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Ptolemy II: Framework for Experimenting with Alternative 
Concurrent Models of Computation 

Director from a library 
defines component 
interaction semantics 

Domain-polymorphic 
component library. 

Basic Ptolemy II infrastructure: 

Visual editor supporting an abstract syntax 

Type system 
for transported 
data 
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The Basic Abstract Syntax 

PortPort

Actor Actor
Link

Relation

Actor
Port

connection

connection co
nn
ec
tio
n

Link

Li
nk

Attributes Attributes

Attributes

•  Actors 
•  Attributes on actors (parameters) 
•  Ports in actors 
•  Links between ports 
•  Width on links (channels) 
•  Hierarchy 

Concrete syntaxes: 
•  XML 
•  Visual pictures 
•  Actor languages (Cal, StreamIT, …) 
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Hierarchy - Composite Components 

toplevel CompositeActor 
transparent or opaque 
CompositeActor 

Actor 
Relation dangling 

Port 

Port 
opaque Port 
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Abstract Semantics 
of Actor-Oriented Models of Computation 

Actor-Oriented Models of 
Computation that we have 
implemented: 
 
•  dataflow (several variants) 
•  process networks 
•  distributed process networks 
•  Click (push/pull) 
•  continuous-time 
•  CSP (rendezvous) 
•  discrete events 
•  distributed discrete events 
•  synchronous/reactive 
•  time-driven (several variants) 
•  … 

  Actor

  IOPort
  IORelation

P2
P1

E1

E2

send(0,t) receiver.put(t) get(0)

token t
R1

Basic Transport:

  Receiver
(inside port)

execution control data transport 

init() 
fire() 
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Notation: UML Static Structure Diagrams 

ComponentEntity

+ComponentEntity(container : CompositeEntity, name : String)
+getContainer() : CompositeEntity
+isAtomic() : boolean

-_container : CompositeEntity

Entity

+Entity()
+getPortList() : List

Port

+Port()
+getContainer() : Entity
#_link(r : Relation)

-_container : Entity

0..n
0..1

container

class 

extends 

subclass 
private member 

protected method 

association 

aggregation 
cardinality 
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Instance of ProcessThread Wraps Every Actor 

ptolemy.actor.Director

ptolemy.actor.process.ProcessDirector

+ProcessDirector()
+ProcessDirector(workspace : Workspace)
+ProcessDirector(container : CompositeEntity, name : String)
#_actorBlocked(receiver : ProcessReceiver)
#_actorHasStopped()
#_actorHasRestarted()
#_actorUnBlocked(receiver : ProcessReceiver)
#_addNewThread(thread : ProcessThread)
#_areActorsDeadlocked() : boolean
#_areAllActorsStopped() : boolean
#_decreaseActiveCount()
#_getActiveActorsCount() : int
#_getBlockedActorsCount() : int
#_getStoppedActorsCount() : int
#_getProcessThread(actor : Actor) : ProcessThread
#_increaseActiveCount()
#_resolveDeadlock()

+initialQueueCapacity : Parameter
+maximumQueueCapacity : Parameter

«interface»
ptolemy.actor.Executable

+preinitialize()
+initialize()
+prefire()
+fire()
+postfire()
+wrapup()

java.lang.Thread

+run()

ptolemy.kernel.util.PtolemyThread

Adds
debugging
facilities

ptolemy.actor.process.ProcessThread

+ProcessThread(actor : Actor, director : ProcessDirector)
+getActor() : Actor
+wraopu()

-_actor : Actor
-_director : ProcessDirectorcreates in initialize()

«Interface»
Actor

+getDirector() : Director

wraps
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ProcessThread Implementation (Outline) 

_director._increaseActiveCount(); 
try { 
    _actor.initialize(); 
    boolean iterate = true; 
    while (iterate) { 
        if (_actor.prefire()) { 
            _actor.fire(); 
            iterate = _actor.postfire(); 
        } 
    } 
} finally { 
    try { 
        wrapup(); 
    } finally { 
        _director._decreaseActiveCount(); 
    } 
} 

Subtleties: 
 
•  The threads may never 

terminate on their own 
(a common situation). 

•  The model may 
deadlock (all active 
actors are waiting for 
input data) 

•  Execution may be 
paused by pushing the 
pause button. 

•  An actor may be deleted 
while it is executing. 

•  Any actor method may 
throw an exception. 

•  Buffers may grow 
without bound. 
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Typical fire() Method of an Actor 

    /** Compute the absolute value of the input.  
     *  If there is no input, then produce no output. 
     *  @exception IllegalActionException If there is 
     *   no director. 
     */ 
    public void fire() throws IllegalActionException { 
        if (input.hasToken(0)) { 
            ScalarToken in = (ScalarToken)input.get(0); 
            output.send(0, in.absolute()); 
        } 
    } 

The get() method is behaviorally polymorphic: what it does depends on the director. 
 
In PN, hasToken() always returns true, and the get() method blocks if there is no data. 
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Sketch of get() and send() Methods of IOPort 

    public Token get(int channelIndex) { 
      Receiver[] localReceivers = getReceivers(); 

      return localReceivers[channelIndex].get(); 

   } 
 

   public void send(int channelIndex, Token token) { 

      Receiver[] farReceivers = getRemoteReceivers(); 

      farReceivers[channelIndex].put(token); 

   } 
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Ports and Receivers 

ptolemy.actor.Director

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

«Interface»
Actor

+getDirector() : Director

IOPort

+get(channelIndex : int) : Token
+hasRoom(channelIndex : int) : boolean
+hasToken(channelIndex : int) : boolean
+isInput() : boolean
+isOutput() : boolean
+send(channelIndex : int, token : Token)

creates

actor contains ports 

port contains receivers 

director creates receivers 

receiver implements communication 
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Process Networks Receiver Outline 

public class PNQueueReceiver extends QueueReceiver 
       implements ProcessReceiver { 
 
    private boolean _readBlocked; 
 
    public boolean hasToken() { 
        return true; 
    } 
 
    public synchronized Token get() { 
        ... 
    } 
 
    public synchronized void put(Token token) { 
        ... 
    } 
} 
 

flag indicating whether the 
consumer thread is blocked. 

always indicate that a token is 
available 

acquire a lock on the receiver 
before executing put() or get() 
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get() Method (Simplified) 

 
    public synchronized Token get() { 
        PNDirector director = ... get director ...; 
        while (!super.hasToken()) { 
            _readBlocked = true; 
            director._actorBlocked(this); 
            while (_readBlocked) { 
                try { 
                    wait(); 
                } catch (InterruptedException e) { 
                    throw new TerminateProcessException(""); 
                } 
            } 
        } 
        return result = super.get(); 
    } 
 

notify the director that the 
consumer thread is blocked 

release the lock on the 
receiver and stall the thread 

use this exception to stop 
execution of the actor thread 

super class returns true only if 
there is a token in the queue 

super class returns the first token 
in the queue. 
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put() Method (Simplified) 

    public synchronized void put(Token token) { 
        PNDirector director = ... get director ...; 
        super.put(token); 
        if (_readBlocked) { 
            director._actorUnBlocked(this); 
            _readBlocked = false; 
            notifyAll(); 
        } 
    } 

notify the director that the 
consumer thread unblocks. 

wake up all threads that are 
blocked on wait(). 
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Subtleties 

¢  Director must be able to detect deadlock. 
l  It keeps track of blocked threads 

¢  Stopping execution is tricky 
l  When to stop a thread? 
l  How to stop a thread? 

¢  Non-blocking writes are problematic in practice 
l  Unbounded memory usage 
l  Use Parks’ strategy: 

•  Bound the buffers 
•  Block on writes when buffer is full 
•  On deadlock, increase buffers sizes for actors blocked on writes 
•  Provably executes in bounded memory if that is possible (subtle). 
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Stopping Threads 

“Why is Thread.stop deprecated? 
 Because it is inherently unsafe. Stopping a thread causes it to unlock all 
the monitors that it has locked. (The monitors are unlocked as the 
ThreadDeath exception propagates up the stack.) If any of the objects 
previously protected by these monitors were in an inconsistent state, 
other threads may now view these objects in an inconsistent state. 
Such objects are said to be damaged. When threads operate on 
damaged objects, arbitrary behavior can result. This behavior may be 
subtle and difficult to detect, or it may be pronounced. Unlike other 
unchecked exceptions, ThreadDeath kills threads silently; thus, the user 
has no warning that his program may be corrupted. The corruption can 
manifest itself at any time after the actual damage occurs, even hours 
or days in the future.” 

 
Java JDK 1.4 documentation. 
Thread.suspend() and resume() are similarly deprecated. 
Thread.destroy() is unimplemented. 
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Distributed Process Networks 

Created by Dominique Ragot, Thales Communications 

Transport mechanism between hosts is 
provided by the director (via receivers). 
Transparently provides guaranteed delivery and 
ordered messages. 
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Threads 

Threads dominate concurrent software. 
 

l  Threads: Sequential computation with shared memory. 
l  Interrupts: Threads started by the hardware. 

 
Incomprehensible interactions between threads are the sources of many 
problems: 
 

l  Deadlock 
l  Priority inversion 
l  Scheduling anomalies 
l  Timing variability 
l  Nondeterminism  
l  Buffer overruns 
l  System crashes 
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My Claim 

 
 
Nontrivial software written with threads is 
incomprehensible to humans. It cannot deliver 
repeatable and predictable timing, except in trivial 
cases. 
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Consider a Simple Example 

 “The Observer pattern defines a one-to-many 
dependency between a subject object and any number 
of observer objects so that when the subject object 
changes state, all its observer objects are notified and 
updated automatically.”  

 
 Design Patterns, Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides 
(Addison-Wesley Publishing Co., 1995. ISBN: 0201633612):  
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Observer Pattern in Java 

public void addListener(listener) {…} 

 
public void setValue(newValue) { 
    myValue = newValue; 
 
    for (int i = 0; i < myListeners.length; i++) { 
        myListeners[i].valueChanged(newValue) 
    } 

} 

Thanks to Mark S. Miller for the details 
of this example. 
 

Will this work in a 
multithreaded context? 
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Observer Pattern 
With Mutual Exclusion (Mutexes) 

public synchronized void addListener(listener) {…} 

 
public synchronized void setValue(newValue) { 
    myValue = newValue; 
 
    for (int i = 0; i < myListeners.length; i++) { 
        myListeners[i].valueChanged(newValue) 
    } 

} 

Javasoft recommends against this. 
What’s wrong with it? 
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Mutexes are Minefields 

public synchronized void addListener(listener) {…} 

 
public synchronized void setValue(newValue) { 
    myValue = newValue; 
 
    for (int i = 0; i < myListeners.length; i++) { 
        myListeners[i].valueChanged(newValue) 
    } 

} 
valueChanged() may attempt to acquire 
a lock on some other object and stall. If 
the holder of that lock calls 
addListener(), deadlock! 
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After years of use without problems, a Ptolemy Project code review found 
code that was not thread safe. It was fixed in this way. Three days later, a 
user in Germany reported a deadlock that had not shown up in the test suite. 
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Simple Observer Pattern Becomes 
Not So Simple 

public synchronized void addListener(listener) {…} 

 
public void setValue(newValue) { 
    synchronized(this) { 
        myValue = newValue; 
        listeners = myListeners.clone(); 
    } 
 
    for (int i = 0; i < listeners.length; i++) { 
        listeners[i].valueChanged(newValue) 
    } 

} 

while holding lock, make copy 
of listeners to avoid race 
conditions 

notify each listener outside of 
synchronized block to avoid 
deadlock 

This still isn’t right. 
What’s wrong with it? 
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Simple Observer Pattern: 
How to Make It Right? 

public synchronized void addListener(listener) {…} 

 
public void setValue(newValue) { 
    synchronized(this) { 
        myValue = newValue; 
        listeners = myListeners.clone(); 
    } 
 
    for (int i = 0; i < listeners.length; i++) { 
        listeners[i].valueChanged(newValue) 
    } 

} Suppose two threads call setValue(). One of them will set the value last, 
leaving that value in the object, but listeners may be notified in the opposite 
order. The listeners may be alerted to the value changes in the wrong order! 
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If the simplest design patterns yield such problems, what 
about non-trivial designs? 

/** 
CrossRefList is a list that maintains pointers to other CrossRefLists. 
… 
@author Geroncio Galicia, Contributor: Edward A. Lee 
@version $Id: CrossRefList.java,v 1.78 2004/04/29 14:50:00 eal Exp $ 
@since Ptolemy II 0.2 
@Pt.ProposedRating Green (eal) 
@Pt.AcceptedRating Green (bart) 
*/ 
public final class CrossRefList implements Serializable  { 
    … 
    protected class CrossRef implements Serializable{ 
        …         
        // NOTE: It is essential that this method not be 
        // synchronized, since it is called by _farContainer(), 
        // which is.  Having it synchronized can lead to 
        // deadlock.  Fortunately, it is an atomic action, 
        // so it need not be synchronized. 
        private Object _nearContainer() { 
            return _container; 
        } 
 
        private synchronized Object _farContainer() { 
            if (_far != null) return _far._nearContainer(); 
            else return null; 
        } 
        … 
    } 
} 

Code that had been in 
use for four years, 
central to Ptolemy II, 
with an extensive test 
suite with 100% code 
coverage, design 
reviewed to yellow, then 
code reviewed to green 
in 2000, causes a 
deadlock during a demo 
on April 26, 2004. 
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What it Feels Like to Use the synchronized 
Keyword in Java 
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Perhaps Concurrency is Just Hard… 

Sutter and Larus observe: 
 

 “humans are quickly overwhelmed by concurrency and 
find it much more difficult to reason about concurrent 
than sequential code. Even careful people miss possible 
interleavings among even simple collections of partially 
ordered operations.” 

 
 

 H. Sutter and J. Larus. Software and the concurrency revolution. 
ACM Queue, 3(7), 2005. 
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Is Concurrency Hard? 

It is not 
concurrency that 
is hard… 
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…It is Threads that are Hard! 

 
Threads are sequential processes that share 
memory. From the perspective of any thread, the 
entire state of the universe can change between 
any two atomic actions (itself an ill-defined 
concept). 
 
Imagine if the physical world did that… 
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Succinct Problem Statement 

 
Threads are wildly nondeterministic. 
 
The programmer’s job is to prune away the 
nondeterminism by imposing constraints on execution 
order (e.g., mutexes) and limiting shared data accesses 
(e.g., OO design). 
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We Can Incrementally Improve Threads 

Object Oriented programming 
Coding rules (Acquire locks in the same order…) 
Libraries (Stapl, Java 5.0, …) 
Patterns (MapReduce, …) 
Transactions (Databases, …) 
Formal verification (Blast, thread checkers, …) 
Enhanced languages (Split-C, Cilk, Guava, …) 
Enhanced mechanisms (Promises, futures, …) 
 

 But is it enough to refine a mechanism  
with flawed foundations? 
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The Result: Brittle Designs 

Small changes have big consequences… 
 
Patrick Lardieri, Lockheed Martin ATL, about a vehicle management 
system in the JSF program: 

“Changing the instruction memory layout of the Flight Control Systems 
Control Law process to optimize ‘Built in Test’ processing led to an 
unexpected performance change - System went from meeting real-
time requirements to missing most deadlines due to a change that was 
expected to have no impact on system performance.” 

National Workshop on High-Confidence Software Platforms for 
Cyber-Physical Systems (HCSP-CPS) Arlington, VA November 30 –
December 1, 2006 
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For a brief optimistic instant, transactions looked 
like they might save us… 

 
 
“TM is not as easy as it looks (even to explain)” 
 
Michael L. Scott, invited keynote, (EC)2  Workshop, Princeton, 
NJ, July 2008 
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So, the answer must be message passing, right? 

 
 
Not quite… 
 
More discipline is needed that what is provided by 
today’s message passing libraries. 
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A Model of Threads 

Binary digits:   B = {0, 1} 
State space:   B* 
Instruction (atomic action):   a : B* → B* 

Instruction (action) set:   A ⊂ [B* → B* ] 
Thread (non-terminating):   t : N → A 
Thread (terminating):   t :{0, … , n} → A,    n ∈ N 
 
A thread is a sequence of atomic actions, a member of A** 
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Programs 

A program is a finite representation of a family of threads 
(one for each initial state b0 ). 
Machine control flow: c : B* → N  (e.g. program counter) 
where c ( b ) = 0  is interpreted as a “stop” command. 
 
Let m be the program length. Then a program is: 

 p : {1, … , m} → A 
 
A program is an ordered sequence of m instructions, a 
member of A* 
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Execution (Operational Semantics) 

Given initial state b0 ∈ B* , then execution is: 
 b1 = p ( c ( b0 ))( b0 )       = t (1)( b0 )  
 b2 = p ( c ( b1 ))( b1 )       = t (2)( b1 )  
 … 
 bn = p ( c ( bn-1 ))( bn-1 )   = t (n)( bn-1 ) 

  c ( bn ) = 0 
 
Execution defines a partial function (defined on a subset 
of the domain) from the initial state to final state: 

 ep : B* → B* 
This function is undefined if the thread does not 
terminate. 
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Threads as Sequences of State Changes 

initial state: b0  

final state: bn  

sequence t ( i ): B* → B* 

•  Time is irrelevant 
•  All actions are ordered 
•  The thread sequence depends on the program and the state 
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Expressiveness 

Given a finite action set:   A ⊂ [B* → B*] 
Execution:   ep ∈ [B* → B* ] 
 
Can all functions in [B* → B*] be defined by a program? 
 
 
Compare the cardinality of the two sets: 

 set of functions: [B* → B*] 
 set of programs: [{1, … , m} → A,  m ∈ N ] = A* 
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Programs Cannot Define All Functions 

Cardinality of this set: [{1, … , m} → A,  m ∈ N ] is the 
same as the cardinality of the set of integers (put the 
elements of the set into a one-to-one correspondence 
with the integers). The set is countable. 
 
This set is larger: [B* → B* ]. 
Proof: Consider the subset of total functions. Isomorphic 
(there exists a bijection) to [N → N] using binary encoding 
of the integers. This set is not countable (use Cantor’s 
diagonal argument to show this).  
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Taxonomy of Functions 

Functions from initial state to final state: 
 F = [ N → N ] 

 
Partial recursive functions: 

 PR ⊂ [ N → N ]   (partial functions) 

(Those functions for which there is a program that 
terminates for zero or more initial states (arguments). The 
domain of the function is the set on which it terminates). 
 
Total recursive functions: 

 TR ⊂ P ⊂ [ N → N ] 
(There is a program that terminates for all initial states). 
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Church-Turing Thesis 

Every function  that is computable by any practical 
computer is in PR. 
 
There are many “good” choices of finite action sets that 
yield an isomorphic definition of the set PR 
 
Evidence that this set is fundamental is that Turing 
machines, lambda calculus, PCF (a basic recursive 
programming language), and all practical computer 
instruction sets yield isomorphic sets PR. 
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Key Results in Computation 

Turing: Instruction set with 7 instructions is enough to 
write programs for all partial recursive functions. 

l A program using this instruction set is called a Turing 
machine 

l A universal Turing machine is a Turing machine that can 
execute a binary encoding of any Turing machine. 

 
Church: Instructions are a small set of transformation 
rules on strings called the lambda calculus. 

l Equivalent to Turing machines.  

Lee 05: 46 

Turing Completeness 
 
A Turing complete instruction set is a finite subset of PR 
(and probably of TR) whose transitive closure is PR. 
 
 
Many choices of underlying instruction sets A ⊂ [ N → N ]  
are Turing complete and hence equivalent. 
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Equivalence 

Any two programs that implement the same partial 
recursive function are equivalent. 

l Terminate for the same initial states. 
l End up in the same final states. 

 

NOTE: Big problem for embedded software: 
l All non-terminating programs are equivalent. 
l All programs that terminate in the same “exception” state 

are equivalent. 
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Limitations of the 20-th Century  
Theory of Computation 

¢  Only terminating computations are handled. 

This is not very useful… 
But it gets even worse: 
 
¢  There is no concurrency. 
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Concurrency: Interactions Between Threads 

suspend 

The operating system 
(typically) provides: 

•  suspend/resume 
•  mutual exclusion 
•  semaphores 

 

resume 

another thread can 
change the state 

Recall that for a thread, which 
instruction executes next 
depends on the state, and what 
it does depends on the state. 
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Nonterminating and/or Interacting Threads: 
Allow State to be Observed and Modified 

external input 

environment observes state 

sequence p ( c ( bi )): B** → B** 

initial state 

environment modifies state 
… 

… 
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Recall Execution of a Program 

Given initial state b0 ∈ B*, then execution is: 
 b1 = p ( c ( b0 ))( b0 )       = t (1)( b0 )  
 b2 = p ( c ( b1 ))( b1 )       = t (2)( b1 )  
 … 
 bn = p ( c ( bn-1 ))( bn-1 )   = t (n)( bn-1 )  
 c ( bn ) = 0 

 
When a thread executes alone, execution is a 

composition of functions: 
 t (n) ◦ … ◦ t (2) ◦ t (1) 
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Interleaved Threads 

Consider two threads with functions: 
 t1(1), t1 (2), … , t1 (n) 
 t2 (1), t2 (2), … , t2 (m) 

 
These functions are arbitrarily interleaved. 
 
Worse: The i-th action executed by the machine, if it 
comes from program c ( bi-1), is: 

 t (i) = p ( c ( bi-1)) 
which depends on the state, which may be affected by 
the other thread.  
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Equivalence of Pairs of Programs 

For concurrent programs p1 and p2 to be equivalent under 
threaded execution to programs  p1' and p2' , we need for 
each arbitrary interleaving of the thread functions 
produced by that interleaving to terminate and to 
compose to the same function as all other interleavings 
for both programs. 
 
This is hopeless, except for trivial concurrent programs! 
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Equivalence of Individual Programs 

If program p1 is to be executed in a threaded 
environment, then without knowing what other programs 
will execute with it, there is no way to determine whether 
it is equivalent to program  p1'  except to require the 
programs to be identical. 
 
This makes threading nearly useless, since it makes it 
impossible to reason about programs. 
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Determinacy 

For concurrent programs p1 and p2 to be determinate 
under threaded execution we need for each arbitrary 
interleaving of the thread functions produced by that 
interleaving to terminate and to compose to the same 
function as all other interleavings. 
 
This is again hopeless, except for trivial concurrent 
programs! 
 
Moreover, without knowing what other programs will 
execute with it, we cannot determine whether a given 
program is determinate. 

Lee 05: 56 

Manifestations of Problems 

¢  Race conditions 
•  Two threads modify the same portion of the state. Which one 

gets there first? 

¢  Consistency 
•  A data structure with interdependent data is updated in multiple 

atomic actions. Between these actions, the state is inconsistent. 

¢  Deadlock 
•  Fixes to the above two problems result in threads waiting for 

each other to complete an action that they will never complete. 
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Improving the Utility of the Thread Model 

Brute force methods for making threads useful: 
 

l Segmented memory (processes) 
•  Pipes and file systems provide mechanisms for sharing data. 
•  Implementation of these requires a thread model, but this 

implementation is done by operating system expert, not by 
application programmers. 

l Functions (no side effects) 
•  Disciplined programming design pattern, or… 
•  Functional languages (like Concurrent ML)  

l Single assignment of variables 
•  Avoids race conditions 
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Mechanisms for Achieving Determinacy 

Less brute force (but also weaker): 
 
¢   Semaphores 
¢   Mutual exclusion locks (mutexes, monitors) 
¢   Rendezvous 

All require an atomic test-and-set operation, which is not 
in the Turing machine instruction set. 
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rendezvous is more 
symmetric use of 
semaphores 

semaphore or monitor 
used to stall a thread 

race condition 

Mechanisms for Interacting Threads 

Potential for 
race conditions, 
inconsistency, 
and deadlock 
severely 
compromise 
software 
reliability. 
 
These methods 
date back to the 
1960’s 
(Dijkstra). 
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Deadlock 

acquire lock x 

“Acquire lock x” means the following atomic action: 
 if x is false, set it to true, 
 else stall until it is false. 

where x is Boolean variable (a “semaphore”). 
“Release lock x” means: 

 set x to false. 

acquire lock y 

acquire lock y 
stall 

acquire lock x 

stall 
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Simple Rule for Avoiding Deadlock [Lea] 

 
“Always acquire locks in the same order.” 
 
However, this is very difficult to apply in practice: 
¢  Method signatures do not indicate what locks they grab 

(so you need access to all the source code of methods 
you use). 

¢  Symmetric accesses (where either thread can initiate 
an interaction) become more difficult. 

Lee 05: 62 

remote procedure call 

Distributed Computing: In Practice, Often Based 
on Remote Procedure Calls (RPC) 

Force-fitting the 
sequential 
abstraction onto 
parallel 
hardware. 
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“asynchronous” 
 procedure call 

Combining Processes and RPC –  
Split-Phase Execution, Futures, 
Asynchronous Method Calls, Callbacks, … 

These methods 
are at least as 
incomprehensible 
as concurrent 
threads or 
processes. 
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What is an Actor-Oriented MoC? 

Actor oriented: 

actor name 

data (state) 

ports 

Input data 

parameters 

         Output data 

What flows through 
an object is 

streams of data 

class name 

data 

methods 

call return 

What flows through 
an object is 

sequential control 

Traditional component interactions: 
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Models of Computation 
Implemented in Ptolemy II 

CI – Push/pull component interaction 
Click – Push/pull with method invocation 
CSP – concurrent threads with rendezvous 
CT – continuous-time modeling 
DE – discrete-event systems 
DDE – distributed discrete events 
FSM – finite state machines 
DT – discrete time (cycle driven)  
Giotto – synchronous periodic 
GR – 2-D and 3-D graphics 
PN – process networks 
DPN – distributed process networks 
SDF – synchronous dataflow 
SR – synchronous/reactive 
TM – timed multitasking 

Most of 
these are 
actor 
oriented. 
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Do we have a sound foundation for concurrent 
programming? 

If the foundation is 
bad, then we either 
tolerate brittle 
designs that are 
difficult to make work, 
or we have to rebuild 
from the foundations. 

Note that this whole enterprise is 
held up by threads 
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Summary 

¢ Theory of computation supports well only 
l  terminating 
l non-concurrent 

 computation 
 
¢ Threads are a poor concurrent model of computation 

l weak formal reasoning possibilities 
l  incomprehensibility 
l race conditions 
l  inconsistent state conditions 
l deadlock risk 


