
1

Concurrent Models of

Computation

Edward A. Lee
Robert S. Pepper Distinguished Professor, UC Berkeley

EECS 290n – Advanced Topics in Systems Theory

Concurrent Models of Computation

Spring 2009

Copyright © 2009, Edward A. Lee, All rights reserved

Week 7: Concurrent State Machines

Lee 07: 2

A collection of states:

2

Lee 07: 3

An initial state:

Lee 07: 4

A collection of transitions:

3

Lee 07: 5

Transitions have labels:

There are many variants of state machines, each giving different labels and semantics

associated with those labels. Since we are interested in concurrent composition of state

machines, we will give our state machines explicit inputs and outputs, and the labels will refer to

these (reading and writing them).

Lee 07: 6

Guards: Predicates on transitions

This state machine is nondeterminate because there are two simultaneously enabled transitions

leaving state B. Ptolemy II by default rejects such state machines.

4

Lee 07: 7

Nondeterministic State Machines

Transitions can be marked nondeterministic and the model executes. This state machine will

remain in state B for a random number of ticks then go to C and stay there.

Lee 07: 8

Final states:

This model stops executing when it reaches state C.

5

Lee 07: 9

Extended State Machines can operate on

variables:

This model produces a random number and then stops.

The set actions perform the operations on the local variable count.

If the selection among transitions has fixed probability, then the random number generated

will have a geometric distribution.

If the variables include

unbounded datatypes

(integers, arrays), then

the model become

Turing complete.

Lee 07: 10

I/O Automata

This model has an input port named “input” and an output port named “output”. Given an

input with any (non-absent) value, it starts counting. It counts a random number of ticks

according to a geometric distribution, and then produces an output.

6

Lee 07: 11

Using this in an SR model

This model

produces one

value after a

random amount

of time (according to a

geometric distribution),

and then none after that.

Lee 07: 12

Hierarchical State Machines & Preemption

Here, the count

can be preempted

by a reset signal.

Here, the self

transition is a reset

transition, which

means that when

entering the

destination state, it

gets reset to its

initial state.

7

Lee 07: 13

Discussion

Hierarchy is only syntactic sugar.

How much syntax does it affect?

Lee 07: 14

Modal Models

Whereas
Statecharts
lumps together
the state machine
semantics and
the concurrency
model, Ptolemy II
separates these.

A state may
refine to another
state machine or
to a concurrent
model.

8

Lee 07: 15

Concurrent State Machines in Ptolemy II

The hierarchy can be further
extended, where the concurrent
model can include components that
refine to state machines or other
concurrent models.

This gives us concurrent state
machines.

Class definition

Instance

Lee 07: 16

Background on Concurrent State Machines

Statecharts [Harel 87]

I/O Automata [Lynch 87]

Esterel [Berry 92]

SyncCharts [André 96]

*Charts [Girault, Lee, Lee 99]

Safe State Machine (SSM) [André 03]

SCADE [Berry 03]

9

Lee 07: 17

Simple Traffic Light Example in Statecharts

Case study

• Pred: pedestrian red signal

• Pgrn(0): turn pedestrian green off

• Cgrn: car green

• Sec: one second time

• 2 Sec: two seconds time

• Pgo/Pstop: pedestrian go/stop

Lee 07: 18

Traffic Light Example

in Ptolemy II

Whereas
Statecharts
lumps together
the state machine
semantics and
the concurrency
model, Ptolemy II
separates these.

Here we have
chosen the SR
Director, which
realizes a true
synchronous
fixed point
semantics.

10

Lee 07: 19

Concurrent State Machines in Ptolemy II
In Ptolemy II, we have
implemented an SR Director (for
synchronous concurrent models)
and an FSM Director (for
sequential decision logic). Rather
than combining them into one
language (like Statecharts),
Ptolemy II supports
hierarchical
combinations
of MoCs.

Class definition

Instance

Lee 07: 20

Syntax Comparisons between

Statecharts and Ptolemy II

 The Ptolemy II model and the Statecharts model differ

in syntax. Some issues to consider when evaluating a

syntax:

Rendering on a page

Showing dependencies in concurrent models

Scalability to complex models

Reusability (e.g. with other concurrency models)

Special notations (e.g. “3 Sec”).

11

Lee 07: 21

Simple Traffic Light Example in

Statecharts, from Reinhard

von Hanxleden, Kiel University

Case study for Ptolemy II Design

In StateCharts, the communication

between concurrent components is

not represented graphically, but is

rather represented by name

matching. Can you tell whether there

is feedback?

Lee 07: 22

Syntax comparisons

Now can you tell whether there is feedback?

12

Lee 07: 23

Semantics Comparisons

 The Ptolemy II model and the Statecharts model have

similar semantics, but combined in different ways.

Some issues to consider:

Separation of concurrency from state machines

Nesting of distinct models of computation

Expanding beyond synchronous + FSM to model the

(stochastic) environment and deployment to hardware.

Styles of synchronous semantics (Ptolemy II realizes a

true fixed-point constructive semantics).

Lee 07: 24

Conclusions

State machines, extended state machines, and I/O automata

provide expressive sequential decision logic.

Variants support hierarchy (in different ways), nondeterminism,

etc.

Statecharts is a composition of a single-clock synchronous-

reactive concurrent MoC with finite state machines.

Ptolemy II separates these two semantic models using the idea

of modal models.

