Concurrent Models of
Computation

Edward A. Lee

: __ 13 Robert S. Pepper Distinguished Professor, UC Berkeley
';, :- 4 EECS 290n — Advanced Topics in Systems Theory
€F ‘ l Concurrent Models of Computation
1 .
SR &) Spring 2009
=
ol Copyright © 2009, Edward A. Lee, All rights reserved
e
E 'g__‘. o .i.:%
= l'f = Week 7: Concurrent State Machines
e e E
FR &
= S

A collection of states:

Lee 07: 2

ol

An initial state:

Lee 07: 3

A collection of transitions:

@/*@

Lee 07: 4

°?

Transitions have labels:

guard quard
output action output action
set action set action

(8) ©

guard
output action
set action

There are many variants of state machines, each giving different labels and semantics
associated with those labels. Since we are interested in concurrent composition of state
machines, we will give our state machines explicit inputs and outputs, and the labels will refer to
these (reading and writing them). Lee 07: 5

Guards: Predicates on transitions

guard: true guard: true

guard: true

Exception

e Multiple enabled transitions found but not all of them are nondeterministic. Transition relation2 is deterministic.
in .4_Nondeterministic._Controller.B

(Display Stack Trace 3 € Dismiss

This state machine is nondeterminate because there are two simultaneously enabled transitions

leaving state B. Ptolemy Il by default rejects such state machines.
Lee 07: 6

o3

Nondeterministic State Machines

guard: true guard: true

guard: true

Transitions can be marked nondeterministic and the model executes. This state machine will
remain in state B for a random number of ticks then go to C and stay there.

Lee 07: 7
Final states:
guard: true guard: true
(&)
guard: true
This model stops executing when it reaches state C.
Lee 07: 8

[Vil

Extended State Machines can operate on
variables:

e count: 0
guard: true
set: count = 0 guard: true
guard: true If the variables include

set: count = count + 1

unbounded datatypes
(integers, arrays), then
the model become
Turing complete.

This model produces a random number and then stops.
The set actions perform the operations on the local variable count.
If the selection among transitions has fixed probability, then the random number generated

will have a geometric distribution.

Lee 07: 9

/O Automata

e count: 0

guard: input_isPresent guard: true
set: count = 0 outpul: output = count

-

guard: true
set. count = count + 1

This model has an input port named “input” and an output port named “output”. Given an
input with any (non-absent) value, it starts counting. It counts a random number of ticks
according to a geometric distribution, and then produces an output.

Lee 07: 10

o5

Using this in an SR model -

SR Director TickDisplay
I =

ModalModel mickDispIay

o title:

AddSubtract Display

. \

Tick 0 :

fip— I D ’—"\E}D\ Tick 1:

Tick 2 :
Tick 3:2

Tick 4 :

Tick 5 :

. : Tick 6 :

e count: 2 This model rick 7 -

guqrd, input_isPresent guard: true prOduceS one ;ICI; g

set: count = 0 output: output = count value after a Ic :

input /_\ output random amount

» (8) L of time (according to a
geometric distribution),

guard: true
set: count = count + 1

and then none after that.

Lee 07: 11
Hierarchical State Machines & Preemption
e count: 3
Here, the Count input guard: reset_isPresent
can be preempted »>
by a reset signal. = -

Here, the self

transltlon IS a reset guard: input_isPresent guard: true

L. . set: count = 0 output: output = count
transition, which e oD
means that when » (®) © b
entering the -
destination state, it i AP
gets reset to its
initial state.

Lee 07: 12

[15)

Discussion

Hierarchy is only syntactic sugar.

How much syntax does it affect?

Lee 07: 13

Modal Models

Ok_isPresent

Error_isPresent

SR Director The NormalC actor generates the control signals
for the car stoplights under normal operating conditions.
The NormalP actor reacts to these controls to generate
the control signals for the pedestrian lights.
Look inside each actor to see its implementation.

PedestrianLightNormal pred

CarLightN

T e

I Pgm

The CarLightNormal and PedestrianLightNormal actors
here are instances of actor-oriented classes defined

in other files. If you open the actors, you will open

the other files. If you change the design, then all

other instances of this class will see the change.

In particular, the WirelessDeployment example uses
the same instances.

Whereas
Statecharts
lumps together
the state machine
semantics and
the concurrency
model, Ptolemy I
separates these.

A state may
refine to another
state machine or
to a concurrent
model.

Lee 07: 14

o7/

Concurrent State Machines in Ptolemy Il

The hierarchy can be further Instance _ PedestrianLightNormal
CarLightNormal i Pred
extended, where the concurrent <o >E““-_-
model can include components that @ <« :
refine to state machines or other <o Pgm
concurrent models. Sec
. . Cred
This gives us concurrent st =
machines. » Cyel
Ok
‘ Cgm
Class d‘eflnmon e Pstop,_isPressnt
e ecount! pred=1; Pgm=0 Pred=1; Pgm=0

true
Cred=1; Cyel=0; Cgm=0; count = 0

Sec_isPresent Sec_i®Premnt
Pgo=1; Cred=1; Cyel=0: Cgm=0; count = 0

Sec_isPresent &8 count == 1
0

Pgo_isPresent
Pred=0; Pgm=1

This model turns the pedestrian lights
green when the car control lights go red.

Cyel=1; Cgm=t

| Lee 07: 15

Background on Concurrent State Machines

Statecharts [Harel 87]

I/O Automata [Lynch 87]
Esterel [Berry 92]
SyncCharts [André 96]
*Charts [Girault, Lee, Lee 99]

Safe State Machine (SSM) [André 03]

SCADE [Berry 03]

Lee 07: 16

o3

Simple Traffic Light Example in Statecharts

Case study

* Pred: pedestrian red signal

e Sec: one

* Pgrn(0): turn pedestrian green off
* Cgrn: car green

second time

* 2 Sec: two seconds time
» Pgo/Pstop: pedestrian go/stop

Module TRAFFIC LIGHT

Y

nentlList52state

{ Pred(1), Pgrn(0)

Pgo / Pred(0), Pgr(1)

bec/ Pgo

2 Sec / Cyel(1), Cgm(0)

{ Cred(1), Cyel(0), Cgm(0)

Sec/ Cyel(1), Pstop

'Sec / Cred(0), Cyel(0), Cgm(1)

Paralle]lStatementL:sn 10state

Ok Pred(0), Parn(0)

Cred(0), Cyel(1). Cgm(0)

Traffic Light Example
in Ptolemy Il

Ok_isPresent

Error_isPresent

SR Director The NormalC actor generates the control signals
the control signals for the pedestrian lights.
Look inside each actor to see its implementation.
PedestrianLightNormal
CarLightNol

< g I L[

’I-

<« m

for the car stoplights under normal operating conditions.
The NormalP actor reacts to these controls to generate

' Cred
The CarLightNormal and PedestrianLightNormal actors
here are instances of actor-oriented classes defined

in other files. If you open the actors, you will open
the other files. If you change the design, then all
Cgm other instances of this class will see the change.

In particular, the WirelessDeployment example uses

Cyel

the same instances.

Pred

Pgm

Whereas
Statecharts
lumps together
the state machine
semantics and
the concurrency
model, Ptolemy I
separates these.

Here we have
chosen the SR
Director, which
realizes a true
synchronous
fixed point
semantics.

Lee 07: 18

o9

Concurrent State Machines in Ptolemy Il

In Ptolemy Il, we have
implemented an SR Director (for
synchronous concurrent models)
and an FSM Director (for
sequential decision logic). Rather
than combining them into one
language (like Statecharts),
Ptolemy Il supports

hierarchical

combinations

of MoCs.

Class definition

Sec_isPresent Sec_i®Premnt

Pgo=1; Cred=1; Cyel=0: Cgm=0; count = 0

JSec_isPresant 88 cou
count = count + 1

Cyel=1; Cgm=t

Cred=0; Cyel=0; Com=1; cou

Sec_isPresent 88 count == 1
0

Instance PedestrianLightNormal
CarLightNormal i Pred
b e
<< f Pgrn
Sec
>
Cred
Error
’ Cyel
Ok
‘ Cgmn
true Pstop_isPresent
@ count: Pred=1; Pgm=0 Pred=1; Pgm=0
Sec_iPresent 88 count == 2
Pgo_isPresent
Pred=0; Pgm=1

This model turns the pedestrian lights
green when the car control lights go red.

Lee 07: 19

Syntax Comparisons between
Statecharts and Ptolemy I

The Ptolemy Il model and the Statecharts model differ
In syntax. Some issues to consider when evaluating a

syntax:

Rendering on a page

Showing dependencies in concurrent models
Scalability to complex models

Reusability (e.g. with other concurrency models)
Special notations (e.g. “3 Sec”).

Lee 07: 20

el0

In StateCharts, the communication
between concurrent components is

Simple Traffic Light Example in

Statecharts, from REinh?rd . not represented graphically, but is
von Hanxleden, Kiel University rather represented by name

. matching. Can you tell whether there
Case study for Ptolemy Il Design is feedback?

Module TRAFFIC LIGHT

ParallelStatementList52state
T

Paralle]lSlatemenlLusM 10state

{ Cred(1), Cyel(0), Cgm(0)

(Pred(1). Pgm(0) % Sec/ Cyel(1), Pstop Cred(0), Cyel(1). Cgm(0)

Ok Pred(0), Pan(0)

), Pgrn(1) /Sec / Cred(0), Cyel(0), Cami1)

B

2 Sec/ Cyel(1), Cgmi0)

Syntax comparisons

Now can you tell whether there is feedback?

PedestrianLightNormal

CarlightNormal Pred
Q b n I—-

= ooy
= Bt

M

Lee 07: 22

oll

Semantics Comparisons

The Ptolemy Il model and the Statecharts model have
similar semantics, but combined in different ways.
Some issues to consider:

Separation of concurrency from state machines

Nesting of distinct models of computation

Expanding beyond synchronous + FSM to model the
(stochastic) environment and deployment to hardware.

Styles of synchronous semantics (Ptolemy Il realizes a
true fixed-point constructive semantics).

Lee 07: 23

Conclusions

o State machines, extended state machines, and I/O automata
provide expressive sequential decision logic.

o Variants support hierarchy (in different ways), nondeterminism,
etc.

o Statecharts is a composition of a single-clock synchronous-
reactive concurrent MoC with finite state machines.

o Ptolemy Il separates these two semantic models using the idea
of modal models.

Lee 07: 24

el?

