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The Synchronous Abstraction 
Has a Serious Drawback 

  “Model time” is discrete: Countable ticks of a clock. 

  WRT model time, computation does not take time. 

  All actors execute “simultaneously” and 
“instantaneously” (WRT to model time). 

 As a consequence, long-running tasks determine the 
maximum clock rate of the fastest clock, irrespective 
of how frequently those tasks must run. 
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Simple Example: Spectrum Analysis 

How do we keep the 
non-time critical path 
from interfering with 
the time-critical path? 

Time critical path 

Not time 
critical path 
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Dataflow Models 

Buffered communication between concurrent components (actors). 
Static scheduling: Assign to each thread a sequence of actor 
invocations (firings) and repeat forever. 
Dynamic scheduling: Each time dispatch() is called, determine 
which actor can fire (or is firing) and choose one. 

May need to implement interlocks in the buffers. 

Actor A 
FIFO buffer 

Actor B 
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Buffers for Dataflow 

  Unbounded buffers require memory allocation and deallocation 
schemes. 

  Bounded size buffers can be realized as circular buffers or ring 
buffers, in a statically allocated array. 
  A read pointer r is an index into the array referring to the first empty 

location. Increment this after each read. 
  A fill count n is unsigned number telling us how many data items are 

in the buffer. 
  The next location to write to is (r + n ) modulo buffer length. 
  The buffer is empty if n == 0  
  The buffer is full if n == buffer length 
  Can implement n as a semaphore, providing mutual exclusion for 

code that changes n or r. 
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Abstracted Version of the Spectrum Example: 
Non-preemptive scheduling 

Suppose that C requires 8 data values from A to execute. 
Suppose further that C takes much longer to execute 
than A or B. Then a schedule might look like this: 

… 

Assume infinitely repeated 
invocations, triggered by 
availability of data at A. 
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Uniformly Timed Schedule 

A preferable schedule would space invocations of  
A and B uniformly in time, as in: 

… 

minimum latency 
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Non-Concurrent Uniformly Timed Schedule 

Notice that in this schedule, the rate at which A and B 
can be invoked is limited by the execution time of C. 

… 
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Concurrent Uniformly Timed Schedule: 
Preemptive schedule 

With preemption, the rate at which A and B can be 
invoked is limited only by total computation: 

… 

… preemptions 

thread 1: 

thread 2: 

high priority 

low priority 
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Ignoring Initial Transients, 
Abstract to Periodic Tasks 

In steady-state, the execution follows a simple periodic 
pattern: 

… 

… 

thread 1: 

thread 2: 

sampleTime = 1 sampleTime = 1 

sampleTime = 8 

This follows the 
principles of rate-
monotonic 
scheduling (RMS). 
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Requirement 1 for Determinacy: Periodicity 

With a fixed-length circular buffer, If the execution of C runs 
longer than expected, data determinacy requires that thread 1 
be delayed accordingly. This can be accomplished with 
semaphore synchronization. But there are alternatives: 
   Throw an exception to indicate timing failure. 
   “Anytime” computation: use incomplete results of C 

… 

… 

thread 1: 

thread 2: 
sampleTime: 1 sampleTime: 1 

sampleTime: 8 

interlock 
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Requirement 1 for Determinacy: Periodicity 

If the execution of C runs shorter than expected, data 
determinacy requires that thread 2 be delayed 
accordingly. That is, it must not start the next execution 
of C before the data is available. 

… 

… 

thread 1: 

thread 2: 
sampleTime: 1 sampleTime: 1 

sampleTime: 8 

interlock 
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Semaphore Synchronization Required Exactly 
Twice Per Major Period 

Note that semaphore synchronization is not required if 
actor B runs long because its thread has higher priority. 
Everything else is automatically delayed. 

… 

… 

thread 1: 

thread 2: 
sampleTime: 1 sampleTime: 1 

sampleTime: 8 
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Simulink and Real-Time Workshop  
(The MathWorks) 

Typical usage pattern: 
  model the continuous dynamics 

of the physical plant 
  model the discrete-time 

controller 
  code generate the discrete-time 

controller using RTW 

continuous-time signal 

Discrete signals semantically are piecewise 
constant. Discrete blocks have periodic 
execution with a specified “sample time.” 
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Explicit Buffering is required in Simulink 

In Simulink, unlike dataflow, there is no buffering of data. 
To get the effect of presenting to C 8 successive 
samples at once, we have to explicitly include a buffering 
actor that outputs an array. 

sampleTime: 1 

sampleTime: 8 
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Requirement 2 for Determinacy: Data Integrity 
During Execution 

It is essential that input data remains stable during one 
complete execution of C, something achieved in Simulink 
with a zero-order hold (ZOH) block. 

thread 1: 

thread 2: 

sampleTime: 1 

sampleTime: 8 
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Simulink Strategy for Preserving Determinacy 

In “Multitasking Mode,” Simulink requires a Zero-Order 
Hold (ZOH) block at any downsampling point. The ZOH 
runs at the slow rate, but at the priority of the fast rate. 
The ZOH holds the input to C constant for an entire 
execution. 

thread 1: 

thread 2: 

ZOH ZOH 

sampleTime: 1 

sampleTime: 8 
RingBuffer 

… 
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In Dataflow, Interlocks and Built-in Buffering take 
care of these dependencies 

For dataflow, a one-time interlock ensures sufficient data 
at the input of C: 

… 

… first-time interlock 

thread 1: 

thread 2: 

high priority 

low priority 

periodic interlocks 

No ZOH 
block is 
required! 
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Aside: Ptolemy Classic Code Generator Used 
Such Interlocks (since about 1990) 
SDF model, parallel schedule, and synthesized DSP assembly code 

It is an interesting (and rich) 
research problem to minimize 
interlocks in complex multirate 
applications. 
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Aside: Ptolemy Classic Development Platform 
(1990) 

An SDF model, 
a “Thor” model 
of a 2-DSP 
architecture, a 
“logic analyzer” 
trace of the 
execution of the 
architecture, 
and two DSP 
code debugger 
windows, one 
for each 
processor. 
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Aside: Application to ADPCM Speech Coding 
(1993) 

Note 
updated 
DSP 
debugger 
interface 
with host/
DSP 
interaction. 
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Aside: Heterogeneous Architecture with DSP and 
Sun Sparc Workstation (1995) 

DSP card in a Sun Sparc 
Workstation runs a portion of a 
Ptolemy model; the other portion 
runs on the Sun. 
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Consider a Low-Rate Actor Sending Data to a 
High-Rate Actor 

Note that data precedences make it impossible to 
achieve uniform timing for A and C with the periodic non-
concurrent schedule indicated above. 

sampleTime: 1 sampleTime: 4 

sequential 
schedule 
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Overlapped Iterations Can Solve This Problem 

This solution takes advantage of the intrinsic buffering 
provided by dataflow models. 

For dataflow, this requires the initial interlock as before, 
and the same periodic interlocks. 

produce/consume: 1 produce/consume: 4 

thread 1: 

thread 2: 
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Simulink Strategy 

Without buffering, the Delay provides just one initial 
sample to C (there is no buffering in Simulink). The Delay 
and ZOH run at the rates of the slow actor, but at the 
priority of the fast ones. 
Part of the objective seems to be to have no initial 
transient. Why? 

sampleTime: 1 sampleTime: 4 

thread 1: 

thread 2: 

ZOH ZOH Delay Delay ZOH Delay 
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Time-Triggered Models and 
Logical Execution Time (LET) 

t+10ms 
t+10ms t t t+5ms t+5ms 

Higher frequency Task 

Lower frequency task: In time-triggered 
models (e.g. 
Giotto, TDL, 
Simulink/RTW), 
each actor has a 
logical execution 
time (LET). Its 
actual execution 
time always 
appears to have 
taken the time of 
the LET. 
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The LET (Logical Execution Time) Programming Model 

Software Task 

read sensor 
input at time t 

write actuator 
output at time t+d, 
for specified d 

Examples: Giotto, TDL,  

Slide from Tom Henzinger 
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time t time t+d 

real execution 
on CPU buffer output 

The LET (Logical Execution Time) Programming Model 

Slide from Tom Henzinger 
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50% CPU speedup 

Portability 

Slide from Tom Henzinger 
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Task 2 

 Task 1 

Composability 

Slide from Tom Henzinger 
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Timing predictability:     minimal jitter                                         
Function predictability:  no race conditions                                                     

Determinism 

Slide from Tom Henzinger 
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make output available 
as soon as ready 

Contrast LET with Standard Practice 

Slide from Tom Henzinger 
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data race 

Contrast LET with Standard Practice 

Slide from Tom Henzinger 
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Giotto Strategy for Preserving Determinacy 

First execution of C operates on initial data in the delay. 
Second execution operates on the result of the 8-th 
execution of A. 

… 

… 

thread 1: 

thread 2: 

frequency: 8 

frequency: 1 
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Giotto: A Delay on Every Arc 

Since Giotto has a delay on every connection, there is no 
need to show it. It is implicit. 

Is a delay on every arc a good idea? 

… 

… 

thread 1: 

thread 2: 

frequency: 8 

frequency: 1 
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Giotto Strategy for the Pipeline Example 

Giotto uses delays on all connections. The effect is the 
same, except that there is one additional sample delay 
from input to output. 

sampleTime: 1 sampleTime: 4 

thread 1: 

thread 2: 

Delay Delay Delay2 Delay2 Delay Delay2 
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Discussion Questions 

  What about more complicated rate conversions (e.g. a task with 
sampleTime 2 feeding one with sampleTime 3)? 

  What are the advantages and disadvantages of the Giotto 
delays? 

  Could concurrent execution be similarly achieved with 
synchronous languages? 

  How does concurrent execution of dataflow compare to Giotto 
and Simulink? 

  Which of these approaches is more attractive from the 
application designer’s perspective? 

  How can these ideas be extended to non-periodic execution? 
(modal models, Timed Multitasking, xGiotto, Ptides) 


