
1

Concurrent Models of

Computation for Embedded

Software

Edward A. Lee
Professor, UC Berkeley

EECS 290n – Advanced Topics in Systems Theory

Spring, 2009

Copyright © 2009, Edward A. Lee, All rights reserved

Lecture 14: Continuous-Time and Hybrid Systems

Lee 14: 2

Basic Continuous-Time Modeling

A basic continuous-

time model describes

an ordinary differential

equation (ODE).

2

Lee 14: 3

Basic Continuous-Time Modeling

A basic continuous-

time model describes

an ordinary differential

equation (ODE).

Lee 14: 4

Basic Continuous-Time Modeling

The state trajectory is modeled as a vector function of time,

3

Lee 14: 5

ODE Solvers

Numerical solution approximates the state trajectory of the ODE by

estimating its value at discrete time points:

t t0 t1 t2 t3 ts ...

Reasonable choices for these points depend on the function f.

Using such solvers, signals are discrete-event signals.

Lee 14: 6

Simple Example

This simple example integrates a ramp, generated by the

CurrentTime actor. In this case, it is easy to find a closed

form solution,

4

Lee 14: 7

Trapezoidal Method

Classical method

estimates the area

under the curve by

calculating the area

of trapezoids.

However, with this

method, an

integrator is only

causal, not strictly

causal or delta

causal.

Lee 14: 8

Trapezoidal Method is Problematic with Feedback

We have no assurance

of a unique fixed point,

nor a method for

constructing it.

5

Lee 14: 9

Forward Euler Solver

Given x(tn) and a time increment h, calculate:

This method is strictly causal, or, with a lower bound on

the step size h, delta causal. It can be used in feedback

systems. The solution is unique and non-Zeno.

Lee 14: 10

Forward Euler on Simple Example

In this case, we have

used a fixed step size

h = 0.1. The result is

close, but diverges

over time.

6

Lee 14: 11

“Stiff” systems require small step sizes

For spring-mass damper,
large stiffness constant k
makes the system “stiff.”

Variable step-size methods

will dynamically modify the

step size h in response to

estimates of the integration

error. Even these, however,

run into trouble when

stiffness varies over time.

Extreme case of increasing

stiffness results in Zeno

behavior:

Lee 14: 12

Runge-Kutta 2-3 Solver (RK2-3)

Given x(tn) and a time increment h, calculate

then let

Note that this is strictly (delta) causal, but requires three

evaluations of f at three different times with three different

inputs.

estimate of

estimate of

7

Lee 14: 13

Operational Requirements

In a software system, the blue box below can be specified by a

program that, given x(t) and t calculates f (x(t), t) . But this requires

that the program be functional (have no side effects).

For variable-step size RK2-3, have to

be able to evaluate f at tn , tn + 0.5h ,

and tn + 0.75h without committing to

the step size h . (Evaluation must

have no side effects).

Lee 14: 14

Adjusting the Time Steps

For time step given by , let

If is less than the “error tolerance” e, then the step is

deemed “successful” and the next time step is estimated

at:

If is greater than the “error tolerance,” then the time

step h is reduced and the whole thing is tried again.

8

Lee 14: 15

Comparing RK2-3 to Forward Euler

RK2-3:

Forward Euler:

For this example, RK2-3
is exact at 3.0, while
Forward Euler
undershoots by a
significant amount.

Lee 14: 16

Accumulating Errors

In feedback systems, the errors of FE accumulate more rapidly than

those of RK2-3.

9

Lee 14: 17

Adjusting the Time Steps due to Discrete Events

A step size h may cause the model to skip over a point

where the behavior of the system changes abruptly:

Such events must be detected and treated similarly as

requiring a smaller step size.

Lee 14: 18

Bouncing Ball

note smaller

step size

where needed
due to bump

note smaller step

size where needed

due to stiffness

10

Lee 14: 19

Bouncing Ball in a Decreasing

Gravitational Field

Lee 14: 20

Examining This Computationally

At each discrete time tn, given a time increment

tn+1 = tn+ h, we can estimate x(tn+1) by repeatedly

evaluating f with different values for the arguments. We

may then decide that h is too large and reduce it and

redo the process.

11

Lee 14: 21

How General Is This MoC?

Does it handle:

Systems without feedback? yes

External inputs? yes

State machines?

Lee 14: 22

How General Is This MoC?

Does it handle:

Systems without feedback?

External inputs? yes

State machines?

12

Lee 14: 23

The Model Itself as a Function

Note that the model function has the form:

Lee 14: 24

Is the MoC Compositional?

For a model of computation to be compositional, it must be possible

to turn a model into a component in another model.

13

Lee 14: 25

The Model Itself as a Function

Note that the model function has the form:

Which does not match the form:

Given the model, we don’t actually know the function f.

Lee 14: 26

Consequently, the MoC is

Not Compositional!

In general, the behavior of the inside dynamical system

cannot be given by a function of form:

To see this, just note that the output must depend only on

the current value of the input and the time to conform with

this form.

14

Lee 14: 27

So How General Is This MoC?

Does it handle:

External inputs?

Systems without feedback?

State machines? No… The model needs work…

Since this model is itself a state machine, the inability to

put a state machine in the left box explains the lack of

compositionality.

Lee 14: 28

Start with Simple State Machines

Hysteresis Example

This model shows the use

of a two-state FSM to

model hysteresis.

Semantically, the output of

the ModalModel block is

discontinuous. If transitions

take zero time, this is

modeled as a signal that

has two values at the same

time, and in a particular

order.

15

Lee 14: 29

Hysteresis Example Requires Superdense Time

It is common to model
discontinuities in two
successive values. But
then the trace depends on
the step sizes chosen by
the solver.

Lee 14: 30

 30

Recall Superdense Time

 At each tag, the signal has exactly one value. At each time
point, the signal has an infinite number of values. The red
arrows indicate value changes between tags, which
correspond to discontinuities.

16

Lee 14: 31

Initial and Final Value Signals

A signal has no chattering Zeno

condition if there is an integer m > 0 such that

A non-chattering signal has a corresponding final value

signal, where

It also has an initial value signal where

Lee 14: 32

Piecewise Continuous Signals

A piecewise continuous signal is a non-chattering signal

where

 The initial signal xi is continuous on the left,

 The final signal xf is continuous on the right, and

 The signal x has only one value at all t T \ D where

 D T is a discrete set.

17

Lee 14: 33

Requirements

The hysteresis example illustrates two requirements:

A signal may have more than one value at a particular

time, and the values it has have an order.

The times at which the solver evaluates signals must

precisely include the times at which interesting events

happen, like a guard becoming true.

Lee 14: 34

Both Requirements Are Dealt With By an

Abstract Semantics
Previously

The new function f gives outputs in terms of inputs and the current

state. The function g updates the state at the specified time.

state space

Now we need:

18

Lee 14: 35

Abstract Semantics

s1(t,0) = f ((t),s1(t,0), t)

1(t) = g((t),s1(t,0), t)

s2(t,1) = f (1(t),s2(t,1), t)

2(t) = g(1(t),s2(t,1), t)

...

until the state no longer changes. We use

the final state on any evaluation at later

times.

This deals with the first requirement.

At each t T the output is a sequence

of one or more values where given the

current state (t) and the input s1(t)

we evaluate the procedure

Fixed-point

problem

Lee 14: 36 Require backtracking

Second Requirement:
Points on the Time Line that Must Be

Included in a Discrete Trace

Predictable breakpoints

Can be registered in advance with the solver

Unpredictable breakpoints

Known after they have been missed

Points that make the step size “sufficiently small”

Dependent on error estimation in the solver

19

Lee 14: 37

Event Times

In continuous-time models, Ptolemy II can use event detectors to identify

the precise time at which an event occurs:

or it can use Modal Models, where guards on the transitions specify

when events occur. In the literature, you can find two semantic

interpretations to guards: enabling or triggering.

If only enabling semantics are provided, then it becomes nearly

impossible to give models whose behavior does not depend on the step-

size choices of the solver.

Lee 14: 38

 38

Another Example: Newton’s Cradle

Assumptions

Ideal pendulum

Balls have the same mass.

Collisions happen

instantaneously.

When a collision happens, two

and only two balls are involved.

Slide from Haiyang Zheng

20

Lee 14: 39

 39

A Model of Newton’s Cradle

1 2 3

Slide from Haiyang Zheng

Lee 14: 40

 40

Dynamics of Balls

Three second order

ODE’s are used to

model the dynamics

of three pendulums.

Slide from Haiyang Zheng

21

Lee 14: 41

 41

One Behavior

1

2

X-axis is time and Y-axis is displacement.

X-axis is time and Y-axis is velocity.

 Ball #1 is moved away from its
equilibrium position with angle
PI/8.

 Perfectly elastic collisions.

Slide from Haiyang Zheng

Lee 14: 42

 42

Interactions Between CT and DE

Dynamics

Two transitions at the
same time, called
simultaneous discrete
events.

These events cause a
discontinuity consisting of
three values.

Agreement on the
assumption of
instantaneous collisions

Slide from Haiyang Zheng

22

Lee 14: 43

 43

Another Behavior:

Perfectly Inelastic Collisions

Slide from Haiyang Zheng

Lee 14: 44

 44

A Zeno Phenomenon

1 2 3

Slide from Haiyang Zheng

23

Lee 14: 45

Recall Requirements

We have two requirements:

A signal may have more than one value at a particular
time, and the values it has have an order.

The times at which the solver evaluates signals must
precisely include the times at which interesting events
happen, like a guard becoming true, or any point of
discontinuity in a signal (a time where it has more than
one value).

Lee 14: 46

Ideal Solver Semantics
[Liu and Lee, HSCC 2003]

Given an interval and an initial value

and a function that is Lipschitz in x on

the interval (meaning that there exists an L 0 such that

then the following equation has a unique solution x

satisfying the initial condition where

The ideal solver yields the exact value of .

24

Lee 14: 47

Piecewise Lipschitz Systems

In our CT semantics, signals have multiple values at the

times of discontinuities. Between discontinuities, a

necessary condition that we can impose is that the

function f be Lipschitz, where we choose the points at the

discontinuities to ensure this:

t ti ti+1 ti+2

Lee 14: 48

Abstracted Structure of the Model of

Continuous Dynamics
Between discontinuities, the state trajectory is modeled as a vector

function of time,

The key to the ideal solver semantics

is that continuity and local Lipschitz

conditions on f are sufficient to ensure

uniqueness of the solution over a

sufficiently small interval of time.

25

Lee 14: 49

RK2-3 Solver Approximates Ideal Solver

Given x(tn) and a time increment h, calculate

then let

Note that this is strictly (delta) causal, but requires three

evaluations of f at three different times with three different

inputs.

estimate of

estimate of

Lee 14: 50

Generalizing: Multiple Events at the

Same Time using Transient States

26

Lee 14: 51

Contrast with Simulink/Stateflow

In Simulink semantics, a signal can only have one value at a given

time. Consequently, Simulink introduces solver-dependent behavior.

Lee 14: 52

The Abstract Semantics Supports the

Second Requirement as Well

This deals with the second requirement.

At each t T the calculation of the

output given the input is separated from

the calculation of the new state. Thus, the

state does not need to updated until after

the step size has been decided upon.

In fact, the variable step size solver relies
on this, since any of several integration

calculations may result in refinement of

the step size because the error is too

large.

27

Lee 14: 53

Third Requirement:

Compositional Semantics

We require that the system below yield an execution that

is identical to a flattened version of the same system.

That is, despite having two solvers, it must behave as if it

had one.

Achieving this appears to require that the two solvers

coordinate quite closely. This is challenging when the

hierarchy is deeper.

Lee 14: 54

Hierarchical Executions

Results are calculated

with the Runge-Kutta

23 solver.

28

Lee 14: 55

The “right” semantics supports deeper hierarchies

Consider two masses on springs which,

when they collide, will stick together with

a decaying stickiness until the force of

the springs pulls them apart again.

Lee 14: 56

Modal Models

The Masses actor

refines to a state

machine with two

states, Separate and

Together. The

transitions have

guards and reset

maps.

29

Lee 14: 57

Mode Refinements

Each state has a

refinement that

gives the

behavior of the

modal model

while in that

state.

Lee 14: 58

Modeling Dynamics within the

Separate Mode

Dynamics while separate:

Equivalently:

30

Lee 14: 59

Mode Refinements (2)

In the Together mode, the dynamics is

that of a single mass and two springs.

Lee 14: 60

Modeling Dynamics within the

Together Mode

Dynamics while together:

31

Lee 14: 61

Consider Corner Cases

When triggering transitions based on predicates on

discontinuous signals, how should the discontinuity

affect the transition?

What should samples of discontinuous signals be?

Lee 14: 62

Recall Hysteresis Example

This model

generates a

discontinuous

signal.

32

Lee 14: 63

Observing the Discontinuous Signal

ModalModel2 will enter

the error state if its inputs

ever have the same sign.

Note from the plot that it

never enters that state

(the output would go to

10, but it stays at 0).

Lee 14: 64

Simultaneous Events: The

Order of Execution Question

Semantics of a signal:

In Ptolemy II CT, every

continuous-time signal has a

value at (t, 0) for any t T . This

yields deterministic execution of

the above model.

33

Lee 14: 65

Alternative Interpretations

• Nondeterministic: Some hybrid systems languages

(e.g. Charon) declare this to be nondeterministic,

saying that perfectly zero time delays never occur

anyway in physical systems. Hence, ModalModel2

may or may not see the output of ModalModel before

Scale gets a chance to negate it.

• Delta Delays: Some models (e.g. VHDL) declare that

every block has a non-zero delay in the index space.

Thus, ModalModel2 will see an event with time

duration zero where the inputs have the same sign.

Lee 14: 66

Disadvantages of These Interpretations

• Nondeterministic:
• Constructing deterministic models is extremely difficult

• What should a simulator do?

• Delta Delays:
• Changes in one part of the model can unexpectedly

change behavior elsewhere in the model.

34

Lee 14: 67

Nondeterministic Ordering

In favor
Physical systems have no true simultaneity

Simultaneity in a model is artifact

Nondeterminism reflects this physical reality

Against
It surprises the designer

• counters intuition about causality

It is hard to get determinism
• determinism is often desired (to get repeatability)

Getting the desired nondeterminism is easy
• build on deterministic ordering with nondeterministic FSMs

Writing simulators that are trustworthy is difficult
• It is incorrect to just pick one possible behavior!

Lee 14: 68

Consider Nondeterministic Semantics

Suppose we want deterministic

behavior in the above (rather

simple) model. How could we

achieve it?

35

Lee 14: 69

Non-Deterministic Interaction is the Wrong

Answer

Lee 14: 70

OTOH: Nondeterminism is Easily Added in a

Deterministic Modeling Framework

36

Lee 14: 71

Sampling Discontinuous Signals

Lee 14: 72

The Continuous (vs. CT) Director

Building continuous-time semantics on SR

A signal has a value or is

absent at each tick of a

“clock.” By default, all ticks

of the “clock” occur at model

time 0.0, but they can

optionally be spaced in time

by setting the period

parameter of the SR

Director.

A signal is a set of events

with time stamps (in model

time) and the DE Director is

responsible for presenting

these events in time-stamp

order to the destination

actor.

A signal is defined

everywhere (in model time)

and the Continuous Director

chooses where it is

evaluated. The value of the

signal may be “absent,”

allowing for signals that are

discrete or have gaps.

37

Lee 14: 73

Metric Time in SR

By default, “time” does not advance when executing an

SR model in Ptolemy II (“current time” remains at 0.0, a

real number).

Optionally, the SR Director can increment time by a fixed

amount on each clock tick.

Lee 14: 74

Time in SR Models in Ptolemy II

A signal has a value or is

absent at each tick of a

“clock.” By default, all ticks

of the “clock” occur at model

time 0.0, but they can

optionally be spaced in time

by setting the period

parameter of the SR

Director.

38

Lee 14: 75

Execution of an SR Model (Conceptually)

Start with all signals empty (i.e. defined on
the empty initial segment).

Initialize all actors.

Invoke the following on all actors until
either all signals are defined on the initial
segment {(0,0)} or no progress can be
made:

 if (prefire()) { fire(); }

If not all signals are defined on {(0,0)},
declare a causality loop.

Invoke postfire() for all actors.

Choose the next tag t ((0,1) or (p, 0))

Repeat to define signals on the initial
segment [(0, 0), t].

Etc.

The correctness of this is guaranteed

by the fixed point semantics. Efficiency,

of course, depends on being smart

about the order in which actors are

invoked.

Lee 14: 76

Metric Time in SR

By default, “time” does not advance when executing an

SR model in Ptolemy II (“current time” remains at 0.0, a

real number).

Optionally, the SR Director can increment time by a fixed

amount on each clock tick.

More interestingly, SR can be embedded within timed

MoCs that model the environment and govern the

passage of time.

39

Lee 14: 77

Discrete Events (DE): A Timed Concurrent Model

of Computation

Lee 14: 78

Advancing Time

A signal is a partial function

defined on an initial segment of

But how to increment the initial segment on which the

signal is defined? It won’t work to just proceed to the

next one, as we did with SR.

40

Lee 14: 79

Execution of a DE Model (Conceptually)

Start with all signals empty.

Initialize all actors (some will post tags on the
event ueue).

Take the smallest tag (t, n) from the event
queue.

Invoke the following on all actors that have
input events until either all signals are defined
on the initial segment S = [(0,0), (t,n)] or no
progress can be made:

 if (prefire()) { fire(); }

If not all signals are defined on S, declare a
causality loop.

Invoke postfire() for all actors (some will post
tags on the event queue).

Repeat with the next smallest tag on the
event queue.

This is exactly the execution policy of

SR, except that rather than just

choosing the next tag in the tag set, we

use a sorted event queue to choose an

interval over which to increment the

initial segment.

Lee 14: 80

Subtle Difference Between SR and DE

In SR, every actor is fired at every tick of its clock, as determined by

a clock calculus and/or structured subclocks.

In DE, an actor is fired at a tag only if it has input events at that tag

or it has previously posted an event on the event queue with that

tag.

 In DE semantics, event counts may matter. If every actor
were to be fired at every tick, then adding an actor in one part of a

model could change the behavior in another part of the model in

unexpected ways.

41

Lee 14: 81

Recall Subtle Difference Between

SR and DE. CT is more like SR.

In SR, every actor is fired at every tick of its clock, as determined by
a clock calculus and/or structured subclocks.

In DE, an actor is fired at a tag only if it has input events at that tag
or it has previously posted an event on the event queue with that
tag.

In CT, every actor is fired at every tick of the clock, as determined
by an ODE solver.

In CT semantics, a signal has a value at every tag. But the solver to
chooses to explicitly represent those values only at certain tags.

Lee 14: 82

 82

Integrator with DE Input Signals

s1

s2 s3

s’
The following table shows the

integration results with more complicated

DE input signals.

Slide from Haiyang Zheng

42

Lee 14: 83

Conclusion

• Superdense time is useful for continuous-time models.

• SR provides a foundation for DE and CT.

• Time between “ticks” is chosen in consultation with the

solver and breakpoints defined by actors.

• ODE solver can be modeled as an ideal solver

semantically.

• Get an operational and denotational semantics that

match up to the ability of the solver to match the ideal

solver.

