C CODE GENERATION FROM
THE GIOTTO MODEL OF
COMPUTATION TO THE PRET
ARCHITECTURE

Shanna-Shaye Forbes

Ben Lickly

Man-Kit Leung

EE290N Course Project, Spring 2009
May 15, 2009

Overview

Why is real-time important?
PRET/Giotto Overview

Code Generation Infrastructure
Approach

Limitations/Future Work

Elevator Controller Example

5/15/09

5/15/09

DEMAND PACEMAKER

heart rate >= critical rate heart rate < critical rate

heart rate < critical rate

heart rate >= critical rate

Motivation

Timing as important as functionality

Traditional languages and architectures do not
support timing on the same level as
functionality.

PRET and Giotto together support timing
specifications and guarantees.

5/15/09

Precision Timed Architecture

= Architectural features support timing
predictability

= |nstruction set architecture includes
instructions to manage timing

= Exception mechanism for missed deadlines

Giotto

= Giotto is a time-triggered language for
embedded programming.

= |deal for hard real-time applications with time-
periodic and multimodal behavior.

= |t specifies time-triggered sensor readings, task
invocations, actuator updates, and mode
switches independent of any implementation
platform.

5/15/09

Giotto cont.

Unit delay in task communication
Tasks communicate through ports

Drivers move input values from ports to
inputs at the beginning of a task’s execution

Drivers move input values from outputs to
ports at the end of a task’s execution

Giotto in Ptolemy II

= Each actor is a separate task.

= Period/frequency specified with attributes.

= Models can be composed hierarchically, with
modes represented through modal models.

Extending the Ptolemy II
CodeGenration Framework

Ptolemy II Code Generation

» Ptolemy Il has an adapter based extensible code
generation framework.

= We have continued this extension to support Giotto
and PRET.

5/15/09

5/15/09

Mapping from Giotto to PRET

Each Giotto task is mapped to a separate hardware thread.
Threads communicate through shared memory.
Input and output drivers are responsible for moving data.

PRET's timing instructions detect errors when deadlines are
missed.

Limitations/Future Work

= Giotto does not specify error behavior.

We assume errors are fatal.

= This approach is tied to a PRET architecture.
Fixed number of hardware threads in PRET.

Elevator Controller Example

Giotto Director

CompositeActor FloorController
elevatorUp

frequency = 2 frequency = 5

CCodeGenerator

Double click to
generate code.

frequency = 5
FloorDisplay

EmbeddedC

DoorDisplay

frequency = 5

5/15/09

guard: elevatorDown == 1 || floorRequested == 2
output: door =0
Quard: tue
output: floor = 1;
door= 1

floorRequested

elevatorUp

elevatorDown

guard: elevatorp == 1 || floorRequested == 1
output: door =0

MI Generated Code Example

int main(int argc, char =argv[]) {
initialize ();
jmp_buf __deadline_trying_jmpbuf__;
register.jmpbuf(0,& ..deadline.trying.jmpbuf..);
if (setjmp(..deadline.trying.jmpbuf..)!=0) {
puts ("Timing-failure!\n”);
END_SIMULATION;

while (true

#ifdef THREAD.O

#ifndef twoFloorElevatorController.CompositeActor. OUTPUT_DRIVER.WCET

#warning

#define twoFloorElevatorController-CompositeActor-OUTPUT.DRIVER.-WCET 1000

#endif
DEADBRANCHO0(125000 —~ twoFloorElevatorController.CompositeActor . OUTPUT.DRIVER.WCET);
twoFloorElevatorController.CompositeActor.driver.in ();
twoFloorElevatorController_.CompositeActor ();
DEADBRANCHO(twoFloorElevatorController-CompositeActor. OUTPUT.DRIVER.-WCET);
twoFloorElevatorController.CompositeActor.driver.out ();

#endif /« THREAD.Ox/

#ifdef THREAD.1

#ifndef twoFloorElevatorController_FloorController OUTPUT_DRIVER_WCET

#warning " ..."

#define twoFloorElevatorController.FloorController . OUTPUT.DRIVER.WCET 1000

#endif
DEADBRANCHO0(50000 —twoFloorElevatorController.FloorController . OUTPUT.DRIVER.WCET);
twoFloorElevatorController.FloorController.driver.in ();
twoFloorElevatorController _FloorController ();
DEADBRANCHO(twoFloorElevatorController _FloorController OUTPUT
twoFloorElevatorController _FloorController_driver_out ();

#endif /+« THREAD-1x/

DRIVER.WCET);

5/15/09

5/15/09

Summary

= Ptolemy Il allows simulation of timed models of
computation.

= Generated code uses timing instructions of the
target architecture to preserve these timing
semantics.

= Provided a possible programming model for a
new timed architecture.

Questions?

Comments?

Suggestions?

