
Designing Interfaces to Analyze Composition

Haiyang Zheng and Rachel Zhou
{hyzheng,zhouye }@eecs.berkeley.edu

University of California, Berkeley
Berkeley, CA, 94720, USA

Abstract

Component-based design is widely used in embedded
software design, where a new component can be generated
by composing existing components. However a composi-
tion does not always generate a valid component. We define
a composition to be valid with respect to a property if the
composition preserves that property under certain context.
In order to reason about whether a composition is valid,
we need to use interfaces to represent the properties we are
interested in. In this paper, we explore possible designs of
interfaces for this purpose and deploy these interfaces to
analyze a few examples with different models of computa-
tion.

1 Introduction

Component-based design is widely used to design com-
plex embedded software. The idea is to compose exist-
ing components into new components, which can be fur-
ther composed. By reusing existing components that are
well developed and tested, this design technology greatly
improves productivity and robustness.

One key requirement to guarantee the reusability and
compositionality of components is to ensure that certain
properties of the primitive components we are interested in
are preserved after composition. We define a composition
to bevalid with respect to a propertyunder a certaincontext
if it preserves that property after composition. A context
defines the environment where a composition happens, e.g.,
the model of computation of a model, or the scheduling al-
gorithm used by a simulation engine.

Usually, we are only interested in some properties of a
component. We use an interfaceI to describe those proper-
ties and abstract away the other unrelated ones. Obviously,
a component can have many different interfaces.

One simple but very common interface for a component
is its ports and parameters, denoted asIp. But the compo-

nent properties this interface talks about is very limited. By
associating ports with a data-type system, we get a more
informative interfaceIpt. This interface constrains all pos-
sible types of data that can be passed through a port. An
even more informative interfaceIb capturesbehaviors of a
component, which includes not only ports and parameters
but alsosignals going through the ports, where signals sat-
isfy the process defined by this component [7][8]. The last
interface we want to mention here is a function abstraction
If , which maps a set of input signals to a set of output sig-
nals. This interface provides the most complete information
out of the above four interfaces. Usually, it is very compli-
cated.

Depending on what properties of a component we are
interested in, we need different interfaces. We define an
interface to besufficient for a propertyif it can correctly
expose or carry that property. Further more, we define an
interface to beefficient for a propertyif it does not con-
tain more information than necessary. An efficient interface
excludes unrelated properties and makes our analysis easier.
We define agoodinterface to be both sufficient and efficient
for a property. A good interface allows us to reason about
whether a composition is valid with respect to that property.

In this paper, we focus on exploring possibly good de-
signs of interfaces to solve some practical composition
problems. In section 2, we give an example to illustrate
the insufficiency and inefficiency of the interfaces we talked
above. In section 3, we give a good interface for discrete-
event (DE) models [4] to reason about the preservation
of their causality properties after composition. In section
4, we develop more interfaces to analyze compositions of
dataflow and process networks models. In the end, we give
conclusions and future work.

2 An Introduction Example

We begin with a simple hierarchical DE model with a
feedback loop shown in Fig. 1. This model has aCom-
positeActor, which is a composition of aScaleactor and a



Figure 1. A hierarchical discrete-event model with a feed-
back loop.

TimedDelayactor. The property of this model we are inter-
ested in is whether this model has a unique behavior.

If we flatten the CompositeActor, we can easily tell that
the system is delta causal because the TimedDelay actor is
delta causal. This delta causal property guarantees that this
model has a unique behavior [2][7]. In order to draw the
same conclusion with composition, we need to tell whether
the CompositeActor is a delta causal process. Unfortu-
nately, an interfaceIp, which consists of only ports and pa-
rameters, does not carry such information. Therefore,Ip is
not a sufficient interface for us to reason about the unique-
ness and existence of the model’s behavior.

The reason for the insufficiency ofIp to analyze causal-
ity properties is thatIp abstracts away too much informa-
tion. Ipt is not sufficient for the same reason.Ib seems
to be a sufficient interface. However, it is very difficult to
use in practice because we have to verify the set of all pos-
sible signals. If is a sufficient interface for our purpose.
However, for a rather complex model,If itself may be very
complicated to analyze. What is more, we argue thatIf is
not efficient because what we really need is only one aspect
of If , the causality.

In the next section, we propose a sufficient design of in-
terfaces for causality analysis of DE models. This new in-
terface only captures the causality aspect ofIf . Therefore,
it is easier to be analyzed.

3 An Enhanced Interface

3.1 Function Dependency

We need to find an interface that can carry the causality
property of an actor. In order to do that, we first define a
function dependencyfor an actor. Intuitively, a function de-

Sum
Abstraction

Communication
Dependency

Function
Dependency

0.0 0.0 0.0 1.0 0.0 1.0

Figure 2. Constructing a function dependency of a com-
posite actor from those of atomic actors.

pendency of an actor is a data dependency relation that an
output port has on an input port of the same actor in a firing.
If we treat a function dependency as a function that maps
an input to an output, a function dependency has one of the
three kinds:directly affected(DA), indirectly affected(IA),
andnot related(NR). A typical actor that has a DA func-
tion dependency is the Scale actor, whose output changes
whenever its input changes. A TimedDelay actor (with a
fixed non-zero delay:t time units) has an IA function de-
pendency because its output does not change untilt time
unites after its input changes. An NR function dependency
simply says that there is no relation between an input and
output.

With these three kinds of function dependencies, we can
tell some of the causality property of an actor. To be spe-
cific, if an actor has no DA function dependency, it is a
strictly causalprocess. Otherwise, the actor iscausalbut
notstrictly causal1.

With function dependency, we can abstract anatomicac-
tor 2 into a directed graph, where nodes are ports and di-
rected edges represent dependencies of destination nodes
(output ports) on the source nodes (input ports). In partic-
ular, if there is no edge between two nodes, it means these
nodes are not related at all (NR). The function dependencies
of the TimedDelay actor and the Scale actor are shown as
blue edges in Fig. 2. Note that the function dependency of
TimedDelay is a dashed arrow (IA) while that of the scale
actor is a solid arrow (DA).

We define the directed graph of an actor as an inter-
face with function dependency of that actor. These directed
graphs can be further composed withcommunication de-
pendencies, which describe the data dependencies between
different actors, to construct the dependency graph of a
composition. Fig. 2 shows such a process, where the red ar-
rows indicate communication dependencies. The interface
of a composite actor is anabstractionof such dependency
graph, which captures the dependencies of the output ports
of the composite on its input ports. In this example, the

1In this paper, all actors by default are causal processes.
2An atomic actor is a primitive component that can not be decomposed,

whose function dependency is predefined.

2



composite actor has an IA function dependency.

3.2 An Interface with Weighted Function Depen-
dency

According to Banach fixed point theorem [2], strict
causality can not completely determine the existence and
uniqueness of the behavior of a DE model. Therefore, we
need an interface that distinguishes between strict causality
and delta causality.

We enhance the interface (function dependency graph)
given in the previous section by associating a weight to each
edge of the graph, where the weight represents the amount
of delay an edge introduces. An example graph is shown
in Fig. 2, where the TimedDelay actor introduces a delay
of amount 1.0 time unit. Note that the delay of a com-
munication dependency and a DA function dependency is
always zero. With a weighted graph, we can calculate the
weight (delay) between a pair of input and output ports of
a composite actor by summing the weights of all the edges
between them.

Now we can distinguish a delta causal actor from a
strictly causal actor with the enhanced interface. Given a
strictly causal actor, if the weights of all function dependen-
cies are bigger than anε, whereε is a positive real number,
this actor is delta causal. Otherwise, this actor is just strictly
causal. As in the example in Fig. 2, the composite actor is
a delta causal process because the weight of its function de-
pendency is 1.0. Consequently, we can conclude the whole
model has a unique behavior.

In order to study the causality property of a composition,
we only care whether the composition is causal, strictly
causal, or delta causal. We are not really interested in the
exact quantity of delay from one port to another. Instead, we
care whether such delay is zero, greater than zero, or greater
than some positive real numberε. We represent these con-
ditions with three elements0, >, and>ε respectively.

Then we can simplify our interface by representing the
weight on an edge as one of these three elements. We define
the summation operation⊕ performed on these elements in
the table below. Here is an example of how to read the ta-
ble. > ⊕ >ε = >ε means that if a strictly causal function
dependency is cascaded with a delta causal function depen-
dency, the resulting function dependency is delta causal.

⊕ 0 > >ε

0 0 > >ε

> > > >ε

>ε >ε >ε >ε

4 More Enhanced Interfaces

4.1 Enhanced Interfaces on Dataflow Models

In Ptolemy II [1], dataflow models are scheduled hierar-
chically in a bottom-up fashion. An opaque composite actor
is treated the same as an atomic dataflow actor. The inter-
face of a composite actor is itsrate signatures, which are
the number of tokens consumed and produced by the com-
posite actor in one iteration [9]. However, rate signatures
only capture the consistency property of dataflow models
[5], but talk little about deadlock.

Let us revisit the example in Fig. 1 by replacing the
TimedDelay actor with aSampleDelayactor and chang-
ing DE directors to dataflow directors, e.g., synchronous
dataflow (SDF) directors [5]. If the hierarchy does not ex-
ist, the model is deadlock free since the SampleDelay actor
produces an initial token to break deadlock and start execu-
tion. With composition, we need a good interface to expose
the information about initial tokens.

Again, we introduce a weighted interface for dataflow
models to capture information about initial tokens. Like in
Section 3, nodes represent ports and directed edges repre-
sent function and communication dependencies. One key
difference here is we associate a weight to each node, rather
than to each edge. The weight is a non-negative integer that
represents the number of initial tokens available at that node
(port). Another key difference is that the directed edge rep-
resents a function that maps the weight of its source node to
that of the destination node. For communication dependen-
cies, the weight of destination node is the same as that of its
source node, i.e., the function is an identity function. Fig.
3 shows the functions defined for different actors. For ex-
ample, the SampleDelay actor with parameter{0} produces
one more token than its input in its initialization phase. Af-
terwards, it produces the same number of tokens that it re-
ceives. For an actor with consumption ratem and produc-
tion raten, and givenk initial inputs, the actor can produce
bk/mc × n tokens.

The interface of a dataflow composite actor is an ab-

)(kfk k k kk 0 n
m

k ×







 +

=
k

k
kf

1
)(

If the function f is called first time in this interface analysis.
Otherwise.

m, n are the port rates of the actor.

where

)(kfk k k kk 0 n
m

k ×







 +

=
k

k
kf

1
)(

If the function f is called first time in this interface analysis.
Otherwise.

m, n are the port rates of the actor.

where

Figure 3. Weighted interfaces for actors in dataflow mod-
els.

3



Abstraction

k k k+1 k+1 k+1 kk+1 k+1

Figure 4. Constructing an interface abstraction of a
dataflow composite actor from atomic actors..

stracted function that maps the number of initial tokens
from the composite input ports to those of its output ports.
An example is shown in Fig. 4. The abstracted function
mapsk initial tokens intok + 1 tokens, wherek can be any
non-negative integer. This interface captures the informa-
tion that the composite can produce one initial token with-
out any input tokens (whenk = 0) to break the feedback
loop and resolve the deadlock.

4.2 Detecting Disconnected Processes

With the function dependency interface introduced in
Section 3.1, we can detect disconnected submodels in a
model and therefore solve the artificial local deadlock prob-
lem [3] in for process network (PN) models that run with
Parks’ algorithm [6]. According to Parks’ algorithm, if a
global artificial deadlock occurs, the model stops executing
and increases the buffer size of one blocking write chan-
nel to proceed execution. However, if a process network
model has two disconnected processes, and if one is arti-
ficially deadlock but the other one is still running, Parks’
algorithm doesn’t increase the buffer size to solve this (lo-
cal) deadlock.

Our solution is to separate disconnected graphs into sev-
eral submodels and assign each one with a local PN director.
This director is responsible to manage its local buffer size
to resolve local artificial deadlock. We have implemented
this decomposition procedure in Ptolemy II.

5 Conclusion and Future Work

In this paper, we introduced an approach from the inter-
face abstraction aspect to analyze composition. We devel-
oped several interfaces and applied them to several models
with different models of computation.

Interface analysis can also help to detect disconnected
subgraphs in a model and solve the artificial local deadlock
problem of Parks’ algorithm.

For future work, we plan to study and develop more use-
ful interfaces for compositionality analysis.

References

[1] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao,
and H. Zheng. Heterogeneous concurrent modeling and
design in java. Technical Report Technical Memoran-
dum UCB/ERL M04/17, University of California, June
24 2004.

[2] V. Bryant. Metric Spaces. Cambridge University Press,
1985.

[3] M. Geilen and T. Basten. Requirements on the exe-
cution of kahn process networks. InEuropean Sympo-
sium on Programming Languages and Systems, Lecture
Notes in Computer Science, pages 319–334. Springer,
2003.

[4] E. A. Lee. Modeling concurrent real-time processes us-
ing discrete events.Annals of Software Engineering,
7:25–45, 1999.

[5] E. A. Lee and D. G. Messerschmitt. Synchronous data
flow. Proceedings of the IEEE, 1987.

[6] E. A. Lee and T. M. Parks. Dataflow process networks.
Proceedings of the IEEE, 83(5):773–801, 1995.

[7] E. A. Lee and A. Sangiovanni-Vincentelli. A frame-
work for comparing models of computation.IEEE
Transactions on CAD, 17(12), 1998.

[8] E. A. Lee and Y. Xiong. System-level types for
component-based design. InFirst Workshop on Em-
bedded Software, EMSOFT 2001, volume LNCS 2211,
Lake Tahoe, CA, 2001. Springer-Verlag.

[9] Y. Zhou. Communication systems modeling in Ptolemy
II. Masters Thesis Technical Memorandum No.
UCB/ERL M03/53, University of California, Berkeley,
December 18 2003.

4


	Introduction
	An Introduction Example
	An Enhanced Interface
	Function Dependency
	An Interface with Weighted Function Dependency

	More Enhanced Interfaces
	Enhanced Interfaces on Dataflow Models
	Detecting Disconnected Processes

	Conclusion and Future Work

