deadline distribution procedure. Once the deadlines of all
atomic actors are determined we use Earliest Deadline First
strategy on each resource to generate the current order of
actor execution on the resource.

3



Figure 4. Timed Multitasking X-by-wire car model

4 Implementation in Ptolemy

We first present some implementation details irrespec-
tive of the scheduling algorithm that we developed. An
atomic actor (i.e. task) can be triggered by an input event
(i.e. token) or by a timer (i.e. at the time at which the task
is statically determined to execute). The TM director uses a
list to store the triggered tasks. A special component, called
TMScheduler , is used as a plug-in to the TM director. It
is up to the scheduler to decide which task should be taken
from the task list of the TM director. The schedulers that
implement theTMScheduler interface can be provided as
library components. The computing resources (i.e. CPUs)
and communicating resources (i.e, I/O, buses) are also mod-
eled through a plug-in component, calledTMResource .
After the scheduler selects a task, it asks the resource to
execute the task if it is available. If the resource is not
available, the scheduler will put the task back to the list
for later rescheduling. The execution time parameter of a
task is used to decide when to output the result of the task.
Another plug-in component may further be implemented to
provide variable execution times according to some stochas-
tic model.

The current implementation works with other timed do-
mains in Ptolemy II (e.g. CT and DE), but it is not nec-
essary to embed the TM model of software components in
other models. An interesting question occurs when a pe-
riodic TM model is embedded in CT or DE model. What
should be the exact sematics if a task input comes from out-
side of the TM model? The current implementation uses
the last token if there are several tokens available at the task
start time instant, or does nothing if there is no token avail-
able. This is easy to achieve if the TM model is embedded in
a CT model where the CTReceiver is one-place buffer.

How to achieve this with DE domain is still open. For some
applications, e.g. control, it makes sense to drop older in-
puts. However, since some applications are not allowed to
lose data, in the future, we will support both choices. For
aperiodic case a triggering event will be buffered rather than
dropped if it happens before the task can process it.

Case Study. We tested the framework on a TM+CT
model of an X-by-wire automotive control system described
in [7]. The continuous model component is simplified in a
single car speed control loop shown in Figure4a). As shown
on Figure4b), theTMController software component
consists of three composite TM actors, each modeling an in-
dependent car control subsystem. Figure4c) shows atomic
tasks and precedence graph for the Adaptive Cruise sub-
sytem (task worst-case execution times and resources are
not shown). Entire model contains 24 atomic actors to be
scheduled on 17 processing units. This TM model is pe-
riodic andPESPTMScheduler is used to generate static
schedule shown on Figure4d). In this example the run-time
overhead of generating schedule is negligible, but further
tests and comparisons are necessary in order to check how
efficient the scheduler really is.

References
[1] J. Liu and E. Lee. Timed Multitasking for Real-Time Embedded Software. In

IEEE Control Systems Magazine, Vol. 23, pp. 65-75, February 2003.
[2] T. A. Henzinger, B. Horowitz and C. M. Kirsch. Giotto: A Time-Triggered

Language for Embedded Programming. InProc. IEEE, Vol. 91, pp. 84-99, 2003.
[3] J. A. Stankovic, M. Spuri, M. D. Natale, and G. C. Buttazzo. Implications of

Classical Scheduling Results for Real-Time Systems.IEEE Computer, pp.16-25,
1995.

[4] P. Chrtienne, E. G. Coffman, J. K. Lenstra, Z. Liu. Scheduling Theory and Its
Applications.Wiley, 1995.

[5] P. Serafini and W. Ukovich. A mathematical model for periodic scheduling prob-
lems. InSIAM Journal on Discrete Mathematics2:550-581, 1989.

[6] M. D. Natale and J. A. Stankovic Title Dynamic End-to-End Guarantees in
Distributed Real Time Systems.IEEE Real-Time Systems Symposium, pp.215-
227, 1994.

[7] N. Kandasamy, J. Hayes, and B. T. Murray. Dependable Communication Syn-
thesis for Distributed Embedded Systems. InProceedings of SAFECOMP 2003,
LNCS 2788, pp.275-288, 2003.

4


