
1

Concurrent Models of

Computation for Embedded

Software

Edward A. Lee
Professor, UC Berkeley

EECS 290n – Advanced Topics in Systems Theory

Spring, 2009

Copyright © 2009, Edward A. Lee, All rights reserved

Lecture 17: Actor-Oriented Type Systems

Lee 17: 2

Does Actor-Oriented Design Offer Best-Of-Class SW Engineering

Methods?

Abstraction

procedures/methods

classes

Modularity

subclasses

inheritance

interfaces

polymorphism

aspects

Correctness

type systems

2

Lee 17: 3

Example of an Actor-Oriented Framework: Simulink

basic abstraction

mechanism is

hierarchy.

Lee 17: 4

Observation

By itself, hierarchy is a very weak

abstraction mechanism.

3

Lee 17: 5

Tree Structured Hierarchy

Does not represent
common class
definitions. Only
instances.

Multiple instances
of the same
hierarchical
component are
copies.

hierarchical

component copy

leaf components: instances of an OO class

container container

Lee 17: 6

Alternative Hierarchy:

Roles and Instances

class

role hierarchy

(“design-time” view)

instance hierarchy

(“run time” view)

instance instance

one definition,

multiple containers

4

Lee 17: 7

Role Hierarchy

Multiple instances of the

same hierarchical

component are
represented by classes

with multiple

containers.

This makes hierarchical

components more like

leaf components.

hierarchical

class

Lee 17: 8

A Motivating Application: Modeling Sensor Networks

These 49 sensor nodes are

actors that are instances of

the same class, defined as:
Making these objects

instances of a class rather
than copies reduced the XML

representation of the model
from 1.1 Mbytes to 87

kBytes, and offered a number

of other advantages.

Model of Massimo Franceschetti’s “small

world” phenomenon with 49 sensor nodes.

5

Lee 17: 9

Subclasses, Inheritance?

Interfaces, Subtypes? Aspects?

Now that we have classes, can we bring in more of the

modern programming world?

subclasses?

inheritance?

interfaces?

subtypes?

aspects?

Lee 17: 10

Example Using AO Classes

instance

instance

subclass

inherited actors

override actors

local class

definition

execution

6

Lee 17: 11

Inner Classes

Local class definitions

are important to

achieving modularity.

Encapsulation implies

that local class

definitions can exist

within class definitions.

A key issue is then to

define the semantics of

inheritance and

overrides.

Lee 17: 12

Ordering Relations

containment relation

parent-child relation

Mathematically, this structure is a doubly-nested diposet, the formal

properties of which help to define a clean inheritance semantics. The

principle we follow is that local changes override global changes.

limited form

of multiple

inheritance.

7

Lee 17: 13

Formal Structure: Containment

Let D be the set of derivable objects (actors,

composite actors, attributes, and ports).

Let c: D D be a partial function (containment).

Let c+ D D be the transitive closure of c (deep

containment). When (x, y) c+ we say that

x is deeply contained by y.

Disallow circular containment (anti-symmetry):

So (D, c+) is a strict poset.

Lee 17: 14

Containment Relation

containment relation

8

Lee 17: 15

Formal Structure: Parent-Child

Let p: D D be a partial function (parent).

Interpret p(x) = y to mean y is the parent of x, meaning
that either x is an instance of class y or x is a subclass
of y . We say x is a child of y.

Let p+ D D be the transitive closure of p (deep
containment). When (x, y) p+ we say that
x is descended from y.

Disallow circular containment (anti-symmetry):

Then (D, p+) is a strict poset.

Lee 17: 16

Parent-Child Relation

parent-child relation

9

Lee 17: 17

Structural Constraint

We require that

That is, if x is deeply contained by y, then it cannot be
descended from y, nor can y be descended from it.

Correspondingly, if x is descended from y, then it cannot
be deeply contained by y, nor can y be deeply
contained by it.

This is called a doubly nested diposet [Davis, 2000]

Lee 17: 18

Labeling

Let L be a set of identifying labels.

Let l: D L be a labeling function.

Require that if c(x) = c(y) then l(x) l(y).

(Labels within a container are unique).

 Labels function like file names in a file system, and

they can be appended to get “full labels” which are

unique for each object within a single model (but are

not unique across models).

10

Lee 17: 19

Derived Relation

Let d D D be the least relation so that (x, y) d

implies either that:

(x, y) p+

 or

(c(x), c(y)) d and l(x) = l(y)

 x is derived from y if either:

x is descended from y or

x and y have the same label and the container of x is

derived from the container of y.

Lee 17: 20

Derived Relation

containment relation

parent-child relation

this object is derived from

more than one other object:

multiple inheritance.

derived relation

11

Lee 17: 21

Implied Objects and the Derivation Invariant

We say that y is implied by z in D if

(y, z) d and (y, z) p+.

 I.e., y is implied by z if it is derived but is not a
descendant.

Consequences:

There is no need to represent implied objects in a
persistent representation of the model, unless they
somehow override the object from which they are
derived.

Lee 17: 22

Implied Objects

containment relation

parent-child relation

implied by

12

Lee 17: 23

Derivation Invariant

If x is derived from y then for all z where c(z) = y, there

exists a z' where c(z') = x and l(z) = l(z') and either

1. p(z) and p(z') are undefined, or

2. (p(z), p(z')) d, or

3. p(z) = p(z') and both (p(z), y) c+ and (p(z'), x) c+

I.e. z' is implied by z, and it is required that either

1. z' and z have no parents

2. the parent of z is derived from the parent of z' or

3. z' and z have the same parent, not contained by x or

y

Lee 17: 24

Persistent Representation

This is all that is required to be

stored in a file to represent the

model. All other objects are

implied.

13

Lee 17: 25

Values and Overrides

Derived objects can contain more than the objects from

which they derive (but not less).

Derived objects can override their value.

Since there may be multiple derivation chains from one

object to an object derived from it, there are multiple

ways to specify the value of the derived object.

A reasonable policy is that more local overrides

supercede less local overrides. Ensuring this is far

from simple (but it is doable! see paper and/or

Ptolemy II code).

Lee 17: 26

Advanced Topics

Interfaces and interface refinement

Types, subtypes, and component composition

Abstract actors

Aspects

Recursive containment

14

Lee 17: 27

Defining Actor Interfaces:

Ports and Parameters

input ports
output port

p1

p2

p3

parameters:

a1 = value

a2 = value

input/output

port
port

Example:

Lee 17: 28

Actor Subtypes

General

String

Scalar Boolean

Complex

Double

Long

Int

Event

a1: Int = value

p3: Double

p1: Int

Example of a simple type lattice:

a1: Double = value

p3: Int

p1: Double

subtype

relation

C
o
v
a
ri
a
n
t

C
o
n
tr

a
v
a
ri
a
n
t

15

Lee 17: 29

Actor Subtypes (cont)

a1: Int = value

p3: Double

p1: Int

p3: Int

Remove (ignore)

or add parameters
subtype

relation

p4: Double

Remove

(ignore)
input

ports

Add output ports

Subtypes can have:

 Fewer input ports

 More output ports

Of course, the types of

these can have co/

contravariant

relationships with the

supertype.

Lee 17: 30

Observations

Subtypes can remove (or ignore) parameters and also add new
parameters because parameters always have a default value
(unlike inputs, which a subtype cannot add)

Subtypes cannot modify the types of parameters (unlike ports).
Co/contravariant at the same time.

PortParameters are ports with default values. They can be
removed or added just like parameters because they provide
default values.

Are there similar exceptions to co/contravariance in OO languages?

16

Lee 17: 31

Composing Actors

A connection implies a type constraint. Can:

Source

in: Int

Sink

out: Int

in: Double out: Int

in: Unknown out: Int

check compatibility

perform conversions

infer types

The Ptolemy II type system does all three.

Lee 17: 32

1 <= 3

3

DerivedClass

What Happens to Type Constraints When a Subclass

Adds Connections?

Type resolution results may be
different in different
subclasses of the same base
class (connection with let-
bound variables in a Hindley-
Milner type system?)

Source Sink

1 <= 2

BaseClass

1

2

17

Lee 17: 33

Abstract Actors?

Suppose one of the

contained actors is an

interface only. Such a

class definition cannot

be instantiated (it is

abstract). Concrete

subclasses would

have to provide

implementations for

the interface.

Is this useful?

Lee 17: 34

Implementing Multiple Interfaces

An Example

energy: Double

EnergyConsumer interface has a single

output port that produces a Double
representing the energy consumed by a firing.

out: Double

in: Double

Filter interface for a

stream transformer
component.

out: Double

subtype

relation

power: Double

in: Double

EnergyConsumingFilter

composed interface.

in: Event

Event is a peculiar type

that can yield a token
of any type. It is the

bottom of the type
lattice.

18

Lee 17: 35

A Model Using

Such an Actor

out: Double

out: Double

power: Double

in: Double

EnergyConsumingFilter

Source

in: Double

in: Double

Sink

EnergyTabulator

Lee 17: 36

Heterarchy? Multi-View Modeling? Aspects?

EnergyTabulator EnergyConsumingFilter Sink Source

This is multi-view modeling,

similar to what GME
(Vanderbilt) can do.

Is this an actor-oriented

version of aspect-oriented
programming?

FunctionModel

Filter

Source

Sink
Abstract

EnergyConsumer

EnergyTabulator
EnergyModel

Abstract

Is this what Metropolis does

with function/architecture
models?

19

Lee 17: 37

Recursive Containment

Can Hierarchical Classes Contain Instances of

Themselves?

class

role hierarchy

instance hierarchy

class

instance

instance

instance

…

Note that in this case, unrolling

cannot occur at “compile time”.

Lee 17: 38

Primitive Realization of this in Ptolemy Classic

FFT implementation in Ptolemy Classic (1995) used a partial

evaluation strategy on higher-order components.

recursive reference

20

Lee 17: 39

Conclusion

Actor-oriented design remains a relatively immature

area, but one that is progressing rapidly.

It has huge potential.

Many questions remain…

