1. A solution is shown below:

The parameter for the Scale block is “- stiffness/momentOfInertia”.

2. A solution is shown below:

A simple model of friction subtracts a quantity proportional to speed from the acceleration. The proportionality constant, $frictionCoefficient$, is the parameter of the second Scale actor. A result of running this model is shown below:
3. A solution is shown below:

where the modal model refines to:

where the running state refines to:
This model can be found at http://gigascale.org/concurrency/homework/tuningFork/bouncing.xml. Note that the self transition on the running state needs to have the reset parameter set to true.

A result of running this model is shown below:

Note that the tine bounces off the surface for the first few cycles, and then is free of it.

4. We want to show that for any well-posed initial value ODE problem (i.e. f piecewise continuous and Lipschitz) that

$$\dot{x} = f(x, t), x(0) = a, t \in [0, T]$$

with a unique solution $x(t)$, the forward Euler method with step size h,

$$x_{n+1} = x_n + h \cdot f(x_n), x_0 = x(0),$$

(1)
converges. (Note: \(x(t_n) \) is the exact solution at \(t_n \), while \(x_n \) is the numerical solution at \(t_n \).) I.e. we want to show that

\[
\lim_{h \to 0} \max_{0 \leq n \leq T/h} |x(t_n) - x_n| = 0. \tag{3}
\]

proof:

Use a Taylor series expansion for \(x(t_{n+1}) \) based on \(x(t_n) \) for any \(0 \leq n \leq (T/h - 1) \):

\[
x(t_{n+1}) = x(t_n) + h \cdot f(x(t_n), t_n) + \frac{h^2}{2} \cdot \ddot{x}(\xi_n)
\]

(4)

for some \(\xi_n \in [t_n, t_{n+1}] \). Comparing with the numerical solution (2) and defining \(e_n = x(t_n) - x_n \), we have,

\[
e_{n+1} = e_n + h(f(x(t_n), t_n) - f(x_n, t_n)) + \frac{h^2}{2} \ddot{x}(\xi_n)
\]

(5)

Let \(L \leq \infty \) be the Lipschitz constant, we have,

\[
|f(x(t_n), t_n) - f(x_n, t_n)| \leq L \cdot |x(t_n) - x_n|.
\]

(6)

Let \(C = \max_{\xi \in [0,T]} |\dddot{x}(\xi)| \). (Note that we actually need second order smoothness of \(x(t) \) in order for \(C \) to be finite.) By applying the triangular inequality of norms, and iterating on the sequence index \(n \), we get,

\[
|e_{n+1}| \leq |e_n| + hL|e_n| + \frac{h^2}{2} |\ddot{x}(\xi_n)|
\]

\[
\leq (1 + hL)|e_n| + \frac{Ch^2}{2}
\]

\[
\leq (1 + hL)^2|e_{n-1}| + \frac{Ch^2}{2}(1 + (1 + hL))
\]

\[
\leq (1 + hL)^3|e_{n-2}| + \frac{Ch^2}{2} (1 + (1 + hL) + (1 + hL)^2)
\]

\[
\leq \ldots
\]

\[
\leq (1 + hL)^{n+1}|e_0| + \frac{Ch^2}{2} (1 + (1 + hL) + \ldots + (1 + hL)^n), \text{ (note } e_0 = 0 \text{)}
\]

\[
= \frac{Ch^2}{2} \left(\frac{(1 + hL)^{n+1} - 1}{(1 + hL) - 1} \right)
\]

\[
= \frac{Ch}{2L} ((1 + hL)^{n+1} - 1)
\]

Since \((1 + hL)^n < e^{nhL} = e^{Ln} \), for any \(h > 0 \), we have that for any \(0 \leq n \leq T/h \),

\[
|e_n| < \frac{Ch}{2L} (e^{L_{n+1}} - 1) \leq \frac{Ch}{2L} (e^{LT} - 1) \tag{7}
\]

But, since \(\frac{Ch}{2L} (e^{LT} - 1) \) is a constant independent of \(h \), so (3) holds.

QED.