
 1

Concurrent Models of
Computation

Edward A. Lee
Robert S. Pepper Distinguished Professor, UC Berkeley
EECS 290n – Advanced Topics in Systems Theory
Concurrent Models of Computation
Spring 2009

Copyright © 2009, Edward A. Lee, All rights reserved

Week 11: Time-Triggered Models

Lee 11: 2

The Synchronous Abstraction
Has a Serious Drawback

  “Model time” is discrete: Countable ticks of a clock.

  WRT model time, computation does not take time.

  All actors execute “simultaneously” and
“instantaneously” (WRT to model time).

 As a consequence, long-running tasks determine the
maximum clock rate of the fastest clock, irrespective
of how frequently those tasks must run.

 2

Lee 11: 3

Simple Example: Spectrum Analysis

How do we keep the
non-time critical path
from interfering with
the time-critical path?

Time critical path

Not time
critical path

Lee 11: 4

Dataflow Models

Buffered communication between concurrent components (actors).
Static scheduling: Assign to each thread a sequence of actor
invocations (firings) and repeat forever.
Dynamic scheduling: Each time dispatch() is called, determine
which actor can fire (or is firing) and choose one.

May need to implement interlocks in the buffers.

Actor A
FIFO buffer

Actor B

 3

Lee 11: 5

Buffers for Dataflow

  Unbounded buffers require memory allocation and deallocation
schemes.

  Bounded size buffers can be realized as circular buffers or ring
buffers, in a statically allocated array.
  A read pointer r is an index into the array referring to the first empty

location. Increment this after each read.
  A fill count n is unsigned number telling us how many data items are

in the buffer.
  The next location to write to is (r + n) modulo buffer length.
  The buffer is empty if n == 0
  The buffer is full if n == buffer length
  Can implement n as a semaphore, providing mutual exclusion for

code that changes n or r.

Lee 11: 6

Abstracted Version of the Spectrum Example:
Non-preemptive scheduling

Suppose that C requires 8 data values from A to execute.
Suppose further that C takes much longer to execute
than A or B. Then a schedule might look like this:

…

Assume infinitely repeated
invocations, triggered by
availability of data at A.

 4

Lee 11: 7

Uniformly Timed Schedule

A preferable schedule would space invocations of
A and B uniformly in time, as in:

…

minimum latency

Lee 11: 8

Non-Concurrent Uniformly Timed Schedule

Notice that in this schedule, the rate at which A and B
can be invoked is limited by the execution time of C.

…

 5

Lee 11: 9

Concurrent Uniformly Timed Schedule:
Preemptive schedule

With preemption, the rate at which A and B can be
invoked is limited only by total computation:

…

… preemptions

thread 1:

thread 2:

high priority

low priority

Lee 11: 10

Ignoring Initial Transients,
Abstract to Periodic Tasks

In steady-state, the execution follows a simple periodic
pattern:

…

…

thread 1:

thread 2:

sampleTime = 1 sampleTime = 1

sampleTime = 8

This follows the
principles of rate-
monotonic
scheduling (RMS).

 6

Lee 11: 11

Requirement 1 for Determinacy: Periodicity

With a fixed-length circular buffer, If the execution of C runs
longer than expected, data determinacy requires that thread 1
be delayed accordingly. This can be accomplished with
semaphore synchronization. But there are alternatives:
  Throw an exception to indicate timing failure.
  “Anytime” computation: use incomplete results of C

…

…

thread 1:

thread 2:
sampleTime: 1 sampleTime: 1

sampleTime: 8

interlock

Lee 11: 12

Requirement 1 for Determinacy: Periodicity

If the execution of C runs shorter than expected, data
determinacy requires that thread 2 be delayed
accordingly. That is, it must not start the next execution
of C before the data is available.

…

…

thread 1:

thread 2:
sampleTime: 1 sampleTime: 1

sampleTime: 8

interlock

 7

Lee 11: 13

Semaphore Synchronization Required Exactly
Twice Per Major Period

Note that semaphore synchronization is not required if
actor B runs long because its thread has higher priority.
Everything else is automatically delayed.

…

…

thread 1:

thread 2:
sampleTime: 1 sampleTime: 1

sampleTime: 8

Lee 11: 14

Simulink and Real-Time Workshop
(The MathWorks)

Typical usage pattern:
  model the continuous dynamics

of the physical plant
  model the discrete-time

controller
  code generate the discrete-time

controller using RTW

continuous-time signal

Discrete signals semantically are piecewise
constant. Discrete blocks have periodic
execution with a specified “sample time.”

 8

Lee 11: 15

Explicit Buffering is required in Simulink

In Simulink, unlike dataflow, there is no buffering of data.
To get the effect of presenting to C 8 successive
samples at once, we have to explicitly include a buffering
actor that outputs an array.

sampleTime: 1

sampleTime: 8

Lee 11: 16

Requirement 2 for Determinacy: Data Integrity
During Execution

It is essential that input data remains stable during one
complete execution of C, something achieved in Simulink
with a zero-order hold (ZOH) block.

thread 1:

thread 2:

sampleTime: 1

sampleTime: 8

 9

Lee 11: 17

Simulink Strategy for Preserving Determinacy

In “Multitasking Mode,” Simulink requires a Zero-Order
Hold (ZOH) block at any downsampling point. The ZOH
runs at the slow rate, but at the priority of the fast rate.
The ZOH holds the input to C constant for an entire
execution.

thread 1:

thread 2:

ZOH ZOH

sampleTime: 1

sampleTime: 8
RingBuffer

…

Lee 11: 18

In Dataflow, Interlocks and Built-in Buffering take
care of these dependencies

For dataflow, a one-time interlock ensures sufficient data
at the input of C:

…

… first-time interlock

thread 1:

thread 2:

high priority

low priority

periodic interlocks

No ZOH
block is
required!

 10

Lee 11: 19

Aside: Ptolemy Classic Code Generator Used
Such Interlocks (since about 1990)
SDF model, parallel schedule, and synthesized DSP assembly code

It is an interesting (and rich)
research problem to minimize
interlocks in complex multirate
applications.

Lee 11: 20

Aside: Ptolemy Classic Development Platform
(1990)

An SDF model,
a “Thor” model
of a 2-DSP
architecture, a
“logic analyzer”
trace of the
execution of the
architecture,
and two DSP
code debugger
windows, one
for each
processor.

 11

Lee 11: 21

Aside: Application to ADPCM Speech Coding
(1993)

Note
updated
DSP
debugger
interface
with host/
DSP
interaction.

Lee 11: 22

Aside: Heterogeneous Architecture with DSP and
Sun Sparc Workstation (1995)

DSP card in a Sun Sparc
Workstation runs a portion of a
Ptolemy model; the other portion
runs on the Sun.

 12

Lee 11: 23

Consider a Low-Rate Actor Sending Data to a
High-Rate Actor

Note that data precedences make it impossible to
achieve uniform timing for A and C with the periodic non-
concurrent schedule indicated above.

sampleTime: 1 sampleTime: 4

sequential
schedule

Lee 11: 24

Overlapped Iterations Can Solve This Problem

This solution takes advantage of the intrinsic buffering
provided by dataflow models.

For dataflow, this requires the initial interlock as before,
and the same periodic interlocks.

produce/consume: 1 produce/consume: 4

thread 1:

thread 2:

 13

Lee 11: 25

Simulink Strategy

Without buffering, the Delay provides just one initial
sample to C (there is no buffering in Simulink). The Delay
and ZOH run at the rates of the slow actor, but at the
priority of the fast ones.
Part of the objective seems to be to have no initial
transient. Why?

sampleTime: 1 sampleTime: 4

thread 1:

thread 2:

ZOH ZOH Delay Delay ZOH Delay

Lee 11: 26

Time-Triggered Models and
Logical Execution Time (LET)

t+10ms
t+10ms t t t+5ms t+5ms

Higher frequency Task

Lower frequency task: In time-triggered
models (e.g.
Giotto, TDL,
Simulink/RTW),
each actor has a
logical execution
time (LET). Its
actual execution
time always
appears to have
taken the time of
the LET.

 14

Lee 11: 27

The LET (Logical Execution Time) Programming Model

Software Task

read sensor
input at time t

write actuator
output at time t+d,
for specified d

Examples: Giotto, TDL,

Slide from Tom Henzinger

Lee 11: 28

time t time t+d

real execution
on CPU buffer output

The LET (Logical Execution Time) Programming Model

Slide from Tom Henzinger

 15

Lee 11: 29

50% CPU speedup

Portability

Slide from Tom Henzinger

Lee 11: 30

Task 2

 Task 1

Composability

Slide from Tom Henzinger

 16

Lee 11: 31

Timing predictability: minimal jitter
Function predictability: no race conditions

Determinism

Slide from Tom Henzinger

Lee 11: 32

make output available
as soon as ready

Contrast LET with Standard Practice

Slide from Tom Henzinger

 17

Lee 11: 33

data race

Contrast LET with Standard Practice

Slide from Tom Henzinger

Lee 11: 34

Giotto Strategy for Preserving Determinacy

First execution of C operates on initial data in the delay.
Second execution operates on the result of the 8-th
execution of A.

…

…

thread 1:

thread 2:

frequency: 8

frequency: 1

 18

Lee 11: 35

Giotto: A Delay on Every Arc

Since Giotto has a delay on every connection, there is no
need to show it. It is implicit.

Is a delay on every arc a good idea?

…

…

thread 1:

thread 2:

frequency: 8

frequency: 1

Lee 11: 36

Giotto Strategy for the Pipeline Example

Giotto uses delays on all connections. The effect is the
same, except that there is one additional sample delay
from input to output.

sampleTime: 1 sampleTime: 4

thread 1:

thread 2:

Delay Delay Delay2 Delay2 Delay Delay2

 19

Lee 11: 37

Discussion Questions

  What about more complicated rate conversions (e.g. a task with
sampleTime 2 feeding one with sampleTime 3)?

  What are the advantages and disadvantages of the Giotto
delays?

  Could concurrent execution be similarly achieved with
synchronous languages?

  How does concurrent execution of dataflow compare to Giotto
and Simulink?

  Which of these approaches is more attractive from the
application designer’s perspective?

  How can these ideas be extended to non-periodic execution?
(modal models, Timed Multitasking, xGiotto, Ptides)

