
1

Concurrent Models of

Computation

Edward A. Lee
Robert S. Pepper Distinguished Professor, UC Berkeley

EECS 290n – Advanced Topics in Systems Theory

Concurrent Models of Computation

Spring 2009

Copyright © 2009, Edward A. Lee, All rights reserved

Week 9: Scheduling Dataflow Models

Lee 09: 2

Execution Policy for a Dataflow Actor

Suppose s S n is a concatenation of firing rules,

s = u1. u2. u3 …

Then the output of the actor is the concatenation of the

results of a sequence of applications of the firing function:

F0 (s) = n

F1 (s) = ((F0))(s) = f (u1)

F2 (s) = ((F1))(s) = f (u1). f (u2)

…

The problem we address now is scheduling: how to

choose which actor to fire when there are choices.

2

Lee 09: 3

Apply the Same Policy as for PN

Define a correct execution to be any execution for
which after any finite time every signal is a prefix of
the LUB signal given by the semantics.

Define a useful execution to be a correct execution
that satisfies the following criteria:

1. For every non-terminating PN model, after any finite
time, a useful execution will extend at least one signal
in finite (additional) time.

2. If a correct execution satisfying criterion (1) exists that
executes with bounded buffers, then a useful
execution will execute with bounded buffers.

Lee 09: 4

Policies that Fail

Fair scheduling

Demand driven

Data driven

3

Lee 09: 5

Adapting Parks’ Strategy to Dataflow

Require that the scheduler “know” how many tokens a

firing will produce on each output port before that firing

is invoked.

Start with an arbitrary bound on the capacity of all

buffers.

Execute enabled actors that will not overflow the

buffers on their outputs.

If deadlock occurs and at least one actor is blocked on

a enabled, increase the capacity of at least one buffer

to allow an actor to fire.

Continue executing, repeatedly checking for deadlock.

Lee 09: 6

But Often the Firing Sequence can be Statically

Determined! A History of Attempts:
Computation graphs [Karp & Miller - 1966]

Process networks [Kahn - 1974]

Static dataflow [Dennis - 1974]
Dynamic dataflow [Arvind, 1981]

K-bounded loops [Culler, 1986]

Synchronous dataflow [Lee & Messerschmitt, 1986]
Structured dataflow [Kodosky, 1986]

PGM: Processing Graph Method [Kaplan, 1987]
Synchronous languages [Lustre, Signal, 1980’s]

Well-behaved dataflow [Gao, 1992]

Boolean dataflow [Buck and Lee, 1993]
Multidimensional SDF [Lee, 1993]

Cyclo-static dataflow [Lauwereins, 1994]
Integer dataflow [Buck, 1994]

Bounded dynamic dataflow [Lee and Parks, 1995]

Heterochronous dataflow [Girault, Lee, & Lee, 1997]
Parameterized dataflow [Bhattacharya and Bhattacharyya 2001]

Structured dataflow (again) [Thies et al. 2002]
…

now

4

Lee 09: 7

Synchronous Dataflow – SDF
(not to be confused with SR models!)

If the number of tokens consumed and produced by the

firing of an actor is constant, then static analysis can tell

us whether we can schedule the firings to get a useful

execution, and if so, then a finite representation of a

schedule for such an execution can be created.

Lee 09: 8

Balance Equations

Let qA, qB be the number of firings of actors A and B.

Let pC, cC be the number of token produced and
consumed on a connection C.

Then the system is in balance if for all connections C

qA pC = qB cC

where A produces tokens on C and B consumes them.

5

Lee 09: 9

Relating to Infinite Firings

Of course, if qA = qB = , then the balance equations are

trivially satisfied.

By keeping a system in balance as an infinite execution

proceeds, we can keep the buffers bounded.

Whether we can have a bounded infinite execution turns

out to be decidable for SDF models.

Lee 09: 10

Example

Consider this example, where actors and arcs are

numbered:

The balance equations imply that actor 3 must fire twice

as often as the other two actors.

6

Lee 09: 11

Compactly Representing the Balance Equations

Actor 1

Connector 1
balance equations

firing vector

production/consumption matrix

Lee 09: 12

Example

A solution to balance equations:

This tells us that actor 3 must fire twice as often as actors 1 and 2.

7

Lee 09: 13

Example

But there are many solutions to the balance equations:

We will see that for “well-behaved” models, there is a
unique least positive solution.

Lee 09: 14

Disconnected Models

For a disconnected model with two

connected components, solutions to the

balance equations have the form:

Solutions are linear combinations of the solutions for

each connected component:

8

Lee 09: 15

Disconnected Models are Just Separate

Connected Models

Define a connected model to be one where there is a

path from any actor to any other actor, and where every

connection along the path has production and

consumption numbers greater than zero.

It is sufficient to consider only connected models, since

disconnected models are disjoint unions of connected

models. A schedule for a disconnected model is an

arbitrary interleaving of schedules for the connected

components.

Lee 09: 16

Least Positive Solution to the Balance Equations

Note that if pC, cC , the number of tokens produced and
consumed on a connection C, are non-negative integers,
then the balance equation,

qA pC = qB cC

implies:

 qA is rational if an only if qB is rational.

 qA is positive if an only if qB is positive.

Consequence: Within any connected component, if there
is any solution to the balance equations, then there is a
unique least positive solution.

9

Lee 09: 17

Rank of a Matrix

The rank of a matrix is the number of linearly
independent rows or columns. The equation

is forming a linear combination of the columns of G. Such
a linear combination can only yield the zero vector if the
columns are linearly dependent (this is what is means to
be linearly dependent).

If has a rows and b columns, the rank cannot exceed
min(a, b). If the columns or rows of are re-ordered, the
resulting matrix has the same rank as .

Lee 09: 18

Rank of the Production/Consumption Matrix

Let a be the number of actors in a connected graph. Then

the rank of the production/consumption matrix must be

a or a - 1.

 has a columns and at least a - 1 rows. If it has only a - 1

columns, then it cannot have rank a.

If the model is a spanning tree (meaning that there are

barely enough connections to make it connected) then

has a rows and a - 1 columns. Its rank is a - 1. (Prove by

induction).

10

Lee 09: 19

Consistent Models

Let a be the number of actors in a connected model. The

model is consistent if has rank a - 1.

If the rank is a, then the balance equations have only a

trivial solution (zero firings).

When has rank a - 1, then the balance equations

always have a non-trivial solution.

Lee 09: 20

Example of an Inconsistent Model:

No Non-Trivial Solution to the Balance Equations

This production/consumption matrix has rank 3, so there

are no nontrivial solutions to the balance equations.

11

Lee 09: 21

Dynamics of Execution

Consider a model with 3 actors. Let the schedule be a

sequence v : N0 B3 where B = {0, 1} is the binary set.

That is,

to indicate firing of actor 1, 2, or 3.

Lee 09: 22

Buffer Sizes and Periodic Admissible Sequential

Schedules (PASS)

Assume there are m connections and let b : N0 N m

indicate the buffer sizes prior to the each firing. That is,

b(0) gives the initial number of tokens in each buffer, b(1)

gives the number after the first firing, etc. Then

A periodic admissible sequential schedule (PASS) of

length K is a sequence

v(0) … v(K – 1)

such that for each n {0, … K – 1 }, and

12

Lee 09: 23

Periodic Admissible Sequential Schedules

Let

and note that we require that .

A PASS will bring the model back to its initial state, and

hence it can be repeated indefinitely with bounded

memory requires.

A necessary condition for the existence of a PASS is that

the balance equations have a non-zero solution. Hence,

a PASS can only exist for a consistent model.

Lee 09: 24

SDF Theorem 1

We have proved:

For a connected SDF model with a actors, a necessary

condition for the existence of a PASS is that the model be

consistent.

13

Lee 09: 25

SDF Theorem 2

We have also proved:

For a consistent connected SDF model with production/

consumption matrix , we can find an integer vector q

where every element is greater than zero such that

Furthermore, there is a unique least such vector q.

Lee 09: 26

SDF Sequential Scheduling Algorithms

Given a consistent connected SDF model with

production/consumption matrix , find the least positive

integer vector q such that .

Let K = 1T q, where 1T is a row vector filled with ones.

Then for each of n {0, … K – 1}, choose a firing vector

The number

of rows in

v(n) is a.

14

Lee 09: 27

SDF Sequential Scheduling Algorithms

(Continued)

.. such that (each element is

non-negative), where b(0) is the initial state of the buffers,
and

The resulting schedule (v(0), v(1), …, v(K - 1)) forms one
cycle of an infinite periodic schedule.

Such an algorithm is called an SDF Sequential
Scheduling Algorithm (SSSA).

Lee 09: 28

SDF Theorem 3

If an SDF model has a correct infinite sequential
execution that executes in bounded memory, then any
SSSA will find a schedule that provides such an
execution.

Proof outline: Must show that if an SDF has a correct,
infinite, bounded execution, then it has a PASS of length
K. See Lee & Messerschmit [1987]. Then must show that
the schedule yielded by an SSSA is correct, infinite, and
bounded (trivial).

Note that every SSSA terminates.

15

Lee 09: 29

Creating a Scheduler

Given a connected SDF model with actors A1, … , Aa :

Step 1: Solve for a rational q. To do this, first let q1 = 1.

Then for each actor Ai connected to A1, let qi = q1 m/n,

where m is the number of tokens A1 produces or

consumes on the connection to Ai, and n is the number of

tokens Ai produces or consumes on the connection to A1.

Repeat this for each actor Aj connected to Ai for which we

have not already assigned a value to qj. When all actors

have been assigned a value qj, then we have a found a

rational vector q such that .

Lee 09: 30

Creating a Scheduler (continued)

Step 2: Solve for the least integer q. Use Euclid’s

algorithm to find the least common multiple of the

denominators for the elements of the rational vector q.

Then multiply through by that least common multiple to

obtain the least positive integer vector q such that

Let K = 1T q.

16

Lee 09: 31

Creating a Scheduler (continued)

Step 3: For each n {0, … , K – 1 }:

1. Given buffer sizes b(n) , determine which actors have

firing rules that are satisfied (every source actor will

have such a firing rule).

2. Select one of these actors that has not already been

fired the number of times given by q. Let v(n) be a

vector with all zeros except in the position of the

chosen actor, where its value is 1.

3. Update the buffer sizes:

Lee 09: 32

A Key Question: If More Than One Actor is

Fireable in Step 2, How do I Select One?

Optimization criteria that might be applied:

Minimize buffer sizes.

Minimize the number of actor activations.

Minimize the size of the representation

of the schedule (code size).

 See S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee,

Software Synthesis from Dataflow Graphs, Kluwer

Academic Press, 1996.

17

Lee 09: 33

Minimum Buffer Schedule

A B A B C A B C A B A B C A B C D E A F F F F F B A B C A B C A B A B C D E

A F F F F F B C A B A B C A B C A B A B C D E A F F F F F B C A B A B C A B C

D E A F F F F F B A B C A B C A B A B C A B C D E A F F F F F B A B C A B C A

B A B C D E A F F F F F B C A B A B C A B C A B A B C D E A F F F F F E B C A

F F F F F B A B C A B C D E A F F F F F B A B C A B C A B A B C A B C D E A F

F F F F B A B C A B C A B A B C D E A F F F F F B C A B A B C A B C A B A B C

D E A F F F F F B C A B A B C A B C D E A F F F F F B A B C A B C A B A B C A

B C D E A F F F F F B A B C A B C A B A B C D E A F F F F F E B C A F F F F F B

A B C A B C A B A B C D E A F F F F F B C A B A B C A B C D E A F F F F F B A

B C A B C A B A B C A B C D E A F F F F F B A B C A B C A B A B C D E A F F F

F F B C A B A B C A B C A B A B C D E A F F F F F B C A B A B C A B C D E A F

F F F F B A B C A B C A B A B C A B C D E A F F F F F E B A F F F F F B C A B C

A B A B C D E A F F F F F B C A B A B C A B C A B A B C D E A F F F F F B C A

B A B C A B C D E A F F F F F B A B C A B C A B A B C A B C D E A F F F F F B

A B C A B C A B A B C D E A F F F F F B C A B A B C A B C A B A B C D E A F

F F F F B C A B A B C A B C D E F F F F F E F F F F F

Source: Shuvra Bhattacharyya

Lee 09: 34

Code Generation (Circa 1992)

Block specification for DSP code generation in Ptolemy Classic:

macros defined by the
code generator

alternative code
blocks chosen based
on parameter values

18

Lee 09: 35

Scheduling Tradeoffs
(Bhattacharyya, Parks, Pino)

Scheduling strategy Code Data

Minimum buffer schedule, no looping 13735 32

Minimum buffer schedule, with looping 9400 32

Worst minimum code size schedule 170 1021

Best minimum code size schedule 170 264

Source: Shuvra Bhattacharyya

Lee 09: 36

Parallel Scheduling

It is easy to create an SSSA that as it produces a PASS,

it constructs an acyclic precedence graph (APG) that

represents the dependencies that an actor firing has on

prior actor firings.

Given such an APG, the parallel scheduling problem is a

standard one where there are many variants of the

optimization criteria and scheduling heuristics.

See many papers on the subject on the Ptolemy website.

19

Lee 09: 37

Taking Stock

SDF models have actors that produce and consume a fixed

(constant) number of tokens on each arc.

A periodic admissible sequential schedule (PASS) is a finite

sequence of firings that brings buffers back to their initial state

and keeps buffer sizes non-negative.

A necessary condition for the existence of a PASS is that the
balance equations have a non-trivial solution.

A class of algorithms has been identified that will always find a

PASS if one exists.

Lee 09: 38

Synchronous Dataflow – SDF

If the number of tokens consumed and produced by the

firing of an actor is constant, then static analysis can tell

us whether we can schedule the firings to get a useful

execution, and if so, then a finite representation of a

schedule for such an execution can be created.

20

Lee 09: 39

Balance Equations

Let qA, qB be the number of firings of actors A and B.

Let pC, cC be the number of token produced and
consumed on a connection C.

Then the system is in balance if for all connections C

qA pC = qB cC

where A produces tokens on C and B consumes them.

Lee 09: 40

Extensions of SDF that Improve Expressiveness

Structured Dataflow [Kodosky 86, Thies et al. 02]

Boolean dataflow [Buck and Lee, 93]

Cyclostatic Dataflow [Lauwereins 94]

Multidimensional SDF [Lee & Murthy 96]

Heterochronous Dataflow [Girault, Lee, and Lee, 97]

Parameterized Dataflow [Bhattacharya et al. 00]

Teleport Messages [Thies et al. 05]

Many of these remain decidable

21

Lee 09: 41

Multidimensional SDF
(Lee, 1993)

Production and consumption

of N-dimensional arrays of

data:

Balance equations and

scheduling policies

generalize.

Much more data parallelism is

exposed.

(40, 48)

(8, 8)

Similar (but dynamic)
multidimensional streams have been
implemented in Lucid.

Lee 09: 42

More interesting Example

Two dimensional

FFT constructed

out of one-

dimensional

actors.

22

Lee 09: 43

MDSDF Structure Exposes

Fine-Grain Data Parallelism

However, such programs
are extremely hard to
write (and to read).

Lee 09: 44

Extensions of MDSDF

Extended to non-rectangular lattices and connections to
number theory:

P. K. Murthy, "Scheduling Techniques for Synchronous
and Multidimensional Synchronous Dataflow," Technical
Memorandum UCB/ERL M96/79, Ph.D. Thesis, EECS
Department, University of California, Berkeley, CA 94720,
December 1996.

Praveen K. Murthy and Edward A. Lee, "Multidimensional
Synchronous Dataflow ," IEEE Transactions on Signal
Processing, volume 50, no. 8, pp. 2064 -2079, July 2002.

23

Lee 09: 45

Extensions of SDF that Improve Expressiveness

Structured Dataflow [Kodosky 86, Thies et al. 02]

Boolean dataflow [Buck and Lee, 93]

Cyclostatic Dataflow [Lauwereins 94]

Multidimensional SDF [Lee & Murthy 96]

Heterochronous Dataflow [Girault, Lee, and Lee, 97]

Parameterized Dataflow [Bhattacharya et al. 00]

Teleport Messages [Thies et al. 05]

Many of these remain decidable

Lee 09: 46

Cyclostatic Dataflow (CSDF)
(Lauwereins et al., TU Leuven, 1994)

Actors cycle through a regular production/consumption pattern.

Balance equations become:

fire B {
 …
 consume M

 …
}

fire A {
 …
 produce
 …
}

channel

cyclic production pattern

24

Lee 09: 47

Extensions of SDF that Improve Expressiveness

Structured Dataflow [Kodosky 86, Thies et al. 02]

Boolean dataflow [Buck and Lee, 93]

Cyclostatic Dataflow [Lauwereins 94]

Multidimensional SDF [Lee & Murthy 96]

Heterochronous Dataflow [Girault, Lee, and Lee, 97]

Parameterized Dataflow [Bhattacharya et al. 00]

Teleport Messages [Thies et al. 05]

Many of these remain decidable

Lee 09: 48

Heterochronous Dataflow (HDF)
(Girault, Lee, & Lee, 1997)

An actor consists of a state machine and
refinements to the states that define behavior.

25

Lee 09: 49

Heterochronous Dataflow (HDF)
(Girault, Lee, and Lee, 1997)

An interconnection of actors.

An actor is either SDF or HDF.

If HDF, then the actor has:

a state machine

a refinement for each state

where the refinement is an SDF or HDF actor

Operational semantics:

with the state of each state machine fixed, graph is SDF

in the initial state, execute one complete SDF iteration

evaluate guards and allow state transitions

in the new state, execute one complete SDF iteration

HDF is decidable if state machines are finite

but complexity can be high

Related to “parameterized
dataflow” of Bhattacharya
and Bhattacharyya (2001).

Lee 09: 50

If-Then-Else Using Heterochronous Dataflow

Imperative
equivalent:

b = true;

while (true) {

 x = f1();

 if (b) {

 y = f3(x);

 } else {

 y = f4(x);

 }

 f6(y);

 b = f7();

}

Semantics of HDF:

-Execute SDF model for one complete iteration in current state

-Take state transitions to get a new SDF model.

26

Lee 09: 51

If-Then-Else Using Heterochronous Dataflow

Imperative
equivalent:

b = true;

while (true) {

 x = f1();

 if (b) {

 y = f3(x);

 } else {

 y = f4(x);

 }

 f6(y);

 b = f7();

}

Note that if these two refinements have the same production/consumption

parameters, then this is simply hierarchical SDF, where one static schedule

suffices.

Lee 09: 52

Hierarchical SDF Using Transition Refinements

Imperative
equivalent:

while (true) {

 x = f1();

 b = f7();

 if (b) {

 y = f3(x);

 } else {

 y = f4(x);

 }

 f6(y);

}

This only works under rather narrow constraints:

• Exactly one outgoing transition from any state is enabled.

• The transition refinements on all transitions have the same production/

consumption patterns.

• The state has no refinement.

27

Lee 09: 53

Application of Dynamic Dataflow: Resampling of

Streaming Media

This pattern requires the use of a semantically richer
dataflow model than SDF because the BooleanSwitch is
not an SDF actor.

This has a performance cost and reduces the static
analyzability of the model.

Lee 09: 54

Resampling Design Pattern using

Modal Models

 Hierarchically mixing

synchronous dataflow with finite state

machines offers a much more powerful

model of computation than either alone.

And everything remains decidable (if you

are careful)!

This generalizes

structured dataflow with

sequential decision logic,

but without the cost of

undecidability.

28

Lee 09: 55

Taking Stock

Generalizations to SDF improve expressiveness while

preserving decidability.

Usable languages for many of these extensions have

yet to be created.

Lee 09: 56

Extensions of SDF that Improve Expressiveness

Structured Dataflow [Kodosky 86, Thies et al. 02]

(the other) Synchronous Dataflow [Halbwachs et al. 91]

Boolean dataflow [Buck and Lee, 93]

Cyclostatic Dataflow [Lauwereins 94]

Multidimensional SDF [Lee & Murthy 96]

Heterochronous Dataflow [Girault, Lee, and Lee, 97]

Parameterized Dataflow [Bhattacharya et al. 00]

Teleport Messages [Thies et al. 05]

Many of these remain decidable

29

Lee 09: 57

Synchronous Dataflow – SDF

If the number of tokens consumed and produced by the

firing of an actor is constant, then static analysis can tell

us whether we can schedule the firings to get a useful

execution, and if so, then a finite representation of a

schedule for such an execution can be created.

Lee 09: 58

Expressiveness Limitations in SDF

SDF cannot express data-dependent flow of tokens:

 If-then-else

 Do-while

 Recursion

Hierarchical SDF can do some of this…

A more general solution is dynamically scheduled

dataflow. We now explore DDF, and in particular, how to

use static analysis to achieve similar results to those of

SDF.

30

Lee 09: 59

Manifest Iteration in SDF

Manifest iteration (where the

number of iterations is a fixed

constant) is expressible in

SDF. But data-dependent

iteration is not.

Imperative
equivalent:

while (true) {

 x = f1();

 y = 0;

 for I in (1..10) {

 y = f3(x, y);

 }

 f5(y);

}

Lee 09: 60

Do-While Using DDF

This model uses conditional
routing of tokens to iterate a
function a data-dependent
number of times.

initial token
Imperative

equivalent:

while (true) {

 x = f1();

 b = false;

 while(!b) {

 (x, b) = f3(x);

 }

 f5(x);

} Exercise: Can this be done with HDF? Hierarchical SDF?

Switch Select

31

Lee 09: 61

If-Then-Else in DDF

Imperative
equivalent:

while (true) {

 x = f1();

 b = f7();

 if (b) {

 y = f3(x);

 } else {

 y = f4(x);

 }

 f6(y);

}

Switch Select

Boolean-valued control signal

This model uses conditional
routing of tokens to route each
token in a stream through one
of two actors.

Lee 09: 62

Aside: Compare With

If-Then-Else Using Heterochronous Dataflow

Imperative
equivalent:

b = true;

while (true) {

 x = f1();

 if (b) {

 y = f3(x);

 } else {

 y = f4(x);

 }

 f6(y);

 b = f7();

}

Note that this is not quite the same as the previous version…

Semantics of HDF:

-Execute SDF model for one complete iteration in current state

-Take state transitions to get a new SDF model.

32

Lee 09: 63

Aside: Compare With

If-Then-Else Using Heterochronous Dataflow

Imperative
equivalent:

b = true;

while (true) {

 x = f1();

 if (b) {

 y = f3(x);

 } else {

 y = f4(x);

 }

 f6(y);

 b = f7();

}

Note that if these two refinements have the same production/consumption

parameters, then this is simply hierarchical SDF, where one static schedule

suffices.

Lee 09: 64

Hierarchical SDF Using Transition Refinements

Imperative
equivalent:

while (true) {

 x = f1();

 b = f7();

 if (b) {

 y = f3(x);

 } else {

 y = f4(x);

 }

 f6(y);

}

This only works under rather narrow constraints:

• Exactly one outgoing transition from any state is enabled.

• The transition refinements on all transitions have the same production/

consumption patterns.

• The state has no refinement.

33

Lee 09: 65

Balance Equations

Let qA, qB be the number of firings of actors A and B.

Let pC, cC be the number of token produced and
consumed on a connection C.

Then the system is in balance if for all connections C

qA pC = qB cC

where A produces tokens on C and B consumes them.

Lee 09: 66

If-Then-Else in DDF

Imperative
equivalent:

while (true) {

 x = f1();

 b = f7();

 if (b) {

 y = f3(x);

 } else {

 y = f4(x);

 }

 f6(y);

}

The if-then-else model is not SDF.
But we can clearly give a bounded
quasi-static schedule for it:

(1, 7, 2, b?3, !b?4, 5, 6)

What consumption rate?

What production rate?

guard

34

Lee 09: 67

Symbolic Rates

Imperative
equivalent:

while (true) {

 x = f1();

 b = f7();

 if (b) {

 y = f3(x);

 } else {

 y = f4(x);

 }

 f6(y);

}

Production and consumption rates
are given symbolically in terms of
the values of the Boolean control
signals consumed at the control
port.

Symbolic consumption rate.

Symbolic production rate.

Lee 09: 68

Interpretations of Symbolic Rates

General interpretation: p is a symbolic placeholder for

an unknown.

Probabilistic interpretation: p is the probability that a

Boolean control input is true.

Proportion interpretation: p is the proportion of true

values at the control input in one complete cycle.

 NOTE: We do not need numeric values for p. We

always manipulate it symbolically.

35

Lee 09: 69

Symbolic Balance Equations

The two connections above imply the following balance

equations:

q2 p = q3

q2 (1 – p) = q4

Lee 09: 70

Symbolic Rates

Imperative
equivalent:

while (true) {

 x = f1();

 b = f7();

 if (b) {

 y = f3(x);

 } else {

 y = f4(x);

 }

 f6(y);

}

Production and consumption rates
are given symbolically in terms of
the values of the Boolean control
signals consumed at the control
port.

Label the arcs

36

Lee 09: 71

Balance equations:

Note that the
solution now
depends on the
symbolic variables

Production/Consumption Matrix for If-Then-Else
Symbolic
variables:

Lee 09: 72

The balance equations have a solution

if an only if has rank 6. This occurs

if and only if p7 = p8 , which happens to

be true by construction because signals

7 and 8 come from the same source. The

solution is given at the right.

Production/Consumption Matrix for If-Then-Else

37

Lee 09: 73

Strong and Weak Consistency

A strongly consistent dataflow model is one where the
balance equations have a solution that is provably valid
without concern for the values of the symbolic variables.

The if-then-else dataflow model is strongly consistent.

A weakly consistent dataflow model is one where the
balance equations cannot be proved to have a solution
without constraints on the symbolic variables that cannot
be proved.

Note that whether a model is strongly or weakly
consistent depends on how much you know about the
model.

Lee 09: 74

Weakly Consistent Model

This production/consumption

matrix has full rank unless p = 1.

Unless we know f4 , this cannot

be verified at compile time.

38

Lee 09: 75

Another Example of a Weakly Consistent Model

This one requires that actor 7 produce half true and half

false (that p = 0.5) to be consistent. This fact is derived

automatically from solving the balance equations.

Lee 09: 76

Use Boolean Relations

Symbolic variables

across logical

operators can be

related as shown.

39

Lee 09: 77

Routing of Boolean Tokens

Symbolic variables

across switch and

select can be

related as shown.

Lee 09: 78

Taking Stock

BDF generalizes the idea of balance equations to

include symbolic variables.

Whether balance equations have a solution may

depend on the relationships between symbolic

variables.

