
1 

Concurrent Models of 

Computation for Embedded 

Software 

Edward A. Lee 
Professor, UC Berkeley 

EECS 290n – Advanced Topics in Systems Theory 

Spring, 2009 

Copyright © 2009, Edward A. Lee, All rights reserved 

Lecture 14: Continuous-Time and Hybrid Systems 

Lee 14: 2 

Basic Continuous-Time Modeling 

A basic continuous-

time model describes 

an ordinary differential 

equation (ODE). 
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Basic Continuous-Time Modeling 

A basic continuous-

time model describes 

an ordinary differential 

equation (ODE). 
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Basic Continuous-Time Modeling 

The state trajectory is modeled as a vector function of time, 
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ODE Solvers 

Numerical solution approximates the state trajectory of the ODE by 

estimating its value at discrete time points:  

t t0 t1 t2 t3 ts ... 

Reasonable choices for these points depend on the function f. 

Using such solvers, signals are discrete-event signals. 
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Simple Example 

This simple example integrates a ramp, generated by the 

CurrentTime actor. In this case, it is easy to find a closed 

form solution, 
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Trapezoidal Method 

Classical method 

estimates the area 

under the curve by 

calculating the area 

of trapezoids. 

However, with this 

method, an 

integrator is only 

causal, not strictly 

causal or delta 

causal. 
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Trapezoidal Method is Problematic with Feedback 

We have no assurance 

of a unique fixed point, 

nor a method for 

constructing it. 
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Forward Euler Solver 

Given x(tn) and a time increment h, calculate: 

This method is strictly causal, or, with a lower bound on 

the step size h, delta causal. It can be used in feedback 

systems. The solution is unique and non-Zeno. 
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Forward Euler on Simple Example 

In this case, we have 

used a fixed step size 

h = 0.1. The result is 

close, but diverges 

over time. 
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“Stiff” systems require small step sizes 

For spring-mass damper, 
large stiffness constant k 
makes the system “stiff.” 

Variable step-size methods 

will dynamically modify the 

step size h in response to 

estimates of the integration 

error. Even these, however, 

run into trouble when 

stiffness varies over time. 

Extreme case of increasing 

stiffness results in Zeno 

behavior: 
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Runge-Kutta 2-3 Solver (RK2-3) 

Given x(tn) and a time increment h, calculate 

then let 

Note that this is strictly (delta) causal, but requires three 

evaluations of f at three different times with three different 

inputs. 

estimate of 

estimate of 
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Operational Requirements 

In a software system, the blue box below can be specified by a 

program that, given x(t) and t calculates f (x(t), t ) . But this requires 

that the program be functional (have no side effects). 

For variable-step size RK2-3, have to 

be able to evaluate f at tn , tn + 0.5h , 

and tn + 0.75h without committing to 

the step size h . (Evaluation must 

have no side effects). 
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Adjusting the Time Steps 

For time step given by                   , let 

If  is less than the “error tolerance” e, then the step is 

deemed “successful” and the next time step is estimated 

at: 

If  is greater than the “error tolerance,” then the time 

step h is reduced and the whole thing is tried again. 
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Comparing RK2-3 to Forward Euler 

RK2-3: 

Forward Euler: 

For this example, RK2-3 
is exact at 3.0, while 
Forward Euler 
undershoots by a 
significant amount. 
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Accumulating Errors 

In feedback systems, the errors of FE accumulate more rapidly than 

those of RK2-3. 



9 

Lee 14: 17 

Adjusting the Time Steps due to Discrete Events 

A step size h may cause the model to skip over a point 

where the behavior of the system changes abruptly: 

Such events must be detected and treated similarly as 

requiring a smaller step size. 

Lee 14: 18 

Bouncing Ball 

note smaller 

step size 

where needed 
due to bump 

note smaller step 

size where needed 

due to stiffness 



10 

Lee 14: 19 

Bouncing Ball in a Decreasing 

Gravitational Field 
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Examining This Computationally 

At each discrete time tn, given a time increment  

tn+1 = tn+ h, we can estimate x(tn+1) by repeatedly 

evaluating f with different values for the arguments. We 

may then decide that h is too large and reduce it and 

redo the process. 
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How General Is This MoC? 

Does it handle: 

Systems without feedback? yes 

External inputs? yes 

State machines? 

Lee 14: 22 

How General Is This MoC? 

Does it handle: 

Systems without feedback? 

External inputs? yes 

State machines? 
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The Model Itself as a Function 

Note that the model function has the form: 

Lee 14: 24 

Is the MoC Compositional? 

For a model of computation to be compositional, it must be possible 

to turn a model into a component in another model. 
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The Model Itself as a Function 

Note that the model function has the form: 

Which does not match the form: 

Given the model, we don’t actually know the function f. 
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Consequently, the MoC is  

Not Compositional! 

In general, the behavior of the inside dynamical system 

cannot be given by a function of form: 

To see this, just note that the output must depend only on 

the current value of the input and the time to conform with 

this form. 
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So How General Is This MoC? 

Does it handle: 

External inputs? 

Systems without feedback? 

State machines? No… The model needs work… 

Since this model is itself a state machine, the inability to 

put a state machine in the left box explains the lack of 

compositionality. 
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Start with Simple State Machines 

Hysteresis Example 

This model shows the use 

of a two-state FSM to 

model hysteresis. 

Semantically, the output of 

the ModalModel block is 

discontinuous. If transitions 

take zero time, this is 

modeled as a signal that 

has two values at the same 

time, and in a particular 

order. 
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Hysteresis Example Requires Superdense Time 

It is common to model 
discontinuities in two 
successive values. But 
then the trace depends on 
the step sizes chosen by 
the solver. 

Lee 14: 30 
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Recall Superdense Time 

 At each tag, the signal has exactly one value. At each time 
point, the signal has an infinite number of values. The red 
arrows indicate value changes between tags, which 
correspond to discontinuities. 
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Initial and Final Value Signals 

A signal                             has no chattering Zeno 

condition if there is an integer m > 0 such that 

A non-chattering signal has a corresponding final value 

signal,                        where  

It also has an initial value signal                       where 

Lee 14: 32 

Piecewise Continuous Signals 

A piecewise continuous signal is a non-chattering signal 

where 

  The initial signal xi is continuous on the left, 

  The final signal xf is continuous on the right, and 

  The signal x has only one value at all t  T \ D where 

    D  T is a discrete set.  
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Requirements 

The hysteresis example illustrates two requirements: 

A signal may have more than one value at a particular 

time, and the values it has have an order. 

The times at which the solver evaluates signals must 

precisely include the times at which interesting events 

happen, like a guard becoming true. 
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Both Requirements Are Dealt With By an 

Abstract Semantics 
Previously 

The new function f gives outputs in terms of inputs and the current 

state. The function g updates the state at the specified time. 

state space 

Now we need: 
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Abstract Semantics 

s1(t,0) = f ( (t),s1(t,0), t)

1(t) = g( (t),s1(t,0), t)

s2(t,1) = f ( 1(t),s2(t,1), t)

2(t) = g( 1(t),s2(t,1), t)

...

until the state no longer changes. We use 

the final state on any evaluation at later 

times. 

This deals with the first requirement. 

At each  t  T  the output is a sequence 

of one or more values where given the 

current state  (t)   and the input s1(t) 

we evaluate the procedure   

Fixed-point 

problem 

Lee 14: 36 Require backtracking 

Second Requirement: 
Points on the Time Line that Must Be 

Included in a Discrete Trace 

Predictable breakpoints 

Can be registered in advance with the solver 

Unpredictable breakpoints 

Known after they have been missed 

Points that make the step size “sufficiently small” 

Dependent on error estimation in the solver 
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Event Times 

In continuous-time models, Ptolemy II can use event detectors to identify 

the precise time at which an event occurs: 

or it can use Modal Models, where guards on the transitions specify 

when events occur. In the literature, you can find two semantic 

interpretations to guards: enabling  or triggering. 

If only enabling semantics are provided, then it becomes nearly 

impossible to give models whose behavior does not depend on the step-

size choices of the solver. 

Lee 14: 38 
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Another Example: Newton’s Cradle 

Assumptions 

Ideal pendulum 

Balls have the same mass. 

Collisions happen 

instantaneously. 

When a collision happens, two 

and only two balls are involved. 

Slide from Haiyang Zheng 
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A Model of Newton’s Cradle 

1 2 3 

Slide from Haiyang Zheng 
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Dynamics of Balls 

Three second order  

ODE’s are used to  

model the dynamics 

of three pendulums. 

Slide from Haiyang Zheng 
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One Behavior 

1 

2 

X-axis is time and Y-axis is displacement. 

X-axis is time and Y-axis is velocity. 

 Ball #1 is moved away from its 
equilibrium position with angle 
PI/8. 

  Perfectly elastic collisions. 

Slide from Haiyang Zheng 
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Interactions Between CT and DE 

Dynamics  

Two transitions at the 
same time, called 
simultaneous discrete 
events. 

These events cause a 
discontinuity consisting of 
three values. 

Agreement on the 
assumption of 
instantaneous collisions 

Slide from Haiyang Zheng 
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Another Behavior:  

Perfectly Inelastic Collisions 

Slide from Haiyang Zheng 

Lee 14: 44 
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A Zeno Phenomenon 

1 2 3

Slide from Haiyang Zheng 
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Recall Requirements 

We have two requirements: 

A signal may have more than one value at a particular 
time, and the values it has have an order. 

The times at which the solver evaluates signals must 
precisely include the times at which interesting events 
happen, like a guard becoming true, or any point of 
discontinuity in a signal (a time where it has more than 
one value). 
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Ideal Solver Semantics 
[Liu and Lee, HSCC 2003] 

Given an interval                   and an initial value 

and a function                             that is Lipschitz in x on 

the interval (meaning that there exists an L  0 such that  

then the following equation has a unique solution x 

satisfying the initial condition where  

The ideal solver yields the exact value of           . 
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Piecewise Lipschitz Systems 

In our CT semantics, signals have multiple values at the 

times of discontinuities. Between discontinuities, a 

necessary condition that we can impose is that the 

function f be Lipschitz, where we choose the points at the 

discontinuities to ensure this: 

t ti ti+1 ti+2 

Lee 14: 48 

Abstracted Structure of the Model of 

Continuous Dynamics 
Between discontinuities, the state trajectory is modeled as a vector 

function of time, 

The key to the ideal solver semantics 

is that continuity and local Lipschitz 

conditions on f are sufficient to ensure 

uniqueness of the solution over a 

sufficiently small interval of time. 
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RK2-3 Solver Approximates Ideal Solver 

Given x(tn) and a time increment h, calculate 

then let 

Note that this is strictly (delta) causal, but requires three 

evaluations of f at three different times with three different 

inputs. 

estimate of 

estimate of 

Lee 14: 50 

Generalizing: Multiple Events at the  

Same Time using Transient States 
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Contrast with Simulink/Stateflow 

In Simulink semantics, a signal can only have one value at a given 

time. Consequently, Simulink introduces solver-dependent behavior. 

Lee 14: 52 

The Abstract Semantics Supports the  

Second Requirement as Well 

This deals with the second requirement. 

At each  t  T  the calculation of the 

output given the input is separated from 

the calculation of the new state. Thus, the 

state does not need to updated until after 

the step size has been decided upon.  

In fact, the variable step size solver relies 
on this, since any of several integration 

calculations may result in refinement of 

the step size because the error is too 

large.  
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Third Requirement:  

Compositional Semantics 

We require that the system below yield an execution that 

is identical to a flattened version of the same system. 

That is, despite having two solvers, it must behave as if it 

had one. 

Achieving this appears to require that the two solvers 

coordinate quite closely. This is challenging when the 

hierarchy is deeper. 

Lee 14: 54 

Hierarchical Executions 

Results are calculated 

with the Runge-Kutta 

23 solver. 
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The “right” semantics supports deeper hierarchies 

Consider two masses on springs which, 

when they collide, will stick together with 

a decaying stickiness until the force of 

the springs pulls them apart again. 

Lee 14: 56 

Modal Models 

The Masses actor 

refines to a state 

machine with two 

states, Separate and 

Together. The 

transitions have 

guards and reset 

maps. 
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Mode Refinements 

Each state has a 

refinement that 

gives the 

behavior of the 

modal model 

while in that 

state. 

Lee 14: 58 

Modeling Dynamics within the 

Separate Mode 

Dynamics while separate: 

Equivalently: 
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Mode Refinements (2) 

In the Together mode, the dynamics is 

that of a single mass and two springs. 

Lee 14: 60 

Modeling Dynamics within the 

Together Mode 

Dynamics while together: 
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Consider Corner Cases 

When triggering transitions based on predicates on 

discontinuous signals, how should the discontinuity 

affect the transition? 

What should samples of discontinuous signals be? 

Lee 14: 62 

Recall Hysteresis Example 

This model 

generates a 

discontinuous 

signal. 
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Observing the Discontinuous Signal 

ModalModel2 will enter 

the error state if its inputs 

ever have the same sign. 

Note from the plot that it 

never enters that state 

(the output would go to 

10, but it stays at 0).  

Lee 14: 64 

Simultaneous Events: The 

Order of Execution Question 

Semantics of a signal: 

In Ptolemy II CT, every 

continuous-time signal has a 

value at (t, 0) for any t  T . This 

yields deterministic execution of 

the above model. 
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Alternative Interpretations 

• Nondeterministic: Some hybrid systems languages 

(e.g. Charon) declare this to be nondeterministic, 

saying that perfectly zero time delays never occur 

anyway in physical systems. Hence, ModalModel2 

may or may not see the output of ModalModel before 

Scale gets a chance to negate it. 

• Delta Delays: Some models (e.g. VHDL) declare that 

every block has a non-zero delay in the index space. 

Thus, ModalModel2 will see an event with time 

duration zero where the inputs have the same sign. 

Lee 14: 66 

Disadvantages of These Interpretations 

• Nondeterministic: 
• Constructing deterministic models is extremely difficult 

• What should a simulator do? 

• Delta Delays: 
• Changes in one part of the model can unexpectedly 

change behavior elsewhere in the model. 
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Nondeterministic Ordering 

In favor 
Physical systems have no true simultaneity 

Simultaneity in a model is artifact 

Nondeterminism reflects this physical reality 

Against 
It surprises the designer 

• counters intuition about causality 

It is hard to get determinism 
• determinism is often desired (to get repeatability) 

Getting the desired nondeterminism is easy 
• build on deterministic ordering with nondeterministic FSMs 

Writing simulators that are trustworthy is difficult 
• It is incorrect to just pick one possible behavior! 
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Consider Nondeterministic Semantics 

Suppose we want deterministic 

behavior in the above (rather 

simple) model. How could we 

achieve it? 
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Non-Deterministic Interaction is the Wrong 

Answer 

Lee 14: 70 

OTOH: Nondeterminism is Easily Added in a 

Deterministic Modeling Framework 
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Sampling Discontinuous Signals 

Lee 14: 72 

The Continuous (vs. CT) Director 

Building continuous-time semantics on SR 

A signal has a value or is 

absent at each tick of a 

“clock.” By default, all ticks 

of the “clock” occur at model 

time 0.0, but they can 

optionally be spaced in time 

by setting the period 

parameter of the SR 

Director. 

A signal is a set of events 

with time stamps (in model 

time) and the DE Director is 

responsible for presenting 

these events in time-stamp 

order to the destination 

actor. 

A signal is defined 

everywhere (in model time) 

and the Continuous Director 

chooses where it is 

evaluated. The value of the 

signal may be “absent,” 

allowing for signals that are 

discrete or have gaps. 
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Metric Time in SR 

By default, “time” does not advance when executing an 

SR model in Ptolemy II (“current time” remains at 0.0, a 

real number). 

Optionally, the SR Director can increment time by a fixed 

amount on each clock tick. 

Lee 14: 74 

Time in SR Models in Ptolemy II 

A signal has a value or is 

absent at each tick of a 

“clock.” By default, all ticks 

of the “clock” occur at model 

time 0.0, but they can 

optionally be spaced in time 

by setting the period 

parameter of the SR 

Director. 
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Execution of an SR Model (Conceptually) 

Start with all signals empty (i.e. defined on 
the empty initial segment). 

Initialize all actors. 

Invoke the following on all actors until 
either all signals are defined on the initial 
segment {(0,0)} or no progress can be 
made: 

 if (prefire()) { fire(); } 

If not all signals are defined on {(0,0)}, 
declare a causality loop. 

Invoke postfire() for all actors.  

Choose the next tag t ((0,1) or (p, 0)) 

Repeat to define signals on the initial 
segment [(0, 0), t]. 

Etc. 

The correctness of this is guaranteed 

by the fixed point semantics. Efficiency, 

of course, depends on being smart 

about the order in which actors are 

invoked. 

Lee 14: 76 

Metric Time in SR 

By default, “time” does not advance when executing an 

SR model in Ptolemy II (“current time” remains at 0.0, a 

real number). 

Optionally, the SR Director can increment time by a fixed 

amount on each clock tick. 

More interestingly, SR can be embedded within timed 

MoCs that model the environment and govern the 

passage of time. 
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Discrete Events (DE): A Timed Concurrent Model 

of Computation 

Lee 14: 78 

Advancing Time 

A signal is a partial function 

defined on an initial segment of 

But how to increment the initial segment on which the 

signal is defined?  It won’t work to just proceed to the 

next one, as we did with SR. 
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Execution of a DE Model (Conceptually) 

Start with all signals empty.  

Initialize all actors (some will post tags on the 
event ueue). 

Take the smallest tag (t, n) from the event 
queue. 

Invoke the following on all actors that have 
input events until either all signals are defined 
on the initial segment S = [(0,0), (t,n)] or no 
progress can be made: 

 if (prefire()) { fire(); } 

If not all signals are defined on S, declare a 
causality loop. 

Invoke postfire() for all actors (some will post 
tags on the event queue). 

Repeat with the next smallest tag on the 
event queue. 

This is exactly the execution policy of 

SR, except that rather than just 

choosing the next tag in the tag set, we 

use a sorted event queue to choose an 

interval over which to increment the 

initial segment. 
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Subtle Difference Between SR and DE 

In SR, every actor is fired at every tick of its clock, as determined by 

a clock calculus and/or structured subclocks. 

In DE, an actor is fired at a tag only if it has input events at that tag 

or it has previously posted an event on the event queue with that 

tag. 

 In DE semantics, event counts may matter.  If every actor 
were to be fired at every tick, then adding an actor in one part of a 

model could change the behavior in another part of the model in 

unexpected ways. 
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Recall Subtle Difference Between  

SR and DE. CT is more like SR. 

In SR, every actor is fired at every tick of its clock, as determined by 
a clock calculus and/or structured subclocks. 

In DE, an actor is fired at a tag only if it has input events at that tag 
or it has previously posted an event on the event queue with that 
tag. 

In CT, every actor is fired at every tick of the clock, as determined 
by an ODE solver. 

In CT semantics, a signal has a value at every tag. But the solver to 
chooses to explicitly represent those values only at certain tags. 

Lee 14: 82 
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Integrator with DE Input Signals 

s1 

s2 s3 

s’ 
The following table shows the  

integration results with more complicated 

DE input signals. 

Slide from Haiyang Zheng 
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Conclusion 

• Superdense time is useful for continuous-time models. 

• SR provides a foundation for DE and CT. 

• Time between “ticks” is chosen in consultation with the 

solver and breakpoints defined by actors. 

• ODE solver can be modeled as an ideal solver 

semantically. 

• Get an operational and denotational semantics that 

match up to the ability of the solver to match the ideal 

solver. 


