
1

Homework 4

EE 290n - Advanced Topics in Systems Theory

Edward A. Lee

1. Suppose D is some set and S = D∗∗ is the set of finite and infinite sequences of elements of D.
This exercise explores some of the properties of the CPO Sn with the pointwise prefix order,
for some non-negative integer n. In particular, these properties are useful for understanding
dataflow process networks.

(a) Show that any two elements a,b∈ Sn that have an upper bound have a least upper bound.
(b) Let U ⊂ Sn be such that no two distinct elements of U are joinable. Prove that for all

s ∈ Sn there is at most one u ∈U such that uv s.
(c) Given s∈ Sn, suppose that Q(s)⊂ Sn is a joinable set where for all q∈Q(s), qv s. Then

show that there is an s′ such that s = (
W

Q(s)).s′.

2. Consider the model shown in figure 1. Assume that data types are all D = {0,1}. Assume f is
a dataflow actor that implements an identity function and that Const is an actor that produces
an infinite sequence (0,0,0, · · ·). Obviously, the overall output of this model should be this
same infinite sequence. The box labeled g indicates a composite actor. Find firing rules and
firing function g for the composite actor to satisfy conditions 1 and 3 covered in class. Note
that the composite actor has one input and two outputs.

3. The Dynamic Dataflow director in Ptolemy II supports an actor called ActorRecursion, cre-
ated by Gang Zhou. It can be used in model as a recursive reference to a composite actor that
contains it. For example, the Prime Number Filter demo, shown in figure 2, implements the
sieve of Eratosthenes, as described in the Kahn and MacQueen paper.

Use this actor to implement a composite actor that computes Fibonacci numbers. That is, a
firing of your composite actor should implement the firing function f : N→ N defined by

f (n) =


0 if n = 0
1 if n = 1
f (n−1)+ f (n−2) otherwise

Figure 1: A model.



2

for all n ∈ N.

The way that this actor works is that when it fires, it clones the composite actor above it in the
hierarchy (i.e., its container, or its container’s container, etc.) whose name matches the value
of its recursionActor parameter. The instance of ActorRecursion is populated with ports that
match those of that container.

This actor should be viewed as a highly experimental realization of a particular kind of higher-
order component. It is a higher-order component because it is parameterized by an actor that
contains it. Its implementation has a number of issues, each of which could be interesting
research directions:

(a) It is very inefficient. The cloning of the actor it references on each firing is expensive
in both memory and time. A better implementation would use something like the stack
frame approach used in procedural programming languages. Instead, the approach it
uses is more like copying the source code at run time and then interpreting it. In an
attempt to make execution more efficient, this actor avoids creating the clone if it has
previously created it. However, this leads to the second problem.

(b) If you run a model with an ActorRecursion instance in it, upon completion of the run,
the actor will contain the clone. You can look inside the actor to see this. However, if
you now make a modification to the referenced actor, the clone is not recreated on the
next run, so your modifications will not be reflected. Apparently, you have to save your
model, exit Ptolemy II, and then re-enter to re-run the model. This is a bug, probably

Figure 2: The sieve of Eratosthenes, using ActorRecursion in Dynamic
Dataflow, created by Gang Zhou.



3

easily fixed, but I mention it to help avoid frustration in using this actor.

(c) The actor is written to work with the Dynamic Dataflow director, but this constraint is
probably not really necessary. The same mechanism would probably work with several
other directors, including at least PN and DE. An interesting question is whether there
is some variant that would work with SR. To my knowledge, none of the synchronous
languages support such recursion.

(d) The visual representation of the recursive reference is inadequate. There is no way,
looking only at the image in figure 2, to tell what composite actor the ActorRecursion
instance references. Thus, you cannot really read the program from its printout.

Ideas and fixes to any of the above issues are welcome.


