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Synchronous Languages 

Esterel 

Lustre 

SCADE (visual editor for Lustre-ish/Esterel-ish lang.) 

Signal 

Statecharts (some variants) 

Ptolemy II SR domain 

 The model of computation is called synchronous 

reactive (SR). It has strong formal properties (many 

key questions are decidable). 
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Lustre/SCADE 

from http://www.esterel-technologies.com/ 

The SCADE tool has a code 

generator that produces C or 

ADA code that is compliant with 

the DO-178B Level A standard, 

which allows it to be used in 

critical avionics applications 

(see  http://www.rtca.org). 

synchronous signal value 

state machine giving decision logic 
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SR Domain in Ptolemy II 

At each tick of a global “clock,” every 

signal has a value or is absent. 

The job of the SR director is to find the 

value at each tick. 
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The Synchronous Abstraction 

“Model time” is discrete: Countable ticks of a clock. 

WRT model time, computation does not take time. 

All actors execute “simultaneously” and 
“instantaneously” (WRT to model time). 

There is an obviously appealing mapping onto real 
time, where the real time between the ticks of the 
clock is constant. Good for specifying periodic real-
time tasks. 
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Properties 

Buffer memory is bounded (obviously). 

Hence the model of computation is not Turing 

complete. 

… or bounded memory would be undecidable … 

Causality loops are possible, where at a tick, the value 

of one or more signals cannot be determined. 
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Practical Application – Token Ring Arbitration 
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Arbiter Design 
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Cycles 

Note that there are cycles in this graph, so that if you 

require that all inputs be known to find the output, then 

this cannot execute. 

The “non strict” actors are key: They do not need to know 

all their inputs to determine the outputs. 
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Simple Execution Policy 

At each tick, start with all signals “unknown.” Evaluate 

non-strict actors and source actors. Then keep evaluating 

any actors that can be evaluated until all signals become 

known or until no further progress can be made. 

Q: How do we know this will work? 

A: Least fixed point semantics. 
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SR Domain in Ptolemy II 

At each tick of a global “clock,” every 

signal has a value or is absent. 

The job of the SR director is to find the 

value at each tick. 
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Cycles 

Note that there are cycles in this graph, so that if you 

require that all inputs be known to find the output, then 

this cannot execute. 

The “non strict” actors are key: They do not need to know 

all their inputs to determine the outputs. 
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Non-Strict Logical Or 

The non-strict or (often called the “parallel or”) can 

produce a known output even if the input is not 

completely know. Here is a table showing the output as a 

function of two inputs: 

  F T 

    T 

   F T 

F  F F T 

T T T T T 

input 1 

in
p
u
t 

2
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More Synchronous/Reactive Actors 

Use of some of these can be quite subtle. 
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Design in SR: 

Example 

In this example, the CountDown 
composite issues a “ready” 
signal to the EnabledComposite, 
which then issues a number. 
The CountDown composite 
counts down from that number to 
0, then issues another ready. 
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Design in SR: 

Example 

The EnabledComposite 
has a clock that ticks 
only when the enable 
input is present and true. 
It issues the sequence 1, 
5, 3, 2, followed by 
absent henceforth. 
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Design in SR: 

Example 

If the NonStrictDelay 

had been put at the 

top level, would its 

behavior have been 

the same? 
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Design in SR: 

Example 

The CountDown 

composite restarts 

the count each time 

the start input is 

present. 
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Subtleties: Pre vs. NonStrictDelay 

Pre: True one-sample delay. The 

behavior is not affected by insertion of an 

arbitrary number of ticks with “absent” 

inputs between present inputs. 

NonStrictDelay: One-tick delay (vs. one-

sample). The output in each tick equals 

the input in the previous tick (whether 

absent or not). 
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Illustration of this Subtlety 

In this example, the original 

signal is present only if every 

third tick of the clock. The 

output of the NonStrictDelay 

is delayed by one click, 

whereas the output the Pre 

actor is delayed by one 

(present) sample. 



11 

Lee 06: 21 

Consequences: Pre vs. NonStrictDelay 

Pre: This actor is strict. It must know 

whether the input is present before it can 

determine the output. Hence, it cannot be 

used to break feedback loops. 

NonStrictDelay: This actor is nonstrict. It 

need not know whether the input is 

present nor what its value is before it can 

determine the output. Hence, it can be 

used to break feedback loops. 
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Use of 

NonStrictDelay 

in Feedback 

The Default actor and 
the feedback loop 
ensure the 
NonStrictDelay input is 
never absent. Thus, it 
behaves like Pre in this 
model. 
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The Flat CPO 

Consider a set of possible values T = {t1, t2, … }. Let 

A = T  { ,  } 

where  represents “unknown” and  represents “absent.” 

Let ( A,  ) be a partial order where: 

       

   for all t in T,    t  

   all other pairs are incomparable 
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Hasse Diagram for the Flat CPO 

Note that this is obviously a CPO  

(all chains have a LUB) 

All chains have length 2. 

 

 t1  t2  …  
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Monotonic Functions on This CPO 

In this CPO, any function f: A  A  is monotonic if 

f ( ) = a        f (b) = a  for all  b  A 

I.e., if the function yields a “known” output when the input 

is unknown, then it will not change its mind about the 

output once the input becomes known. 

Since all chains are finite, every monotonic function is 

continuous. 
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Non-Strict Logical Or is Monotonic 

The non-strict or is a monotonic function f : A  A  A 

where  A = { , , T, F } as can be verified from the truth 

table:  

  F T 

    T 

   F T 

F  F F T 

T T T T T 

input 1 

in
p
u
t 

2
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Recall: Fixed Point Theorem 1 

Let (A,  ) be a CPO 

Let  f : A  A  be a monotonic function 

Let  C = { f n( ), n  N } 

If   C =  f (  C), then  C is the least fixed point of f  

If  f  is continuous, then  C =  f (  C) 

Intuition: The least fixed point of a continuous function is 

obtained by applying the function first to the empty 

sequence, then to the result, then to that result, etc. 
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Recall: Fixed Point Theorem 2 

Let  f : A  A  be a monotonic function on CPO (A,  ). 

Then  f   has a least fixed point.  

Intuition: If a function is monotonic (but not continuous), 

then it has a least fixed point, but the execution 

procedure of starting with the empty sequence and 

iterating may not converge to that fixed point. 

This is obvious, since monotonic but not continuous 

means it waits forever to produce output. 
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Applying Fixed Point Theorem 1 

At each tick of the clock 

Start with signal value   

Evaluate  f ( ) 

Evaluate  f (  f ( )) 

Stop when a fixed point is reached 

Unlike PN, a fixed point is always reached in a finite 

number of steps (one, in this case). 

type T 

value in A = T  { ,  } 
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Causality Loops 

What is the behavior in the following cases? 

f  is the identity function. 

f  is the logical NOT function. 

f  is the nonstrict delay function with initial value 0. 

f  is the nonstrict delay function with no initial value. 
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Causality Loops 

What is the behavior in the following cases? 

f  is the identity function:   

f  is the logical NOT function:   

f  is the nonstrict delay function with initial value 0: 0 

f  is the nonstrict delay function with no initial value:   
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Generalizing to Multiple Signals 

The Cartesian product of flat CPOs under pointwise 

ordering is also a CPO. 

All chains are still finite. 

Can now apply to any composition, as done with PN. 

( , ) 

…  

product CPO assuming T = {0, 1}.   

( , ) ( , ) (1, ) (0, ) ( , 0) 

( , ) ( , 0) 

( , 1) 

( , 1) (0, ) (1, ) …  



17 

Lee 06: 33 

Compositional Reasoning 

So far, with both PN and SR, we deal with composite 

systems by reducing them to a monotonic function of all 

the signals.   

An alternative approach is to convert an arbitrary 

composition to a continuous function. 
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Example to Use for Compositional Reasoning 

Consider an actor: 

Assume a  A, b  B, c  C, all CPOs.  

Assume that the actor function f : A  B  C is continuous  

Consider the following composition: 

We would like to consider this a function from a to c.   
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First Option: Currying 

(Named after Haskell Curry) 

Given a function f : A  B  C , we can alternatively think 

of this in stages as  f1 : A  [B  C] , where [B  C] is 

the set of all functions from B to C.  

For the following example, for each given value of a we 

get a new function f1 ( a )  for which we can find the least 

fixed point. That least fixed point is the value of c. 
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Example: Non-Strict OR 

Suppose f is a non-strict logical OR function. Then: 

If a = true, then the resulting function f1 ( a ) always 

returns true, for all values of the input b. 

In this case, the least fixed point yields  c = true. 

If a = false, then the resulting function f1 ( a )  is the 

identity function. 

In this case, the least fixed point yields  c = . 
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Second Option: Lifting 

(Named after Heavy Lifting) 

Given a function f : A  B  C , we are looking for a 

function  g : A  C such that 

c = g( a ) 

In the model we have b = c and  c = f ( a, b ) so 

g( a ) = f ( a, g( a )) 

This looks like a fixed point problem, but the “unknown” 

on both sides is g, a function not a value. If we can find 

the function g that satisfies this equation, then we can 

use it always to calculate c given a. 
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Posets of Functions 

Suppose ( A,  ) and ( C,  ) are CPOs. 

Consider functions  f, g  [ A  C ]. 

Define the pointwise order on these functions to be 

f  g    a  A,   f ( a )   g( a ) 

Let X  [ A  C ] be the set of all continuous total 

functions from A to C. 

Theorem: (X ,  ) is a CPO under the pointwise order. 

Proof: See handout. 
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Least Function in the CPO of Functions 

Let X  [ A  C ] be the set of all continuous total 

functions from A to C. Since X is a CPO, it must have a 

bottom.  The bottom is a function X: A  C where for all  

a  A,  

X ( a ) = C  C   
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Consequence of this 

Theorem 

Given a continuous function f : A  B  C , the function 

g : A  C such that 

c = g( a ) 

is the least fixed point of a continuous function 

F : X  X  

where X  [ A  C ] is the set of all continuous total 

functions from A to C.  

We need to now determine the continuous function F . 
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Consequence of this 

Theorem (Continued) 

We need to find a function that g satisfies:  

g( a ) = f ( a, g( a )) 

Let X  [ A  C ] be the set of all continuous total 
functions from A to C and let F be a continuous function 
F : X  X . 

Then g  X is the least function such that F ( g ) = g where 
for all  a  A , 

(F ( g ))( a ) = f ( a, g( a )) 

The theorem, with fixed point theorem 1, tells us that F 
has a least fixed point, and tells us how to find it. 
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Example: Non-Strict OR 

Suppose f is a non-strict logical OR function. Then: 

The least fixed point of this is the function g  given by: 

To find this, start with F (  ), then find  F ( F (  )), etc., 

until you get a fixed point (which happens immediately). 

(F(g))(a) =

true if   a = true

if  a =  and g(a) = false

g(a) otherwise

 

 
 

 
 

g(a) =
true if   a = true

otherwise
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Showing that F is Continuous 

Need to show that given a chain of continuous total 

functions C = { g1, g2 … } that: 

For all a  A :  

because each gi is 

continuous 

because f is continuous 

QED 
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Summary 

In SR, fixed point semantics is simpler than in PN 

because the CPO has only finite chains. 

The fancier techniques of Currying and Lifting can be 

applied equal well to PN, but we introduce them here 

because the simpler CPO makes them easier to 

understand. 

The fixed point semantics of SR talks only about the 

behavior at a tick of the clock.  The behavior across 

ticks of the clock will require a clock calculus. 


