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Week 7: Concurrent State Machines 
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A collection of states: 
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An initial state: 
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A collection of transitions: 
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Transitions have labels: 

There are many variants of state machines, each giving different labels and semantics 

associated with those labels. Since we are interested in concurrent composition of state 

machines, we will give our state machines explicit inputs and outputs, and the labels will refer to 

these (reading and writing them). 
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Guards: Predicates on transitions 

This state machine is nondeterminate because there are two simultaneously enabled transitions 

leaving state B. Ptolemy II by default rejects such state machines. 
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Nondeterministic State Machines 

Transitions can be marked nondeterministic and the model executes. This state machine will 

remain in state B for a random number of ticks then go to C and stay there. 
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Final states: 

This model stops executing when it reaches state C. 
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Extended State Machines can operate on 

variables: 

This model produces a random number and then stops. 

The set actions perform the operations on the local variable count. 

If the selection among transitions has fixed probability, then the random number generated 

will have a geometric distribution.  

If the variables include 

unbounded datatypes 

(integers, arrays), then 

the model become 

Turing complete. 
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I/O Automata 

This model has an input port named “input” and an output port named “output”. Given an 

input with any (non-absent) value, it starts counting. It counts a random number of ticks 

according to a geometric distribution, and then produces an output. 
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Using this in an SR model 

This model  

produces one  

value after a  

random amount 

of time (according to a 

geometric distribution), 

and then none after that. 
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Hierarchical State Machines & Preemption 

Here, the count 

can be preempted 

by a reset signal. 

Here, the self 

transition is a reset 

transition, which 

means that when 

entering the 

destination state, it 

gets reset to its 

initial state. 
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Discussion 

Hierarchy is only syntactic sugar. 

How much syntax does it affect? 
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Modal Models 

Whereas 
Statecharts 
lumps together 
the state machine 
semantics and 
the concurrency 
model, Ptolemy II 
separates these. 

A state may 
refine to another 
state machine or 
to a concurrent 
model. 
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Concurrent State Machines in Ptolemy II 

The hierarchy can be further 
extended, where the concurrent 
model can include components that 
refine to state machines or other 
concurrent models. 

This gives us concurrent state 
machines. 

Class definition 

Instance 
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Background on Concurrent State Machines 

Statecharts [Harel 87] 

I/O Automata [Lynch 87] 

Esterel [Berry 92] 

SyncCharts [André 96] 

*Charts [Girault, Lee, Lee 99] 

Safe State Machine (SSM) [André 03] 

SCADE [Berry 03] 
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Simple Traffic Light Example  in Statecharts 

Case study 

• Pred: pedestrian red signal 

• Pgrn(0): turn pedestrian green off 

• Cgrn: car green 

• Sec: one second time 

• 2 Sec: two seconds time 

• Pgo/Pstop: pedestrian go/stop 
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Traffic Light Example 

in Ptolemy II 

Whereas 
Statecharts 
lumps together 
the state machine 
semantics and 
the concurrency 
model, Ptolemy II 
separates these. 

Here we have 
chosen the SR 
Director, which 
realizes a true 
synchronous 
fixed point 
semantics. 
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Concurrent State Machines in Ptolemy II 
In Ptolemy II, we have 
implemented an SR Director (for 
synchronous concurrent models) 
and an FSM Director (for 
sequential decision logic). Rather 
than combining them into one 
language (like Statecharts), 
Ptolemy II supports  
hierarchical 
combinations  
of MoCs. 

Class definition 

Instance 
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Syntax Comparisons between  

Statecharts and Ptolemy II 

 The Ptolemy II model and the Statecharts model differ 

in syntax. Some issues to consider when evaluating a 

syntax: 

Rendering on a page 

Showing dependencies in concurrent models 

Scalability to complex models 

Reusability (e.g. with other concurrency models) 

Special notations (e.g. “3 Sec”). 
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Simple Traffic Light Example  in  

Statecharts, from Reinhard 

von Hanxleden, Kiel University 

Case study for Ptolemy II Design 

In StateCharts, the communication 

between concurrent components is 

not represented graphically, but is 

rather represented by name 

matching. Can you tell whether there 

is feedback? 
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Syntax comparisons 

Now can you tell whether there is feedback? 
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Semantics Comparisons 

 The Ptolemy II model and the Statecharts model have 

similar semantics, but combined in different ways. 

Some issues to consider: 

Separation of concurrency from state machines 

Nesting of distinct models of computation 

Expanding beyond synchronous + FSM to model the 

(stochastic) environment and deployment to hardware. 

Styles of synchronous semantics (Ptolemy II realizes a 

true fixed-point constructive semantics). 
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Conclusions 

State machines, extended state machines, and I/O automata 

provide expressive sequential decision logic. 

Variants support hierarchy (in different ways), nondeterminism, 

etc. 

Statecharts is a composition of a single-clock synchronous-

reactive concurrent MoC with finite state machines. 

Ptolemy II separates these two semantic models using the idea 

of modal models. 


