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Tags, Values, Events, and Signals 

A set of values V  and a set of tags T 

An event is e  T  V  

A signal s is a set of events. I.e. s  T  V 

The set of all signals S = P (T  V )  

A functional signal is a (partial) function s: T  V 

A tuple of signals s  S n  

The empty signal  =   S  

The empty tuple of signals   S n  
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Processes 

A process is a subset of signals P  S n  

The sort of a process is the identity of its signals. That is, 
two processes P1 and P2 are of the same sort if   

projection 
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Alternative Notation 

Instead of tuples of signals, let  X  be a set of variables. 
E.g. 

This is a better notation because it is explicit about the 
sort.  This notation was introduced by [Benveniste, et al., 
2003]. We will nonetheless stick to the original notation in 
[Lee, Sangiovanni 1998]. 
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Process Composition 

To compose processes, they may need to be augmented 
to be of the same sort: 
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Process Composition 

To compose processes, they may need to be augmented 
to be of the same sort: 
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Connections 

Connections simply establish that signals are identical: 
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Projections (Hiding and Renaming) 

Given an m-tuple of indexes: 

the following projection accomplishes  
hiding and/or renaming:   
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Example of Projections (Hiding) 

Projections change the sort of a process: 
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Inputs 

Given a process P  S n, an input is a subset of the same 
sort, A  S n, that constrains the behaviors of the process 
to  

An input could be a single event in a signal, an entire 
signal, or any combination of events and signals. A 
particular process may “accept” only certain inputs, in 
which case the process is defined by P  S n and  
B  P(S n), where any input A is required to be in B, 
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Closed System (no Inputs) 

A process P  S n with input set B  P(S n) is closed if 

This means that the only possible input (constraint) is:  

which imposes no constraints at all in 
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Functional Processes 

Model for a process P  S n that has m input signals and  
p output signals (exercise: what is the input set B?) 

  Define two index sets for the input and output signals: 

  The process is functional w.r.t. (I , O) if  

  In this case, there is a (possibly partial) function 
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Determinacy 

A process P with input set B is determinate if for any input 
A  B, 

That is, given an input, there is no more than one 
behavior. 

Note that by this definition, a functional process is 
assured of being determinate if all its signals are visible 
on the output. 
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Refinement Relations 

A process (with input constraints) (P', B' ) is a refinement 
of the process (P, B) if  

and 

That is, the refinement accepts any input that the process 
it refines accepts, and for any input it accepts, its 
behaviors are a subset of the behaviors of the process it 
refines with the same input. 
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Tags for Discrete-Event Systems 

For DE, let T = R  N with a total order (the lexical order) 
and an ultrametric (the Cantor metric). Recall that we 
have used the structure of this tag set to get nontrivial 
results: 

If processes are functional and causal and every 
feedback path has at least one delta-causal process, 
then compositions of processes are determinate and we 
have a procedure for identifying their behavior. 
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Synchrony 

Two events are synchronous if they have the same 
tag. 

Two signals are synchronous if all events in one a 
synchronous with an event in the other. 

A process is synchronous if for in every behavior in the 
process, every signal is synchronous with every other 
signal. 
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Tags for Process Networks 

The tag set T is a poset. 

The tags T (s) on each signal s are totally ordered. 

A sequential process has a signal associated with it 
that imposes ordering constraints on the other signals. 
For example: 
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Tags Can Model … 

Dataflow firing 

Rendezvous in CSP 

Ordering constraints in Petri nets 

etc. (see paper) 
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The Tagged Signal Model can be used to Define 
Abstract Semantics 

An Abstract Semantics 

A Finer Abstract Semantics 

A Concrete Semantics 
(or Model of Computation) 
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Tagged Signal Abstract Semantics 

Tagged Signal Abstract Semantics: 

port may be an input or an output, 
or neither or both. It is irrelevant. 

signal is a member of a set of signals, 
where the set depends on the model of 
computation and resolved data type of 
the connection. 

a “process” is a subset of the 
signals with which it interacts. 

This outlines a general abstract semantics that gets specialized. 
When it becomes concrete you have a model of computation. 



11 

Lee 15: 21 

A Finer Abstraction Semantics 

Functional Abstract Semantics: 

port is now either an 
input or an output (or both). 

a process is now a function from 
input signals to output signals. 

This outlines an abstract semantics for deterministic producer/
consumer actors. 
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Uses for Such an Abstract Semantics 

Give structure to the sets of signals 
e.g. Use the Cantor metric to get a metric space. 

Give structure to the functional processes 
e.g. Contraction maps on the Cantor metric space. 

Develop static analysis techniques 
e.g. Conditions under which a hybrid systems is 
provably non-Zeno. 
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Another Finer Abstract Semantics 

Process Networks Abstract Semantics: 

port is either an 
input or an output or both. 

sets of signals are monoids, which allows 
us to incrementally construct them. E.g. 
• stream 
• event sequence 
• rendezvous points … 

A process is a sequence of 
operations on its signals where the 
operations are the associative 
operation of a monoid 

This outlines an abstract semantics for actors constructed as 
processes that incrementally read and write port data. 

process is not necessarily functional 
(can be nondeterministic). 
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Concrete Semantics that Conform with the Process 
Networks Abstract Semantics 

Communicating Sequential Processes (CSP) [Hoare] 

Calculus of Concurrent Systems (CCS) [Milner] 

Kahn Process Networks (KPN) [Kahn] 

Nondeterministic extensions of KPN [Various] 

Actors [Hewitt] 

Some Implementations: 

Occam, Lucid, and Ada languages 

Ptolemy Classic and Ptolemy II (PN and CSP domains) 

System C 

Metropolis 
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Process Network Abstract Semantics in Ptolemy II 

actor contains ports 

port contains receivers 

director creates 
receivers 

receiver implements communication 

monoid operation to 
incrementally construct signals 
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Several Concrete Semantics  
Refine this Abstract Semantics 

communicating sequential processes 

Kahn process networks 
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Process Network Abstract Semantics in Metropolis 

process P{ 

  port reader X;  

  port writer Y; 

  thread(){ 

   while(true){  

    ... 

    z = f(X.read()); 

    Y.write(z); 

   }}} 

medium M implements reader, writer{ 

   int storage; 

   int n, space; 

   void write(int z){ 

       await(space>0; this.writer ; this.writer) 

             n=1; space=0; storage=z; 

    } 

    word read(){ ... } 

} 

interface reader extends Port{ 

    update int read(); 

    eval int n(); 

} 

interface writer extends Port{ 

    update void write(int i); 

    eval int space(); 

} 

M 
P1 X Y P2 X Y 

Env1 Env2 

Model 

Process 

Medium 

Thanks to  
Doug Densmore 
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Leveraging Abstract Semantics for Joint Modeling of 
Architecture and Application 

Bus 

Arbiter Bus 

Mem 

Cpu OsSched 

MyArchNetlist 

mP1 mP2 mP1 mP2 

MyFncNetlist 

M 
P1 P2 

Env1 Env2 

B(P1, M.write) <=> B(mP1, mP1.writeCpu);   E(P1, M.write) <=> E(mP1, mP1.writeCpu); 

B(P1, P1.f) <=> B(mP1, mP1.mapf);   E(P1, P1.f) <=> E(mP1, mP1.mapf); 

B(P2, M.read) <=> B(P2, mP2.readCpu);   E(P2, M.read) <=> E(mP2, mP2.readCpu); 

B(P2, P2.f) <=> B(mP2, mP2.mapf);   E(P2, P2.f) <=> E(mP2, mP2.mapf); 

MyMapNetlist 

Bus 

Arbiter Bus 

Mem 

Cpu OsSched 

MyArchNetlist 

… 

… 
… 

The abstract semantics provides natural 
points of the execution (where the monoid 
operations are invoked) that can be 
synchronized across models. Here, this is 
used to model operations of an application 
on a candidate implementation 
architecture. 
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A Finer Abstract Semantics 

Firing Abstract Semantics: 

port is still either an 
input or an output. 

signals are in monoids (can be 
incrementally constructed) (e.g. 
streams, discrete-event signals). 

a process still a function from 
input signals to output signals, 
but that function now is defined 
in terms of a firing function. 

The process function F is the least fixed point of a functional defined 
in terms of f. 
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Models of Computation that Conform to the Firing 
Abstract Semantics 

Dataflow models (all variations) 
Discrete-event models 
Time-driven models (Giotto) 

 In Ptolemy II, actors written to the firing abstract 
semantics can be used with directors that conform 
only to the process network abstract semantics. 

 Such actors are said to be behaviorally polymorphic. 
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Actor Language for the  
Firing Abstract Semantics: Cal 

Cal is an experimental actor language designed to provide statically 
inferable actor properties w.r.t. the firing abstract semantics. E.g.: 

Inferable firing rules and firing functions: 

actor Select () S, A, B ==> Output: 

    action S: [sel], A: [v] ==> [v] 

    guard sel end  

    action S: [sel], B: [v] ==> [v] 

    guard not sel end 

end 

Thanks to Jorn Janneck, Xilinx 
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A Still Finer Abstract Semantics 

Stateful Firing Abstract Semantics: 

port is still either an 
input or an output. 

a process still a function from 
input signals to output signals, 
but that function now is defined 
in terms of two functions. 

The function f gives outputs in terms of inputs and the current state. 
The function g updates the state. 

state space 

signals are monoids (can be 
incrementally constructed) (e.g. 
streams, discrete-event signals). 



17 

Lee 15: 33 

Models of Computation that Conform to the Stateful 
Firing Abstract Semantics 

   Synchronous reactive 

   Continuous time 

   Hybrid systems 

Stateful firing supports iteration to a fixed point, which is required for 
hybrid systems modeling. 

In Ptolemy II, actors written to the stateful firing abstract semantics 
can be used with directors that conform only to the firing abstract 
semantics or to the process network abstract semantics. 

Such actors are said to be behaviorally polymorphic. 
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Where We Are 

Tagged Signal Semantics 

Process Networks Semantics 

Firing Semantics 

Stateful Firing Semantics 
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Where We Are 

Tagged Signal Semantics 

Process Networks Semantics 

Firing Semantics 

Stateful Firing Semantics 
Kahn process 

networks 

hybrid systems 

continuous 
time 

Dataflow 

SDF 

discrete 
events synchronous/ 

reactive 

Giotto 
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Many Ptolemy II Actors work in All these MoCs! 
Execution of Ptolemy II Actors 

Flow of control: 

Preinitialization 

Initialization 

Execution 

Finalization 
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How Does This Work? 
Execution of Ptolemy II Actors 

Flow of control: 

Preinitialization 

Initialization 

Execution 

Finalization 

E.g., Partial evaluation (esp. 

higher-order components), 

set up type constraints, etc. 

Anything that needs to be 

done prior to static analysis 

(type inference, scheduling, 

…) 
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How Does This Work? 
Execution of Ptolemy II Actors 

Flow of control: 

Preinitialization 

Initialization 

Execution 

Finalization 

E.g., Initialize actors, produce 

initial outputs, etc. 

E.g., set the initial state of a state machine. 
Initialization may be repeated during the run 
(e.g. if the reset parameter of a transition is 
set and the destination state has a 
refinement). 
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How Does This Work? 
Execution of Ptolemy II Actors 

Flow of control: 

Preinitialization 

Initialization 

Execution 

Finalization 
Iterate 

If (prefire()) { 

     fire(); 

     postfire(); 

} 

In fire(), an FSM first fires the refinement of the current 
state (if any), then evaluates guards, then produces 
outputs specified on an enabled transition. In postfire(), it 
postfires the current refinement (if any), executes set 
actions on an enabled transition, and takes the transition. 
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How Does This Work? 
Execution of Ptolemy II Actors 

Flow of control: 

Preinitialization 

Initialization 

Execution 

Finalization 
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Definition of the NonStrictDelay Actor (Sketch) 

public class NonStrictDelay extends TypedAtomicActor { 

    protected Token _previousToken; 
    public Parameter initialValue; 

    public void initialize() { 

        _previousToken = initialValue.getToken(); 

    } 

    public boolean prefire() { 

        return true; 

    } 

    public void fire() { 

        if (_previousToken != null) { 

            if (_previousToken == AbsentToken.ABSENT) { 

                output.sendClear(0); 

            } else { 
                output.send(0, _previousToken); 

            } 

        } else { 

            output.sendClear(0); 

        } 
    } 

    public boolean postfire() { 

        if (input.isKnown(0)) { 

            if (input.hasToken(0)) { 
                _previousToken = input.get(0); 

            } else { 

                _previousToken = AbsentToken.ABSENT; 

            } 

        } 
        return true; 

    } 

} 
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Definition of the NonStrictDelay Actor (Sketch) 

public class NonStrictDelay extends TypedAtomicActor { 

    protected Token _previousToken; 
    public Parameter initialValue; 

    public void initialize() { 

        _previousToken = initialValue.getToken(); 

    } 

    public boolean prefire() { 

        return true; 

    } 

    public void fire() { 

        if (_previousToken != null) { 

            if (_previousToken == AbsentToken.ABSENT) { 

                output.sendClear(0); 

            } else { 
                output.send(0, _previousToken); 

            } 

        } else { 

            output.sendClear(0); 

        } 
    } 

    public boolean postfire() { 

        if (input.isKnown(0)) { 

            if (input.hasToken(0)) { 
                _previousToken = input.get(0); 

            } else { 

                _previousToken = AbsentToken.ABSENT; 

            } 

        } 
        return true; 

    } 

} 

initialization 

protected Token _previousToken; 

public Parameter initialValue; 

public void initialize() { 

    _previousToken = initialValue.getToken(); 

} 
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Definition of the NonStrictDelay Actor (Sketch) 

public class NonStrictDelay extends TypedAtomicActor { 

    protected Token _previousToken; 
    public Parameter initialValue; 

    public void initialize() { 

        _previousToken = initialValue.getToken(); 

    } 

    public boolean prefire() { 

        return true; 

    } 

    public void fire() { 

        if (_previousToken != null) { 

            if (_previousToken == AbsentToken.ABSENT) { 

                output.sendClear(0); 

            } else { 
                output.send(0, _previousToken); 

            } 

        } else { 

            output.sendClear(0); 

        } 
    } 

    public boolean postfire() { 

        if (input.isKnown(0)) { 

            if (input.hasToken(0)) { 
                _previousToken = input.get(0); 

            } else { 

                _previousToken = AbsentToken.ABSENT; 

            } 

        } 
        return true; 

    } 

} 

prefire: can 
the actor 
fire? 

 public boolean prefire() { 

    return true; 

 } 
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Definition of the NonStrictDelay Actor (Sketch) 

public class NonStrictDelay extends TypedAtomicActor { 

    protected Token _previousToken; 
    public Parameter initialValue; 

    public void initialize() { 

        _previousToken = initialValue.getToken(); 

    } 

    public boolean prefire() { 

        return true; 

    } 

    public void fire() { 

        if (_previousToken != null) { 

            if (_previousToken == AbsentToken.ABSENT) { 

                output.sendClear(0); 

            } else { 
                output.send(0, _previousToken); 

            } 

        } else { 

            output.sendClear(0); 

        } 
    } 

    public boolean postfire() { 

        if (input.isKnown(0)) { 

            if (input.hasToken(0)) { 
                _previousToken = input.get(0); 

            } else { 

                _previousToken = AbsentToken.ABSENT; 

            } 

        } 
        return true; 

    } 

} 

fire: 
produce 
outputs (in 
this case, 
the output 
does not 
depend on 
the input). 

public void fire() { 

   if (_previousToken != null) { 

       if (_previousToken == AbsentToken.ABSENT) { 

           output.sendClear(0); 

       } else { 

           output.send(0, _previousToken); 

       } 

   } else { 

       output.sendClear(0); 

   } 

} 
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Definition of the NonStrictDelay Actor (Sketch) 

public class NonStrictDelay extends TypedAtomicActor { 

    protected Token _previousToken; 
    public Parameter initialValue; 

    public void initialize() { 

        _previousToken = initialValue.getToken(); 

    } 

    public boolean prefire() { 

        return true; 

    } 

    public void fire() { 

        if (_previousToken != null) { 

            if (_previousToken == AbsentToken.ABSENT) { 

                output.sendClear(0); 

            } else { 
                output.send(0, _previousToken); 

            } 

        } else { 

            output.sendClear(0); 

        } 
    } 

    public boolean postfire() { 

        if (input.isKnown(0)) { 

            if (input.hasToken(0)) { 
                _previousToken = input.get(0); 

            } else { 

                _previousToken = AbsentToken.ABSENT; 

            } 

        } 
        return true; 

    } 

} 

postfire: 
record 
state 
changes 

public boolean postfire() { 

   if (input.isKnown(0)) { 

       if (input.hasToken(0)) { 

           _previousToken = input.get(0); 

       } else { 

           _previousToken = AbsentToken.ABSENT; 

       } 

   } 

   return true; 

} 
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A Consequence of Our Abstract Semantics: Behavioral 
Polymorphism 

Data polymorphism: 
Add numbers (int, float, double, Complex) 

Add strings (concatenation) 
Add composite types (arrays, records, matrices) 
Add user-defined types 

Behavioral polymorphism: 
In dataflow, add when all connected inputs have data 
In a synchronous/reactive model, add when the clock ticks 
In discrete-event, add when any connected input has data, and add 
in zero time 
In process networks, execute an infinite loop in a thread that blocks 
when reading empty inputs 
In rendezvous, execute an infinite loop that performs rendezvous on 
input or output 
In push/pull, ports are push or pull (declared or inferred) and behave 
accordingly 



24 

Lee 15: 47 

More Interestingly, Hierarchical Models 
are Also Behaviorally Polymorphic 

The same FSM 
infrastructure works in 
DE and SR! (and also 
continuous time, 
dataflow, etc.) 
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Modal Models 

Modal models are actors that have multiple modes of 
operation, where the switching between modes is 
governed by a state machine. 

In each mode, the mode refinement specifies (part of) the 
input output behavior. 
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Using this in an SR model 

A very tricky part about 
executing this is that 
one of the two 
nondeterminate 
transitions produces an 
output. That output must 
be produced in fire(), 
and then postire() has to 
take that same 
transition. 

Here, the behavior of an 
actor is given as a state 
machine that reads 
inputs, writes outputs, 
and updates both local 
variables and its state. 

Lee 15: 50 

Some efforts get confused: 
IEC 61499 

International Electrotechnical Commission 
(IEC) 61499 is a standard established in  
2005 for distributed control systems  
software engineering for factory automation. 

The standard is (apparently) inspired by formal composition of state 
machines, and is intended to facilitate formal verification. 

Regrettably, the standard essentially fails to give a concurrency model, 
resulting in radically different behaviors of the same source code from on 
runtime environments from different vendors, and (worse) highly 
nondeterministic behaviors on runtimes from any given vendor. 

See: engi , G., Ljungkrantz, O. and Åkesson, K., Formal Modeling of Function Block 
Applications Running in IEC 61499 Execution Runtime. in 11th IEEE International Conference 
on Emerging Technologies and Factory Automation, (Prague, Czech Republic 2006). 



26 

Lee 15: 51 

Other MoCs that may be suitable for TSM 
modeling: Sensor Network Languages 

Component 1 

interface used 

interface provided 

Component 2 

interface used 

interface provided 

command invoked 

command implemented event signaled 

event handled 

Typical usage pattern: 
hardware interrupt signals 
an event. 

event handler posts a 
task. 

tasks are executed when 
machine is idle. 
tasks execute atomically 
w.r.t. one another. 
tasks can invoke 
commands and signal 
events. 

hardware interrupts can 
interrupt tasks. 
exactly one mutex, 
implemented by disabling 
interrupts. 

Command 
implementers can 
invoke other 
commands or 
post tasks, but do 
not trigger events. 

e.g. nesC/TinyOS 
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Other MoCs that may be suitable for TSM 
modeling: Network Languages 

Click (Kohler) with a visual syntax in Mescal (Keutzer) 

push output port 
push input port 

pull output port 

agnostic output port 

Typical usage: 

queues have 
push input, 
pull output. 
schedulers 
have pull 
input, push 
output. 
thin wrappers 
for hardware 
have push 
output or pull 
input only. 
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Related Work 

Abramsky, et al., Interaction Categories 

Agha, et al., Actors 

Hoare, CSP 

Mazurkiewicz, et al., Traces 

Milner, CCS and Pi Calculus 

Reed and Roscoe, Metric Space Semantics 

Scott and Strachey, Denotational Semantics 

Winskel, et al., Event Structures 

Yates, Networks of real-time processes 
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Conclusion and Open Issues 

The tagged signal model provides a very general 
conceptual framework for comparing and reasoning 
about models of computation, 

The tagged signal model provides a natural model of 
design refinement, which offers the possibility of type-
system-like formal structures that deal with dynamic 
behavior, and not just static structure. 

The idea of abstract semantics offers ways to reason 
about multi-model frameworks like Ptolemy II and 
Metropolis, and offers clean definitions of behaviorally 
polymorphic components. 


