
1

Concurrent Models of

Computation

Edward A. Lee
Robert S. Pepper Distinguished Professor, UC Berkeley

EECS 290n – Advanced Topics in Systems Theory

Concurrent Models of Computation

Spring 2009

Copyright © 2009, Edward A. Lee, All rights reserved

Week 6: Synchronous/Reactive Models

Lee 06: 2

Synchronous Languages

Esterel

Lustre

SCADE (visual editor for Lustre-ish/Esterel-ish lang.)

Signal

Statecharts (some variants)

Ptolemy II SR domain

 The model of computation is called synchronous

reactive (SR). It has strong formal properties (many

key questions are decidable).

2

Lee 06: 3

Lustre/SCADE

from http://www.esterel-technologies.com/

The SCADE tool has a code

generator that produces C or

ADA code that is compliant with

the DO-178B Level A standard,

which allows it to be used in

critical avionics applications

(see http://www.rtca.org).

synchronous signal value

state machine giving decision logic

Lee 06: 4

SR Domain in Ptolemy II

At each tick of a global “clock,” every

signal has a value or is absent.

The job of the SR director is to find the

value at each tick.

3

Lee 06: 5

The Synchronous Abstraction

“Model time” is discrete: Countable ticks of a clock.

WRT model time, computation does not take time.

All actors execute “simultaneously” and
“instantaneously” (WRT to model time).

There is an obviously appealing mapping onto real
time, where the real time between the ticks of the
clock is constant. Good for specifying periodic real-
time tasks.

Lee 06: 6

Properties

Buffer memory is bounded (obviously).

Hence the model of computation is not Turing

complete.

… or bounded memory would be undecidable …

Causality loops are possible, where at a tick, the value

of one or more signals cannot be determined.

4

Lee 06: 7

Practical Application – Token Ring Arbitration

Lee 06: 8

Arbiter Design

5

Lee 06: 9

Cycles

Note that there are cycles in this graph, so that if you

require that all inputs be known to find the output, then

this cannot execute.

The “non strict” actors are key: They do not need to know

all their inputs to determine the outputs.

Lee 06: 10

Simple Execution Policy

At each tick, start with all signals “unknown.” Evaluate

non-strict actors and source actors. Then keep evaluating

any actors that can be evaluated until all signals become

known or until no further progress can be made.

Q: How do we know this will work?

A: Least fixed point semantics.

6

Lee 06: 11

SR Domain in Ptolemy II

At each tick of a global “clock,” every

signal has a value or is absent.

The job of the SR director is to find the

value at each tick.

Lee 06: 12

Cycles

Note that there are cycles in this graph, so that if you

require that all inputs be known to find the output, then

this cannot execute.

The “non strict” actors are key: They do not need to know

all their inputs to determine the outputs.

7

Lee 06: 13

Non-Strict Logical Or

The non-strict or (often called the “parallel or”) can

produce a known output even if the input is not

completely know. Here is a table showing the output as a

function of two inputs:

 F T

 T

 F T

F F F T

T T T T T

input 1

in
p
u
t

2

Lee 06: 14

More Synchronous/Reactive Actors

Use of some of these can be quite subtle.

8

Lee 06: 15

Design in SR:

Example

In this example, the CountDown
composite issues a “ready”
signal to the EnabledComposite,
which then issues a number.
The CountDown composite
counts down from that number to
0, then issues another ready.

Lee 06: 16

Design in SR:

Example

The EnabledComposite
has a clock that ticks
only when the enable
input is present and true.
It issues the sequence 1,
5, 3, 2, followed by
absent henceforth.

9

Lee 06: 17

Design in SR:

Example

If the NonStrictDelay

had been put at the

top level, would its

behavior have been

the same?

Lee 06: 18

Design in SR:

Example

The CountDown

composite restarts

the count each time

the start input is

present.

10

Lee 06: 19

Subtleties: Pre vs. NonStrictDelay

Pre: True one-sample delay. The

behavior is not affected by insertion of an

arbitrary number of ticks with “absent”

inputs between present inputs.

NonStrictDelay: One-tick delay (vs. one-

sample). The output in each tick equals

the input in the previous tick (whether

absent or not).

Lee 06: 20

Illustration of this Subtlety

In this example, the original

signal is present only if every

third tick of the clock. The

output of the NonStrictDelay

is delayed by one click,

whereas the output the Pre

actor is delayed by one

(present) sample.

11

Lee 06: 21

Consequences: Pre vs. NonStrictDelay

Pre: This actor is strict. It must know

whether the input is present before it can

determine the output. Hence, it cannot be

used to break feedback loops.

NonStrictDelay: This actor is nonstrict. It

need not know whether the input is

present nor what its value is before it can

determine the output. Hence, it can be

used to break feedback loops.

Lee 06: 22

Use of

NonStrictDelay

in Feedback

The Default actor and
the feedback loop
ensure the
NonStrictDelay input is
never absent. Thus, it
behaves like Pre in this
model.

12

Lee 06: 23

The Flat CPO

Consider a set of possible values T = {t1, t2, … }. Let

A = T { , }

where represents “unknown” and represents “absent.”

Let (A,) be a partial order where:

 for all t in T, t

 all other pairs are incomparable

Lee 06: 24

Hasse Diagram for the Flat CPO

Note that this is obviously a CPO

(all chains have a LUB)

All chains have length 2.

 t1 t2 …

13

Lee 06: 25

Monotonic Functions on This CPO

In this CPO, any function f: A A is monotonic if

f () = a f (b) = a for all b A

I.e., if the function yields a “known” output when the input

is unknown, then it will not change its mind about the

output once the input becomes known.

Since all chains are finite, every monotonic function is

continuous.

Lee 06: 26

Non-Strict Logical Or is Monotonic

The non-strict or is a monotonic function f : A A A

where A = { , , T, F } as can be verified from the truth

table:

 F T

 T

 F T

F F F T

T T T T T

input 1

in
p
u
t

2

14

Lee 06: 27

Recall: Fixed Point Theorem 1

Let (A,) be a CPO

Let f : A A be a monotonic function

Let C = { f n(), n N }

If C = f (C), then C is the least fixed point of f

If f is continuous, then C = f (C)

Intuition: The least fixed point of a continuous function is

obtained by applying the function first to the empty

sequence, then to the result, then to that result, etc.

Lee 06: 28

Recall: Fixed Point Theorem 2

Let f : A A be a monotonic function on CPO (A,).

Then f has a least fixed point.

Intuition: If a function is monotonic (but not continuous),

then it has a least fixed point, but the execution

procedure of starting with the empty sequence and

iterating may not converge to that fixed point.

This is obvious, since monotonic but not continuous

means it waits forever to produce output.

15

Lee 06: 29

Applying Fixed Point Theorem 1

At each tick of the clock

Start with signal value

Evaluate f ()

Evaluate f (f ())

Stop when a fixed point is reached

Unlike PN, a fixed point is always reached in a finite

number of steps (one, in this case).

type T

value in A = T { , }

Lee 06: 30

Causality Loops

What is the behavior in the following cases?

f is the identity function.

f is the logical NOT function.

f is the nonstrict delay function with initial value 0.

f is the nonstrict delay function with no initial value.

16

Lee 06: 31

Causality Loops

What is the behavior in the following cases?

f is the identity function:

f is the logical NOT function:

f is the nonstrict delay function with initial value 0: 0

f is the nonstrict delay function with no initial value:

Lee 06: 32

Generalizing to Multiple Signals

The Cartesian product of flat CPOs under pointwise

ordering is also a CPO.

All chains are still finite.

Can now apply to any composition, as done with PN.

(,)

…

product CPO assuming T = {0, 1}.

(,) (,) (1,) (0,) (, 0)

(,) (, 0)

(, 1)

(, 1) (0,) (1,) …

17

Lee 06: 33

Compositional Reasoning

So far, with both PN and SR, we deal with composite

systems by reducing them to a monotonic function of all

the signals.

An alternative approach is to convert an arbitrary

composition to a continuous function.

Lee 06: 34

Example to Use for Compositional Reasoning

Consider an actor:

Assume a A, b B, c C, all CPOs.

Assume that the actor function f : A B C is continuous

Consider the following composition:

We would like to consider this a function from a to c.

18

Lee 06: 35

First Option: Currying

(Named after Haskell Curry)

Given a function f : A B C , we can alternatively think

of this in stages as f1 : A [B C] , where [B C] is

the set of all functions from B to C.

For the following example, for each given value of a we

get a new function f1 (a) for which we can find the least

fixed point. That least fixed point is the value of c.

Lee 06: 36

Example: Non-Strict OR

Suppose f is a non-strict logical OR function. Then:

If a = true, then the resulting function f1 (a) always

returns true, for all values of the input b.

In this case, the least fixed point yields c = true.

If a = false, then the resulting function f1 (a) is the

identity function.

In this case, the least fixed point yields c = .

19

Lee 06: 37

Second Option: Lifting

(Named after Heavy Lifting)

Given a function f : A B C , we are looking for a

function g : A C such that

c = g(a)

In the model we have b = c and c = f (a, b) so

g(a) = f (a, g(a))

This looks like a fixed point problem, but the “unknown”

on both sides is g, a function not a value. If we can find

the function g that satisfies this equation, then we can

use it always to calculate c given a.

Lee 06: 38

Posets of Functions

Suppose (A,) and (C,) are CPOs.

Consider functions f, g [A C].

Define the pointwise order on these functions to be

f g a A, f (a) g(a)

Let X [A C] be the set of all continuous total

functions from A to C.

Theorem: (X ,) is a CPO under the pointwise order.

Proof: See handout.

20

Lee 06: 39

Least Function in the CPO of Functions

Let X [A C] be the set of all continuous total

functions from A to C. Since X is a CPO, it must have a

bottom. The bottom is a function X: A C where for all

a A,

X (a) = C C

Lee 06: 40

Consequence of this

Theorem

Given a continuous function f : A B C , the function

g : A C such that

c = g(a)

is the least fixed point of a continuous function

F : X X

where X [A C] is the set of all continuous total

functions from A to C.

We need to now determine the continuous function F .

21

Lee 06: 41

Consequence of this

Theorem (Continued)

We need to find a function that g satisfies:

g(a) = f (a, g(a))

Let X [A C] be the set of all continuous total
functions from A to C and let F be a continuous function
F : X X .

Then g X is the least function such that F (g) = g where
for all a A ,

(F (g))(a) = f (a, g(a))

The theorem, with fixed point theorem 1, tells us that F
has a least fixed point, and tells us how to find it.

Lee 06: 42

Example: Non-Strict OR

Suppose f is a non-strict logical OR function. Then:

The least fixed point of this is the function g given by:

To find this, start with F (), then find F (F ()), etc.,

until you get a fixed point (which happens immediately).

(F(g))(a) =

true if a = true

if a = and g(a) = false

g(a) otherwise

g(a) =
true if a = true

otherwise

22

Lee 06: 43

Showing that F is Continuous

Need to show that given a chain of continuous total

functions C = { g1, g2 … } that:

For all a A :

because each gi is

continuous

because f is continuous

QED

Lee 06: 44

Summary

In SR, fixed point semantics is simpler than in PN

because the CPO has only finite chains.

The fancier techniques of Currying and Lifting can be

applied equal well to PN, but we introduce them here

because the simpler CPO makes them easier to

understand.

The fixed point semantics of SR talks only about the

behavior at a tick of the clock. The behavior across

ticks of the clock will require a clock calculus.

