
1

Concurrent Models of

Computation for Embedded

Software

Edward A. Lee
Professor, UC Berkeley

EECS 290n – Advanced Topics in Systems Theory

Spring, 2009

Copyright © 2009, Edward A. Lee, All rights reserved

Lecture 15: Actor Abstract Semantics

Lee 15: 2

Tags, Values, Events, and Signals

A set of values V and a set of tags T

An event is e T V

A signal s is a set of events. I.e. s T V

The set of all signals S = P (T V)

A functional signal is a (partial) function s: T V

A tuple of signals s S n

The empty signal = S

The empty tuple of signals S n

2

Lee 15: 3

Processes

A process is a subset of signals P S n

The sort of a process is the identity of its signals. That is,
two processes P1 and P2 are of the same sort if

projection

Lee 15: 4

Alternative Notation

Instead of tuples of signals, let X be a set of variables.
E.g.

This is a better notation because it is explicit about the
sort. This notation was introduced by [Benveniste, et al.,
2003]. We will nonetheless stick to the original notation in
[Lee, Sangiovanni 1998].

3

Lee 15: 5

Process Composition

To compose processes, they may need to be augmented
to be of the same sort:

Lee 15: 6

Process Composition

To compose processes, they may need to be augmented
to be of the same sort:

4

Lee 15: 7

Connections

Connections simply establish that signals are identical:

Lee 15: 8

Projections (Hiding and Renaming)

Given an m-tuple of indexes:

the following projection accomplishes
hiding and/or renaming:

5

Lee 15: 9

Example of Projections (Hiding)

Projections change the sort of a process:

Lee 15: 10

Inputs

Given a process P S n, an input is a subset of the same
sort, A S n, that constrains the behaviors of the process
to

An input could be a single event in a signal, an entire
signal, or any combination of events and signals. A
particular process may “accept” only certain inputs, in
which case the process is defined by P S n and
B P(S n), where any input A is required to be in B,

6

Lee 15: 11

Closed System (no Inputs)

A process P S n with input set B P(S n) is closed if

This means that the only possible input (constraint) is:

which imposes no constraints at all in

Lee 15: 12

Functional Processes

Model for a process P S n that has m input signals and
p output signals (exercise: what is the input set B?)

 Define two index sets for the input and output signals:

 The process is functional w.r.t. (I , O) if

 In this case, there is a (possibly partial) function

7

Lee 15: 13

Determinacy

A process P with input set B is determinate if for any input
A B,

That is, given an input, there is no more than one
behavior.

Note that by this definition, a functional process is
assured of being determinate if all its signals are visible
on the output.

Lee 15: 14

Refinement Relations

A process (with input constraints) (P', B') is a refinement
of the process (P, B) if

and

That is, the refinement accepts any input that the process
it refines accepts, and for any input it accepts, its
behaviors are a subset of the behaviors of the process it
refines with the same input.

8

Lee 15: 15

Tags for Discrete-Event Systems

For DE, let T = R N with a total order (the lexical order)
and an ultrametric (the Cantor metric). Recall that we
have used the structure of this tag set to get nontrivial
results:

If processes are functional and causal and every
feedback path has at least one delta-causal process,
then compositions of processes are determinate and we
have a procedure for identifying their behavior.

Lee 15: 16

Synchrony

Two events are synchronous if they have the same
tag.

Two signals are synchronous if all events in one a
synchronous with an event in the other.

A process is synchronous if for in every behavior in the
process, every signal is synchronous with every other
signal.

9

Lee 15: 17

Tags for Process Networks

The tag set T is a poset.

The tags T (s) on each signal s are totally ordered.

A sequential process has a signal associated with it
that imposes ordering constraints on the other signals.
For example:

Lee 15: 18

Tags Can Model …

Dataflow firing

Rendezvous in CSP

Ordering constraints in Petri nets

etc. (see paper)

10

Lee 15: 19

The Tagged Signal Model can be used to Define
Abstract Semantics

An Abstract Semantics

A Finer Abstract Semantics

A Concrete Semantics
(or Model of Computation)

Lee 15: 20

Tagged Signal Abstract Semantics

Tagged Signal Abstract Semantics:

port may be an input or an output,
or neither or both. It is irrelevant.

signal is a member of a set of signals,
where the set depends on the model of
computation and resolved data type of
the connection.

a “process” is a subset of the
signals with which it interacts.

This outlines a general abstract semantics that gets specialized.
When it becomes concrete you have a model of computation.

11

Lee 15: 21

A Finer Abstraction Semantics

Functional Abstract Semantics:

port is now either an
input or an output (or both).

a process is now a function from
input signals to output signals.

This outlines an abstract semantics for deterministic producer/
consumer actors.

Lee 15: 22

Uses for Such an Abstract Semantics

Give structure to the sets of signals
e.g. Use the Cantor metric to get a metric space.

Give structure to the functional processes
e.g. Contraction maps on the Cantor metric space.

Develop static analysis techniques
e.g. Conditions under which a hybrid systems is
provably non-Zeno.

12

Lee 15: 23

Another Finer Abstract Semantics

Process Networks Abstract Semantics:

port is either an
input or an output or both.

sets of signals are monoids, which allows
us to incrementally construct them. E.g.
• stream
• event sequence
• rendezvous points …

A process is a sequence of
operations on its signals where the
operations are the associative
operation of a monoid

This outlines an abstract semantics for actors constructed as
processes that incrementally read and write port data.

process is not necessarily functional
(can be nondeterministic).

Lee 15: 24

Concrete Semantics that Conform with the Process
Networks Abstract Semantics

Communicating Sequential Processes (CSP) [Hoare]

Calculus of Concurrent Systems (CCS) [Milner]

Kahn Process Networks (KPN) [Kahn]

Nondeterministic extensions of KPN [Various]

Actors [Hewitt]

Some Implementations:

Occam, Lucid, and Ada languages

Ptolemy Classic and Ptolemy II (PN and CSP domains)

System C

Metropolis

13

Lee 15: 25

Process Network Abstract Semantics in Ptolemy II

actor contains ports

port contains receivers

director creates
receivers

receiver implements communication

monoid operation to
incrementally construct signals

Lee 15: 26

Several Concrete Semantics
Refine this Abstract Semantics

communicating sequential processes

Kahn process networks

14

Lee 15: 27

Process Network Abstract Semantics in Metropolis

process P{

 port reader X;

 port writer Y;

 thread(){

 while(true){

 ...

 z = f(X.read());

 Y.write(z);

 }}}

medium M implements reader, writer{

 int storage;

 int n, space;

 void write(int z){

 await(space>0; this.writer ; this.writer)

 n=1; space=0; storage=z;

 }

 word read(){ ... }

}

interface reader extends Port{

 update int read();

 eval int n();

}

interface writer extends Port{

 update void write(int i);

 eval int space();

}

M
P1 X Y P2 X Y

Env1 Env2

Model

Process

Medium

Thanks to
Doug Densmore

Lee 15: 28

Leveraging Abstract Semantics for Joint Modeling of
Architecture and Application

Bus

Arbiter Bus

Mem

Cpu OsSched

MyArchNetlist

mP1 mP2 mP1 mP2

MyFncNetlist

M
P1 P2

Env1 Env2

B(P1, M.write) <=> B(mP1, mP1.writeCpu); E(P1, M.write) <=> E(mP1, mP1.writeCpu);

B(P1, P1.f) <=> B(mP1, mP1.mapf); E(P1, P1.f) <=> E(mP1, mP1.mapf);

B(P2, M.read) <=> B(P2, mP2.readCpu); E(P2, M.read) <=> E(mP2, mP2.readCpu);

B(P2, P2.f) <=> B(mP2, mP2.mapf); E(P2, P2.f) <=> E(mP2, mP2.mapf);

MyMapNetlist

Bus

Arbiter Bus

Mem

Cpu OsSched

MyArchNetlist

…

…
…

The abstract semantics provides natural
points of the execution (where the monoid
operations are invoked) that can be
synchronized across models. Here, this is
used to model operations of an application
on a candidate implementation
architecture.

15

Lee 15: 29

A Finer Abstract Semantics

Firing Abstract Semantics:

port is still either an
input or an output.

signals are in monoids (can be
incrementally constructed) (e.g.
streams, discrete-event signals).

a process still a function from
input signals to output signals,
but that function now is defined
in terms of a firing function.

The process function F is the least fixed point of a functional defined
in terms of f.

Lee 15: 30

Models of Computation that Conform to the Firing
Abstract Semantics

Dataflow models (all variations)
Discrete-event models
Time-driven models (Giotto)

 In Ptolemy II, actors written to the firing abstract
semantics can be used with directors that conform
only to the process network abstract semantics.

 Such actors are said to be behaviorally polymorphic.

16

Lee 15: 31

Actor Language for the
Firing Abstract Semantics: Cal

Cal is an experimental actor language designed to provide statically
inferable actor properties w.r.t. the firing abstract semantics. E.g.:

Inferable firing rules and firing functions:

actor Select () S, A, B ==> Output:

 action S: [sel], A: [v] ==> [v]

 guard sel end

 action S: [sel], B: [v] ==> [v]

 guard not sel end

end

Thanks to Jorn Janneck, Xilinx

Lee 15: 32

A Still Finer Abstract Semantics

Stateful Firing Abstract Semantics:

port is still either an
input or an output.

a process still a function from
input signals to output signals,
but that function now is defined
in terms of two functions.

The function f gives outputs in terms of inputs and the current state.
The function g updates the state.

state space

signals are monoids (can be
incrementally constructed) (e.g.
streams, discrete-event signals).

17

Lee 15: 33

Models of Computation that Conform to the Stateful
Firing Abstract Semantics

 Synchronous reactive

 Continuous time

 Hybrid systems

Stateful firing supports iteration to a fixed point, which is required for
hybrid systems modeling.

In Ptolemy II, actors written to the stateful firing abstract semantics
can be used with directors that conform only to the firing abstract
semantics or to the process network abstract semantics.

Such actors are said to be behaviorally polymorphic.

Lee 15: 34

Where We Are

Tagged Signal Semantics

Process Networks Semantics

Firing Semantics

Stateful Firing Semantics

18

Lee 15: 35

Where We Are

Tagged Signal Semantics

Process Networks Semantics

Firing Semantics

Stateful Firing Semantics
Kahn process

networks

hybrid systems

continuous
time

Dataflow

SDF

discrete
events synchronous/

reactive

Giotto

Lee 15: 36

Many Ptolemy II Actors work in All these MoCs!
Execution of Ptolemy II Actors

Flow of control:

Preinitialization

Initialization

Execution

Finalization

19

Lee 15: 37

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:

Preinitialization

Initialization

Execution

Finalization

E.g., Partial evaluation (esp.

higher-order components),

set up type constraints, etc.

Anything that needs to be

done prior to static analysis

(type inference, scheduling,

…)

Lee 15: 38

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:

Preinitialization

Initialization

Execution

Finalization

E.g., Initialize actors, produce

initial outputs, etc.

E.g., set the initial state of a state machine.
Initialization may be repeated during the run
(e.g. if the reset parameter of a transition is
set and the destination state has a
refinement).

20

Lee 15: 39

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:

Preinitialization

Initialization

Execution

Finalization
Iterate

If (prefire()) {

 fire();

 postfire();

}

In fire(), an FSM first fires the refinement of the current
state (if any), then evaluates guards, then produces
outputs specified on an enabled transition. In postfire(), it
postfires the current refinement (if any), executes set
actions on an enabled transition, and takes the transition.

Lee 15: 40

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:

Preinitialization

Initialization

Execution

Finalization

21

Lee 15: 41

Definition of the NonStrictDelay Actor (Sketch)

public class NonStrictDelay extends TypedAtomicActor {

 protected Token _previousToken;
 public Parameter initialValue;

 public void initialize() {

 _previousToken = initialValue.getToken();

 }

 public boolean prefire() {

 return true;

 }

 public void fire() {

 if (_previousToken != null) {

 if (_previousToken == AbsentToken.ABSENT) {

 output.sendClear(0);

 } else {
 output.send(0, _previousToken);

 }

 } else {

 output.sendClear(0);

 }
 }

 public boolean postfire() {

 if (input.isKnown(0)) {

 if (input.hasToken(0)) {
 _previousToken = input.get(0);

 } else {

 _previousToken = AbsentToken.ABSENT;

 }

 }
 return true;

 }

}

Lee 15: 42

Definition of the NonStrictDelay Actor (Sketch)

public class NonStrictDelay extends TypedAtomicActor {

 protected Token _previousToken;
 public Parameter initialValue;

 public void initialize() {

 _previousToken = initialValue.getToken();

 }

 public boolean prefire() {

 return true;

 }

 public void fire() {

 if (_previousToken != null) {

 if (_previousToken == AbsentToken.ABSENT) {

 output.sendClear(0);

 } else {
 output.send(0, _previousToken);

 }

 } else {

 output.sendClear(0);

 }
 }

 public boolean postfire() {

 if (input.isKnown(0)) {

 if (input.hasToken(0)) {
 _previousToken = input.get(0);

 } else {

 _previousToken = AbsentToken.ABSENT;

 }

 }
 return true;

 }

}

initialization

protected Token _previousToken;

public Parameter initialValue;

public void initialize() {

 _previousToken = initialValue.getToken();

}

22

Lee 15: 43

Definition of the NonStrictDelay Actor (Sketch)

public class NonStrictDelay extends TypedAtomicActor {

 protected Token _previousToken;
 public Parameter initialValue;

 public void initialize() {

 _previousToken = initialValue.getToken();

 }

 public boolean prefire() {

 return true;

 }

 public void fire() {

 if (_previousToken != null) {

 if (_previousToken == AbsentToken.ABSENT) {

 output.sendClear(0);

 } else {
 output.send(0, _previousToken);

 }

 } else {

 output.sendClear(0);

 }
 }

 public boolean postfire() {

 if (input.isKnown(0)) {

 if (input.hasToken(0)) {
 _previousToken = input.get(0);

 } else {

 _previousToken = AbsentToken.ABSENT;

 }

 }
 return true;

 }

}

prefire: can
the actor
fire?

 public boolean prefire() {

 return true;

 }

Lee 15: 44

Definition of the NonStrictDelay Actor (Sketch)

public class NonStrictDelay extends TypedAtomicActor {

 protected Token _previousToken;
 public Parameter initialValue;

 public void initialize() {

 _previousToken = initialValue.getToken();

 }

 public boolean prefire() {

 return true;

 }

 public void fire() {

 if (_previousToken != null) {

 if (_previousToken == AbsentToken.ABSENT) {

 output.sendClear(0);

 } else {
 output.send(0, _previousToken);

 }

 } else {

 output.sendClear(0);

 }
 }

 public boolean postfire() {

 if (input.isKnown(0)) {

 if (input.hasToken(0)) {
 _previousToken = input.get(0);

 } else {

 _previousToken = AbsentToken.ABSENT;

 }

 }
 return true;

 }

}

fire:
produce
outputs (in
this case,
the output
does not
depend on
the input).

public void fire() {

 if (_previousToken != null) {

 if (_previousToken == AbsentToken.ABSENT) {

 output.sendClear(0);

 } else {

 output.send(0, _previousToken);

 }

 } else {

 output.sendClear(0);

 }

}

23

Lee 15: 45

Definition of the NonStrictDelay Actor (Sketch)

public class NonStrictDelay extends TypedAtomicActor {

 protected Token _previousToken;
 public Parameter initialValue;

 public void initialize() {

 _previousToken = initialValue.getToken();

 }

 public boolean prefire() {

 return true;

 }

 public void fire() {

 if (_previousToken != null) {

 if (_previousToken == AbsentToken.ABSENT) {

 output.sendClear(0);

 } else {
 output.send(0, _previousToken);

 }

 } else {

 output.sendClear(0);

 }
 }

 public boolean postfire() {

 if (input.isKnown(0)) {

 if (input.hasToken(0)) {
 _previousToken = input.get(0);

 } else {

 _previousToken = AbsentToken.ABSENT;

 }

 }
 return true;

 }

}

postfire:
record
state
changes

public boolean postfire() {

 if (input.isKnown(0)) {

 if (input.hasToken(0)) {

 _previousToken = input.get(0);

 } else {

 _previousToken = AbsentToken.ABSENT;

 }

 }

 return true;

}

Lee 15: 46

A Consequence of Our Abstract Semantics: Behavioral
Polymorphism

Data polymorphism:
Add numbers (int, float, double, Complex)

Add strings (concatenation)
Add composite types (arrays, records, matrices)
Add user-defined types

Behavioral polymorphism:
In dataflow, add when all connected inputs have data
In a synchronous/reactive model, add when the clock ticks
In discrete-event, add when any connected input has data, and add
in zero time
In process networks, execute an infinite loop in a thread that blocks
when reading empty inputs
In rendezvous, execute an infinite loop that performs rendezvous on
input or output
In push/pull, ports are push or pull (declared or inferred) and behave
accordingly

24

Lee 15: 47

More Interestingly, Hierarchical Models
are Also Behaviorally Polymorphic

The same FSM
infrastructure works in
DE and SR! (and also
continuous time,
dataflow, etc.)

Lee 15: 48

Modal Models

Modal models are actors that have multiple modes of
operation, where the switching between modes is
governed by a state machine.

In each mode, the mode refinement specifies (part of) the
input output behavior.

25

Lee 15: 49

Using this in an SR model

A very tricky part about
executing this is that
one of the two
nondeterminate
transitions produces an
output. That output must
be produced in fire(),
and then postire() has to
take that same
transition.

Here, the behavior of an
actor is given as a state
machine that reads
inputs, writes outputs,
and updates both local
variables and its state.

Lee 15: 50

Some efforts get confused:
IEC 61499

International Electrotechnical Commission
(IEC) 61499 is a standard established in
2005 for distributed control systems
software engineering for factory automation.

The standard is (apparently) inspired by formal composition of state
machines, and is intended to facilitate formal verification.

Regrettably, the standard essentially fails to give a concurrency model,
resulting in radically different behaviors of the same source code from on
runtime environments from different vendors, and (worse) highly
nondeterministic behaviors on runtimes from any given vendor.

See: engi , G., Ljungkrantz, O. and Åkesson, K., Formal Modeling of Function Block
Applications Running in IEC 61499 Execution Runtime. in 11th IEEE International Conference
on Emerging Technologies and Factory Automation, (Prague, Czech Republic 2006).

26

Lee 15: 51

Other MoCs that may be suitable for TSM
modeling: Sensor Network Languages

Component 1

interface used

interface provided

Component 2

interface used

interface provided

command invoked

command implemented event signaled

event handled

Typical usage pattern:
hardware interrupt signals
an event.

event handler posts a
task.

tasks are executed when
machine is idle.
tasks execute atomically
w.r.t. one another.
tasks can invoke
commands and signal
events.

hardware interrupts can
interrupt tasks.
exactly one mutex,
implemented by disabling
interrupts.

Command
implementers can
invoke other
commands or
post tasks, but do
not trigger events.

e.g. nesC/TinyOS

Lee 15: 52

Other MoCs that may be suitable for TSM
modeling: Network Languages

Click (Kohler) with a visual syntax in Mescal (Keutzer)

push output port
push input port

pull output port

agnostic output port

Typical usage:

queues have
push input,
pull output.
schedulers
have pull
input, push
output.
thin wrappers
for hardware
have push
output or pull
input only.

27

Lee 15: 53

Related Work

Abramsky, et al., Interaction Categories

Agha, et al., Actors

Hoare, CSP

Mazurkiewicz, et al., Traces

Milner, CCS and Pi Calculus

Reed and Roscoe, Metric Space Semantics

Scott and Strachey, Denotational Semantics

Winskel, et al., Event Structures

Yates, Networks of real-time processes

Lee 15: 54

Conclusion and Open Issues

The tagged signal model provides a very general
conceptual framework for comparing and reasoning
about models of computation,

The tagged signal model provides a natural model of
design refinement, which offers the possibility of type-
system-like formal structures that deal with dynamic
behavior, and not just static structure.

The idea of abstract semantics offers ways to reason
about multi-model frameworks like Ptolemy II and
Metropolis, and offers clean definitions of behaviorally
polymorphic components.

