
1

Concurrent Models of

Computation

Edward A. Lee
Robert S. Pepper Distinguished Professor, UC Berkeley

EECS 290n – Advanced Topics in Systems Theory

Concurrent Models of Computation

Spring 2009

Copyright © 2009, Edward A. Lee, All rights reserved

Week 3: Execution Policies

Lee 03: 2

Review:
Semantics of a PN Model is the Least Fixed Point of a
Monotonic Function

Chain: C = { f (), f (f ()), … , f n(), …}

Continuity:

type A

sequence in A**

Limits

2

Lee 03: 3

Composing Actors

So far, our theory applies only to a single actor in a

feedback loop:

What about more interesting models?

Lee 03: 4

Cascade Composition

Consider cascade composition:

If f1 : A B and f2 : B C are monotonic
(or continuous) functions on CPOs A, B, C, then
 f2 ° f1 is monotonic (or continuous) (show this).

Hence, the execution procedure works for cascade
composition.

3

Lee 03: 5

Cascade Composition

Reduces to the Previous Case

Lee 03: 6

Parallel Composition

Consider parallel composition:

If f1 : A A and f2 : B B are monotonic

(or continuous) functions on CPOs A, B, then

 f1 f2 is monotonic (or continuous) on CPOs

A B.

4

Lee 03: 7

Cartesian Products of Functions

If f1 : A A and f2 : B B then the Cartesian product is

f1 f2 : A B A B .

If A , B are CPOs then so is A B under the pointwise

order.

Exercise: Determine whether A B is a CPO under the

lexicographic order.

Lee 03: 8

Parallel Composition

Reduces to the Previous Case

Discussion: Does this composite actor have two streams

in and out? Or streams of two-tuples?

5

Lee 03: 9

Multiple Inputs or Outputs

What about actors with multiple inputs or outputs?

Lee 03: 10

More Interesting Feedback Compositions

Assuming f1 and f2 are monotonic, is f3 monotonic?

Assuming f1 and f2 are continuous, is f3 continuous?

Assuming f1 and f2 are sequential, is f3 sequential?

6

Lee 03: 11

Sequential Functions

Let F : Sp Sq be a function mapping p-ary inputs to q-ary

inputs.

F is sequential if for any X = { X1, X2 ... Xp },

there exists an i, 1 i p, such that

for any X´ where X X´ and Xi = Xi´, it is F(Xi) = F(Xi´).

Hence X´ extends the streams (sequences) in X, except the

one stream Xi , which is not extended. The process is

sequential if it cannot extend the output before Xi is extended.
Intuitively, this corresponds to a blocking read on Xi , the

outcome of which determining further computation of F.

Note that sequentiality implies continuity, which in turn implies

monotonicity.

Lee 03: 12

Source and Sink Actors

Consider Actor1. Its function is f 1: A
1 A0 where

A0 is a singleton set (a set with one element). Such a

function is always monotonic (and continuous, and

sequential).

Consider Actor2. Its function is f 1: A
0 A1. Such a

function is again always monotonic (and continuous, and

sequential). In fact, the function can only yield one

possible output sequence, since its domain has size 1.

7

Lee 03: 13

Composing Sources and Sinks

What about the following interconnection?

Lee 03: 14

Composing Sources and Sinks

Recall cascade composition:

Reorganized, this looks like cascade composition:

The codomain of f 1 and domain of f 2 are singleton sets,
so there is no need to show any signal.

8

Lee 03: 15

Complicated Compositions

Simple procedure:

Bring all n signals out as outputs.

Feed back all n signals as inputs.

The resulting f : An An will be continuous if the

component functions are continuous.

Hence the model will have a least fixed point that can

be found by starting with all sequences being empty

and repeatedly applying the function f.

Lee 03: 16

Taking Stock:

Semantics of a PN Model is the Least Fixed Point of

a Monotonic Function

Chain: C = { f (), f (f ()), … , f n(), …}

Continuity:

type T

sequence in T **

Limits

9

Lee 03: 17

Applying This In Practice

Model is a composition of actors

Each actor implements a monotonic function

The composition is a monotonic function

All signals are part of the “feedback”

Execution approximates the semantics by

starting with empty sequences on all signals

allowing actors to react to inputs and build output signals

Actors execute in their own thread.

Reads of empty inputs block.

Lee 03: 18

Practical Questions

When a process suspends, how should you decide

which process to activate next?

If a process does not (voluntarily) suspend, when

should you suspend it?

How can you ensure “fairness”? In fact, what does

“fairness” mean?

All inputs to a process are eventually consumed?

All outputs that a process can produce are eventually

produced?

All processes are given equal opportunity to run? What

does “equal opportunity” mean?

10

Lee 03: 19

Consider a Simple Example

How can we prevent Actor2 from never suspending, thus

starving Actor1 and causing memory usage to explode?

How can we prevent buffers from growing infinitely (data

is produced a higher rate than it is consumed)?

Naïve answers:

Fair execution: Give both actors equal time slices

Data-driven execution: When Actor2 produces, execute Actor1

Demand-driven execution: When Actor1 needs, execute Actor2

Bound the buffer between them and implement blocking writes.

Lee 03: 20

Undecidability [Buck, 1993]

Given the following four actors, and boolean data types

on the ports, you can construct a universal Turing

machine:

Consequence: The following questions are undecidable:

Will a PN model deadlock?

Can a PN model be executed in bounded memory?

11

Lee 03: 21

Consequences

It is undecidable whether a PN model can execute in

bounded memory, so no terminating algorithm can

identify (for all PN models) bounds that are safe to use on

the channels.

A PN model terminates if every signal is finite in the least

fixed point semantics.

It is undecidable whether a PN model terminates.

Lee 03: 22

Stack Counter:

Step 1 towards a

Turing Machine

12

Lee 03: 23

Turing Machines from PN

The model below shows how to implement a stack. Given a

stack, you can make two stacks, one representing the tape to

the left and one representing the tape to the right on a Turing
machine. With some logic, voila, a universal Turing machine.

Lee 03: 24

A Practical Policy

Define a correct execution to be any execution for
which after any finite time every signal is a prefix of
the LUB signal given by the semantics.

Define a useful execution to be a correct execution
that satisfies the following criteria:

1. For every non-terminating PN model, after any finite
time, a useful execution will extend at least one signal
in finite (additional) time.

2. If a correct execution satisfying criterion (1) exists that
executes with bounded buffers, then a useful
execution will execute with bounded buffers.

13

Lee 03: 25

Parks’ Strategy [Parks, 1995]

Start with an arbitrary bound on the capacity of all
buffers.

Execute with both blocking reads and blocking writes
(which prevent buffers from overflowing).

If deadlock occurs and at least one actor is blocked on
a write, increase the capacity of the smallest buffer to
unblock at least one write.

Continue executing, repeatedly checking for deadlock.

 This is the strategy implemented in the PN domain in
Ptolemy II. Notice that it “solves” two undecidable
problems, but does so in infinite time.

Lee 03: 26

More Execution Policy Considerations

Fairness: If a process at some point becomes able to send a

message, then the message is eventually sent. If a process at

some point becomes able to read a message that has been
sent, then it eventually reads the message.

Maximality: An execution is maximal if it is finite (all processes

terminate) or when it halts, all processes that have not

terminated are blocked on reads.

Proposition (the Kahn Principle): Any two fair and maximal

executions of a process network produce the same

sequences of messages, matching the least fixed point in the

Kahn semantics.

14

Lee 03: 27

Geilen & Basten’s Elaboration [2003]

Execute in a “data-driven” fashion with bounded buffers

until the process network terminates or an artificial local

deadlock occurs, defined to be a cycle of blocked

processes waiting on each other in a chain where at least

one process is blocked on a write.

Resolve any such artificial deadlock by increasing the

capacity of the smallest full buffer in the cycle.

This strategy is fair and maximal for effective PNs (where

every message sent is read) and will execute in bounded

memory if this is possible.

Lee 03: 28

Questions 1 & 2: (from first week)

Is “Fair” Thread Scheduling a Good Idea?

Suppose the CONTROL output is always true. (In this

case, is the network effective?)

A “useful execution” will allow SOURCE2 to produce only

finite output. This is unfair. Both strategies do this.

15

Lee 03: 29

Question 3: (from first week)

When are Outputs Required?

The “useful execution” is not changed by the mere act of

observing a signal. Again, both strategies are unfair.

Lee 03: 30

Question 4: (from last week)

Will Data-Driven Execution work?

A useful execution does not execute the sources merely

because they have input data to depend on. You still

need to bound the buffers. Geilen and Basten assume in

the above network that any bound >= 1 will not lead to

deadlock.

16

Lee 03: 31

Question 5: (from first week)

What is the “Correct” Execution of This Model?

Both strategies execute in bounded memory if the output

of the CONTROL process makes this possible.

In G&B, if the BooleanSwitch blocks on a write to a full

output buffer, then SINK must be blocked on a read from

its other output, so we have a cycle.

while(true) {

 data1 = in1.get();

 data2 = in2.get();

 … do something with it …

}

The PN

Director

optionally

allows you to

specify an

overall bound

on buffer

sizes as a

debugging

tool.

Lee 03: 32

Question 6:

What is the Correct Behavior of this Model?

Any maximal execution of this model requires unbounded

buffers, assuming ACTOR reads its input first. This local

deadlock is not an artificial deadlock.

17

Lee 03: 33

Convergence

The Kahn principle states that maximal and fair

executions produce sequences that match that the least

fixed point.

But what can this mean? Every execution is, at all times,

finite, and can only have produced a prefix of the least

fixed point.

We can define a notion of convergence for sequences.

Lee 03: 34

Limit of a Sequence of Reals

Consider a sequence of real numbers:

s : N

This sequence is said to converge to a real number a if

for all open sets A containing a there exists an integer n

such that for all m > n the following holds:

s (m) A

18

Lee 03: 35

Standard Topology in the Reals

An open neighborhood around a in the reals is

{ x | a - < x < a + }

for some positive real number .

An open set A in the reals is a subset of such that for

all a A, there is an open neighborhood around a that is

a subset of A.

The collection of open sets in the reals is called a

topology.

Lee 03: 36

Topology

Let X be any set. A collection of subsets of X is called a
topology if:

 X and are members of

 The intersection of any two members of is in

 The union of any family of members of is in

The set of open sets in the reals is a topology.

For any topology , the members of are called its open
sets.

19

Lee 03: 37

A Scott Topology for Sequences

Consider a set T and the set T ** of all finite and infinite
sequences of elements of T.

Given a finite sequence s T **, an open neighborhood
around s is the set

Ns = { s' T **| s s'}

It is the set of sequences with prefix s.

Let be the collection of all sets that arbitrary unions of
open neighborhoods. Fact: is a topology.

Lee 03: 38

Limit of a Sequence of Sequences

(Convergence in the Scott Topology)

Consider a sequence of sequences:

S : N T **

This sequence is said to converge to a sequence a if for

all open sets A containing a there exists an integer n such

that for all m > n the following holds:

S (m) A

Intuition: For any finite prefix p a, the sequences in S

eventually all have prefix p .

20

Lee 03: 39

Consequences for Process Networks

“Correct” executions of process networks do not
necessarily converge to the Kahn least fixed-point
semantics.

This is because “correct” executions allow any signal
to be evaluated only to a finite prefix of the LUB
semantics.

Maximal and fair executions, however, do converge.

For networks that not effective, however, such
executions may not be the ones you want!

Lee 03: 40

Convergent Execution vs. Correct Execution

A “convergent” execution of the above model is

impossible with finite memory.

A “correct” execution is possible and practical.

Which do you prefer?

21

Lee 03: 41

Nondeterminism

Gordon Plotkin postulated that the Kahn principle could be

extended to nondeterminate systems by modeling processes

as functions on powersets of sequences.

That is, a nondeterminate process with n inputs and one

output, for example, could be defined by a function of the form
F : (T *) n P(T **), where P(T **) is the set of all subsets of

T **.

Brock and Ackermann put an end to this with an example

where two components characterized by exactly the same

such function nonetheless exhibited observably different

behavior.

Lee 03: 42

Summary

Deadlock and memory requirements are undecidable

for PN.

Correct and useful executions can be practically

achieved despite this fact using Parks’ strategy.

The result does not converge to the Kahn semantics,

but always delivers a finite prefix of that semantics.

