
Homework No. 2 - Solution

EECS 290N

Edward A. Lee
EECS Department

University of California at Berkeley
Berkeley, CA 94720, U.S.A.

1. Classify each of the following as a partial order relation, a total order relation, or neither. State whether
it is a CPO.

(a) The set A = seconds, grams, meters, pounds, yards of units and a relation R defined by (a, a′) ∈
A if a can be converted to a′ by scaling by a unitless constant.

(b) The set of all countable (including finite) subsets of R, ordered by set inclusion.

(c) The set {1/n | n ∈ N} ∪ {0}, ordered by the natural numerical order (where 1/0 is interpreted
as∞).

(d) The set {1/n | n ∈ N}, ordered by the reverse numerical order (where again 1/0 is interpreted
as∞).

Solution.

(a) This is neither because it does not satisfy the reflexive property. It is not a CPO
because it is not an order relation.

(b) This is a partial order. It is not a CPO. To show this, consider the chain consisting of
the sets {0, 1}, {0, 0.5, 1}, {0, 0.25, 0.5, 0.75, 1}, etc., where in each new set, a new
element is added halfway between each pair of elements. The least upper bound of
this set is the range [0, 1] of real numbers, which is not countable.

(c) This is a total order and a CPO. It clearly has a bottom element, and every chain has
a LUB in the set.

(d) This is a total order, but not a CPO because the set itself has no least upper bound in
the set.

�

2. Let (A,≤) and (B,≤) each be a CPO. We can form a poset (A × B,≤) where the order is a lexico-
graphic order, sometimes called the dictionary order, where for all (a1, b1), (a2, b2) ∈ A×B,

(a1, b1) ≤ (a2, b2) ⇐⇒ (a1 = a2 and b1 ≤ b2) or (a1 6= a2 and a1 ≤ a2).

(a) With this order, show that (A×B,≤) is a CPO.

1

(b) Suppose that A = T ∗∗A , B = T ∗∗B , and both CPOs use the prefix order, for arbitrary sets TA and
TB . Suppose that a ∈ TA and b1, b2 ∈ TB . Consider the set of sequences

C = {((a), (b1)), ((a, a), (b2)), ((a, a, a), (b1)), ...}

Under the lexicographic order, this is a chain. Find its LUB.

Solution.

(a) It is straightforward to show that it is a poset, and that it has a least element,
(⊥A,⊥B), assuming A and B are posets with least elements ⊥A and ⊥B , respec-
tively. It is sufficient to show that every chain C has a LUB. Consider a chain
C = {(an, bn) | n ∈ N}. Note that π̂1(C) = {an | n ∈ N}, is a chain in A,
by the definition of the lexicographic order. Hence it has a LUB, which we denote
a =

∨
π̂1(C). If a /∈ π̂1(C), then∨

C = (a,⊥B).

If a ∈ π̂1(C), then define the set

Q = {b ∈ π̂2(C) | (a, b) ∈ C}.

By the definition of the lexicographic order, this is a chain in B, and hence has a
LUB. In this case, ∨

C = (a,
∨
Q).

(b) The LUB is ∨
C = ((a, a, a, ...),⊥B).

�

3. Given a setA and the CPO (A∗∗,v), for each of the following functions, state whether it is monotonic,
continuous, both, or neither. Assume the domain and codomain of every function is A∗∗. Assume the
period operator represents concatenation of sequences.

(a) The unit delay function d given by ∀ s ∈ A∗∗, d(s) = (a).s where a ∈ A.
(b) The trailer function t given by, ∀ s ∈ A∗∗,

t(s) =
{
s.a if s is finite
s otherwise

where a ∈ A.
(c) The is finite function f given by, ∀ s ∈ A∗∗,

f(s) =
{

(a) if s is finite
(a′) otherwise

where a, a′ ∈ A, a 6= a′.
(d) An alternative is finite function f ′ given by, ∀ s ∈ A∗∗,

f(s) =
{

(a) if s is finite
(a, a) otherwise

where a ∈ A.

2

(e) Let m: (A∗∗)2 → A∗∗ be the fair alternating merge function, defined as follows. Given two
infinite sequences s1 = (a0, a1, · · ·) and s2 = (b0, b1, · · ·) it outputs the infinite sequence
m(s1, s2) = (a0, b0, a1, b1, · · ·). That is, it alternates the elements of the sequences. If either
or both of the inputs is finite, then it alternates their elements until the shorter of the two runs out
of elements, and then it outputs the remaining values from the longer of the two. For example, if
s1 = (a0, a1, · · · , an) is finite, but s2 is infinite, then it produces

m(s1, s2) = (a0, b0, a1, b1, · · · , an, bn, bn+1, bn+2, · · ·) .

If s2 is also finite, but longer than s1, then the result will be similar to the above, but finite, ending
with the last value of s2

Solution.

(a) Monotonic and continuous.

(b) Not monotonic or continuous.

(c) Not monotonic or continuous.

(d) Monotonic but not continuous.

(e) Neither monotonic nor continuous.

�

4. A PN model in Ptolemy II executes until one of the following occurs:

• All processes are blocked on reads of input ports. This is called a true deadlock.

• The Stop actor reads a true-valued input. This actor can be found in the ExecutionControl subli-
brary of of the FlowControl library.

• A buffer overflows. This occurs when the number of unconsumed tokens on a communication
channel exceeds the value of the maximumQueueCapacity parameter of the director. Note that if
you set maximumQueueCapacity to 0 (zero), then this will not occur until the operating system
denies the Ptolemy system additional memory, which typically occurs when you have run out
system memory.

• An exception occurs in some actor process.

These are the only mechanisms for stopping an execution. In this problem, we explore how to use
these mechanisms to deterministically halt the execution of a PN model. Specifically, in each case, we
consider a Source actor feeding a potentially infinite sequence of data tokens to a Display actor. We
wish to make this sequence finite with a specific length, and we wish to ensure that the Display actor
displays every element of the sequence.

(a) Suppose that you have a Source actor with one output port and no parameters whose process
iterates forever producing outputs. Suppose that its outputs are read by a Display actor. Find a
way to use the Stop actor to deterministically stop the execution, or argue that there is no way to
do so. Specifically, the Source actor should produce a fixed number of outputs, and every one of
these outputs should be consumed and displayed by the Display actor before execution halts.

(b) Most Source actors in Ptolemy II have a firingCountLimit parameter that limits the number of
outputs they produce. Show that this can be used to deterministically halt the execution without
the help of a Stop actor.

3

(c) Many Source actors in Ptolemy II have trigger input ports. If these inputs are connected, then
the actor process will read a value from that input port before producing each output. Show how
to use this mechanism, with or without the Stop actor, to achieve our goal of deterministically
halting execution, or argue that it is not possible to do so.

Solution.

(a) With some care, the Stop actor can be used to deterministically stop execution of
model after a fixed amount of data has been produced, but it cannot ensure that the
data is consumed. In particular, there is no way to ensure that the Display actor will
consume (and hence display) all its inputs before the model halts.

(b) This is straightforward. Just set the firingCountLimit parameter to some finite value
and the model stops executing after the specified amount of data has been produced
and consumed. The reason that the data is also consumed is that the model will halt
only when all processes have either exited or have become blocked on a read. The
Display actor does not become blocked on a read until it has displayed all previously
available data

(c) A trigger input can be used to produce a finite input sequence, thus starving the
model, and halting it after deterministically displaying a finite number of results. For
example, the following model will deterministically display the integers 0 to 10, then
halt:

�

5. This exercise explores the implementation of an all-to-all scatter/gather in Ptolemy II. Specifically,
construct a model that generates four arrays with values:

{”a1”, ”a2”, ”a3”, ”a4”}
{”b1”, ”b2”, ”b3”, ”b4”}
{”c1”, ”c2”, ”c3”, ”c4”}
{”d1”, ”d2”, ”d3”, ”d4”}

and converts them into arrays with values

{”a1”, ”b1”, ”c1”, ”d1”}

4

{”a2”, ”b2”, ”c2”, ”d2”}
{”a3”, ”b3”, ”c3”, ”d3”}
{”a4”, ”b4”, ”c4”, ”d4”}

Experiment with the use of ArrayToElements and ElementsToArray, as well as ArrayToSequence and
SequenceToArray (for the latter, you will also likely need Commutator and Distributor). Comment
about the relative merits of your approaches. Hint: You will likely have to explicitly set the widths of
the connections to 1. Double click on the wires and set the value.

You may also experiment with MultiInstanceComposite, but be advised that there appear to be some
concurrency bugs at this time that keep this higher-order actor from working as expected.

Solution. Below is an implementation using ArrayToElements and ElementsToArray:

Below is an implementation using ArrayToSequence and SequenceToArray:

In the above, the Distributor is set to use a blockSize of 4.
The latter solution has the advantage of more readable connections, at least in this graphical
syntax. �

5

