
l 1

Concurrent Models of
Computation

Edward A. Lee
Robert S. Pepper Distinguished Professor, UC Berkeley
EECS 219D
Concurrent Models of Computation
Fall 2011

Copyright © 2009-11, Edward A. Lee, All rights reserved

Week 5: Threads

Lee 05: 2

Ptolemy II: Framework for Experimenting with Alternative
Concurrent Models of Computation

Director from a library
defines component
interaction semantics

Domain-polymorphic
component library.

Basic Ptolemy II infrastructure:

Visual editor supporting an abstract syntax

Type system
for transported
data

l 2

Lee 05: 3

The Basic Abstract Syntax

PortPort

Actor Actor
Link

Relation

Actor
Port

connection

connection co
nn
ec
tio
n

Link

Li
nk

Attributes Attributes

Attributes

•  Actors
•  Attributes on actors (parameters)
•  Ports in actors
•  Links between ports
•  Width on links (channels)
•  Hierarchy

Concrete syntaxes:
•  XML
•  Visual pictures
•  Actor languages (Cal, StreamIT, …)

Lee 05: 4

Hierarchy - Composite Components

toplevel CompositeActor
transparent or opaque
CompositeActor

Actor
Relation dangling

Port

Port
opaque Port

l 3

Lee 05: 5

Abstract Semantics
of Actor-Oriented Models of Computation

Actor-Oriented Models of
Computation that we have
implemented:

•  dataflow (several variants)
•  process networks
•  distributed process networks
•  Click (push/pull)
•  continuous-time
•  CSP (rendezvous)
•  discrete events
•  distributed discrete events
•  synchronous/reactive
•  time-driven (several variants)
•  …

 Actor

 IOPort
 IORelation

P2
P1

E1

E2

send(0,t) receiver.put(t) get(0)

token t
R1

Basic Transport:

 Receiver
(inside port)

execution control data transport

init()
fire()

Lee 05: 6

Notation: UML Static Structure Diagrams

ComponentEntity

+ComponentEntity(container : CompositeEntity, name : String)
+getContainer() : CompositeEntity
+isAtomic() : boolean

-_container : CompositeEntity

Entity

+Entity()
+getPortList() : List

Port

+Port()
+getContainer() : Entity
#_link(r : Relation)

-_container : Entity

0..n
0..1

container

class

extends

subclass
private member

protected method

association

aggregation
cardinality

l 4

Lee 05: 7

Instance of ProcessThread Wraps Every Actor

ptolemy.actor.Director

ptolemy.actor.process.ProcessDirector

+ProcessDirector()
+ProcessDirector(workspace : Workspace)
+ProcessDirector(container : CompositeEntity, name : String)
#_actorBlocked(receiver : ProcessReceiver)
#_actorHasStopped()
#_actorHasRestarted()
#_actorUnBlocked(receiver : ProcessReceiver)
#_addNewThread(thread : ProcessThread)
#_areActorsDeadlocked() : boolean
#_areAllActorsStopped() : boolean
#_decreaseActiveCount()
#_getActiveActorsCount() : int
#_getBlockedActorsCount() : int
#_getStoppedActorsCount() : int
#_getProcessThread(actor : Actor) : ProcessThread
#_increaseActiveCount()
#_resolveDeadlock()

+initialQueueCapacity : Parameter
+maximumQueueCapacity : Parameter

«interface»
ptolemy.actor.Executable

+preinitialize()
+initialize()
+prefire()
+fire()
+postfire()
+wrapup()

java.lang.Thread

+run()

ptolemy.kernel.util.PtolemyThread

Adds
debugging
facilities

ptolemy.actor.process.ProcessThread

+ProcessThread(actor : Actor, director : ProcessDirector)
+getActor() : Actor
+wraopu()

-_actor : Actor
-_director : ProcessDirectorcreates in initialize()

«Interface»
Actor

+getDirector() : Director

wraps

Lee 05: 8

ProcessThread Implementation (Outline)

_director._increaseActiveCount();
try {
 _actor.initialize();
 boolean iterate = true;
 while (iterate) {
 if (_actor.prefire()) {
 _actor.fire();
 iterate = _actor.postfire();
 }
 }
} finally {
 try {
 wrapup();
 } finally {
 _director._decreaseActiveCount();
 }
}

Subtleties:

•  The threads may never

terminate on their own
(a common situation).

•  The model may
deadlock (all active
actors are waiting for
input data)

•  Execution may be
paused by pushing the
pause button.

•  An actor may be deleted
while it is executing.

•  Any actor method may
throw an exception.

•  Buffers may grow
without bound.

l 5

Lee 05: 9

Typical fire() Method of an Actor

 /** Compute the absolute value of the input.
 * If there is no input, then produce no output.
 * @exception IllegalActionException If there is
 * no director.
 */
 public void fire() throws IllegalActionException {
 if (input.hasToken(0)) {
 ScalarToken in = (ScalarToken)input.get(0);
 output.send(0, in.absolute());
 }
 }

The get() method is behaviorally polymorphic: what it does depends on the director.

In PN, hasToken() always returns true, and the get() method blocks if there is no data.

Lee 05: 10

Sketch of get() and send() Methods of IOPort

 public Token get(int channelIndex) {
 Receiver[] localReceivers = getReceivers();

 return localReceivers[channelIndex].get();

 }

 public void send(int channelIndex, Token token) {

 Receiver[] farReceivers = getRemoteReceivers();

 farReceivers[channelIndex].put(token);

 }

l 6

Lee 05: 11

Ports and Receivers

ptolemy.actor.Director

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

«Interface»
Actor

+getDirector() : Director

IOPort

+get(channelIndex : int) : Token
+hasRoom(channelIndex : int) : boolean
+hasToken(channelIndex : int) : boolean
+isInput() : boolean
+isOutput() : boolean
+send(channelIndex : int, token : Token)

creates

actor contains ports

port contains receivers

director creates receivers

receiver implements communication

Lee 05: 12

Process Networks Receiver Outline

public class PNQueueReceiver extends QueueReceiver
 implements ProcessReceiver {

 private boolean _readBlocked;

 public boolean hasToken() {
 return true;
 }

 public synchronized Token get() {
 ...
 }

 public synchronized void put(Token token) {
 ...
 }
}

flag indicating whether the
consumer thread is blocked.

always indicate that a token is
available

acquire a lock on the receiver
before executing put() or get()

l 7

Lee 05: 13

get() Method (Simplified)

 public synchronized Token get() {
 PNDirector director = ... get director ...;
 while (!super.hasToken()) {
 _readBlocked = true;
 director._actorBlocked(this);
 while (_readBlocked) {
 try {
 wait();
 } catch (InterruptedException e) {
 throw new TerminateProcessException("");
 }
 }
 }
 return result = super.get();
 }

notify the director that the
consumer thread is blocked

release the lock on the
receiver and stall the thread

use this exception to stop
execution of the actor thread

super class returns true only if
there is a token in the queue

super class returns the first token
in the queue.

Lee 05: 14

put() Method (Simplified)

 public synchronized void put(Token token) {
 PNDirector director = ... get director ...;
 super.put(token);
 if (_readBlocked) {
 director._actorUnBlocked(this);
 _readBlocked = false;
 notifyAll();
 }
 }

notify the director that the
consumer thread unblocks.

wake up all threads that are
blocked on wait().

l 8

Lee 05: 15

Subtleties

¢  Director must be able to detect deadlock.
l  It keeps track of blocked threads

¢  Stopping execution is tricky
l  When to stop a thread?
l  How to stop a thread?

¢  Non-blocking writes are problematic in practice
l  Unbounded memory usage
l  Use Parks’ strategy:

•  Bound the buffers
•  Block on writes when buffer is full
•  On deadlock, increase buffers sizes for actors blocked on writes
•  Provably executes in bounded memory if that is possible (subtle).

Lee 05: 16

Stopping Threads

“Why is Thread.stop deprecated?
 Because it is inherently unsafe. Stopping a thread causes it to unlock all
the monitors that it has locked. (The monitors are unlocked as the
ThreadDeath exception propagates up the stack.) If any of the objects
previously protected by these monitors were in an inconsistent state,
other threads may now view these objects in an inconsistent state.
Such objects are said to be damaged. When threads operate on
damaged objects, arbitrary behavior can result. This behavior may be
subtle and difficult to detect, or it may be pronounced. Unlike other
unchecked exceptions, ThreadDeath kills threads silently; thus, the user
has no warning that his program may be corrupted. The corruption can
manifest itself at any time after the actual damage occurs, even hours
or days in the future.”

Java JDK 1.4 documentation.
Thread.suspend() and resume() are similarly deprecated.
Thread.destroy() is unimplemented.

l 9

Lee 05: 17

Distributed Process Networks

Created by Dominique Ragot, Thales Communications

Transport mechanism between hosts is
provided by the director (via receivers).
Transparently provides guaranteed delivery and
ordered messages.

Lee 05: 18

Threads

Threads dominate concurrent software.

l  Threads: Sequential computation with shared memory.
l  Interrupts: Threads started by the hardware.

Incomprehensible interactions between threads are the sources of many
problems:

l  Deadlock
l  Priority inversion
l  Scheduling anomalies
l  Timing variability
l  Nondeterminism
l  Buffer overruns
l  System crashes

l 10

Lee 05: 19

My Claim

Nontrivial software written with threads is
incomprehensible to humans. It cannot deliver
repeatable and predictable timing, except in trivial
cases.

Lee 05: 20

Consider a Simple Example

 “The Observer pattern defines a one-to-many
dependency between a subject object and any number
of observer objects so that when the subject object
changes state, all its observer objects are notified and
updated automatically.”

 Design Patterns, Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides
(Addison-Wesley Publishing Co., 1995. ISBN: 0201633612):

l 11

Lee 05: 21

Observer Pattern in Java

public void addListener(listener) {…}

public void setValue(newValue) {
 myValue = newValue;

 for (int i = 0; i < myListeners.length; i++) {
 myListeners[i].valueChanged(newValue)
 }

}

Thanks to Mark S. Miller for the details
of this example.

Will this work in a
multithreaded context?

Lee 05: 22

Observer Pattern
With Mutual Exclusion (Mutexes)

public synchronized void addListener(listener) {…}

public synchronized void setValue(newValue) {
 myValue = newValue;

 for (int i = 0; i < myListeners.length; i++) {
 myListeners[i].valueChanged(newValue)
 }

}

Javasoft recommends against this.
What’s wrong with it?

l 12

Lee 05: 23

Mutexes are Minefields

public synchronized void addListener(listener) {…}

public synchronized void setValue(newValue) {
 myValue = newValue;

 for (int i = 0; i < myListeners.length; i++) {
 myListeners[i].valueChanged(newValue)
 }

}
valueChanged() may attempt to acquire
a lock on some other object and stall. If
the holder of that lock calls
addListener(), deadlock!

Lee 05: 24

After years of use without problems, a Ptolemy Project code review found
code that was not thread safe. It was fixed in this way. Three days later, a
user in Germany reported a deadlock that had not shown up in the test suite.

l 13

Lee 05: 25

Simple Observer Pattern Becomes
Not So Simple

public synchronized void addListener(listener) {…}

public void setValue(newValue) {
 synchronized(this) {
 myValue = newValue;
 listeners = myListeners.clone();
 }

 for (int i = 0; i < listeners.length; i++) {
 listeners[i].valueChanged(newValue)
 }

}

while holding lock, make copy
of listeners to avoid race
conditions

notify each listener outside of
synchronized block to avoid
deadlock

This still isn’t right.
What’s wrong with it?

Lee 05: 26

Simple Observer Pattern:
How to Make It Right?

public synchronized void addListener(listener) {…}

public void setValue(newValue) {
 synchronized(this) {
 myValue = newValue;
 listeners = myListeners.clone();
 }

 for (int i = 0; i < listeners.length; i++) {
 listeners[i].valueChanged(newValue)
 }

} Suppose two threads call setValue(). One of them will set the value last,
leaving that value in the object, but listeners may be notified in the opposite
order. The listeners may be alerted to the value changes in the wrong order!

l 14

Lee 05: 27

If the simplest design patterns yield such problems, what
about non-trivial designs?

/**
CrossRefList is a list that maintains pointers to other CrossRefLists.
…
@author Geroncio Galicia, Contributor: Edward A. Lee
@version $Id: CrossRefList.java,v 1.78 2004/04/29 14:50:00 eal Exp $
@since Ptolemy II 0.2
@Pt.ProposedRating Green (eal)
@Pt.AcceptedRating Green (bart)
*/
public final class CrossRefList implements Serializable {
 …
 protected class CrossRef implements Serializable{
 …
 // NOTE: It is essential that this method not be
 // synchronized, since it is called by _farContainer(),
 // which is. Having it synchronized can lead to
 // deadlock. Fortunately, it is an atomic action,
 // so it need not be synchronized.
 private Object _nearContainer() {
 return _container;
 }

 private synchronized Object _farContainer() {
 if (_far != null) return _far._nearContainer();
 else return null;
 }
 …
 }
}

Code that had been in
use for four years,
central to Ptolemy II,
with an extensive test
suite with 100% code
coverage, design
reviewed to yellow, then
code reviewed to green
in 2000, causes a
deadlock during a demo
on April 26, 2004.

Lee 05: 28

What it Feels Like to Use the synchronized
Keyword in Java

Im
ag

e
“
bo

rr
ow

ed
”
 f

ro
m

 a
n

Io
m

eg
a

ad
ve

rt
is

em
en

t
fo

r
Y2

K
so

ft
wa

re
 a

nd
 d

is
k

dr
iv

es
, S

ci
en

ti
fi

c
A

m
er

ic
an

, S
ep

te
m

be
r

19
99

.

l 15

Lee 05: 29

Perhaps Concurrency is Just Hard…

Sutter and Larus observe:

 “humans are quickly overwhelmed by concurrency and
find it much more difficult to reason about concurrent
than sequential code. Even careful people miss possible
interleavings among even simple collections of partially
ordered operations.”

 H. Sutter and J. Larus. Software and the concurrency revolution.
ACM Queue, 3(7), 2005.

Lee 05: 30

Is Concurrency Hard?

It is not
concurrency that
is hard…

l 16

Lee 05: 31

…It is Threads that are Hard!

Threads are sequential processes that share
memory. From the perspective of any thread, the
entire state of the universe can change between
any two atomic actions (itself an ill-defined
concept).

Imagine if the physical world did that…

Lee 05: 32

Succinct Problem Statement

Threads are wildly nondeterministic.

The programmer’s job is to prune away the
nondeterminism by imposing constraints on execution
order (e.g., mutexes) and limiting shared data accesses
(e.g., OO design).

l 17

Lee 05: 33

We Can Incrementally Improve Threads

Object Oriented programming
Coding rules (Acquire locks in the same order…)
Libraries (Stapl, Java 5.0, …)
Patterns (MapReduce, …)
Transactions (Databases, …)
Formal verification (Blast, thread checkers, …)
Enhanced languages (Split-C, Cilk, Guava, …)
Enhanced mechanisms (Promises, futures, …)

 But is it enough to refine a mechanism
with flawed foundations?

Lee 05: 34

The Result: Brittle Designs

Small changes have big consequences…

Patrick Lardieri, Lockheed Martin ATL, about a vehicle management
system in the JSF program:

“Changing the instruction memory layout of the Flight Control Systems
Control Law process to optimize ‘Built in Test’ processing led to an
unexpected performance change - System went from meeting real-
time requirements to missing most deadlines due to a change that was
expected to have no impact on system performance.”

National Workshop on High-Confidence Software Platforms for
Cyber-Physical Systems (HCSP-CPS) Arlington, VA November 30 –
December 1, 2006

l 18

Lee 05: 35

For a brief optimistic instant, transactions looked
like they might save us…

“TM is not as easy as it looks (even to explain)”

Michael L. Scott, invited keynote, (EC)2 Workshop, Princeton,
NJ, July 2008

Lee 05: 36

So, the answer must be message passing, right?

Not quite…

More discipline is needed that what is provided by
today’s message passing libraries.

l 19

Lee 05: 37

A Model of Threads

Binary digits: B = {0, 1}
State space: B*
Instruction (atomic action): a : B* → B*

Instruction (action) set: A ⊂ [B* → B*]
Thread (non-terminating): t : N → A
Thread (terminating): t :{0, … , n} → A, n ∈ N

A thread is a sequence of atomic actions, a member of A**

Lee 05: 38

Programs

A program is a finite representation of a family of threads
(one for each initial state b0).
Machine control flow: c : B* → N (e.g. program counter)
where c (b) = 0 is interpreted as a “stop” command.

Let m be the program length. Then a program is:

 p : {1, … , m} → A

A program is an ordered sequence of m instructions, a
member of A*

l 20

Lee 05: 39

Execution (Operational Semantics)

Given initial state b0 ∈ B* , then execution is:
 b1 = p (c (b0))(b0) = t (1)(b0)
 b2 = p (c (b1))(b1) = t (2)(b1)
 …
 bn = p (c (bn-1))(bn-1) = t (n)(bn-1)

 c (bn) = 0

Execution defines a partial function (defined on a subset
of the domain) from the initial state to final state:

 ep : B* → B*
This function is undefined if the thread does not
terminate.

Lee 05: 40

Threads as Sequences of State Changes

initial state: b0

final state: bn

sequence t (i): B* → B*

•  Time is irrelevant
•  All actions are ordered
•  The thread sequence depends on the program and the state

l 21

Lee 05: 41

Expressiveness

Given a finite action set: A ⊂ [B* → B*]
Execution: ep ∈ [B* → B*]

Can all functions in [B* → B*] be defined by a program?

Compare the cardinality of the two sets:

 set of functions: [B* → B*]
 set of programs: [{1, … , m} → A, m ∈ N] = A*

Lee 05: 42

Programs Cannot Define All Functions

Cardinality of this set: [{1, … , m} → A, m ∈ N] is the
same as the cardinality of the set of integers (put the
elements of the set into a one-to-one correspondence
with the integers). The set is countable.

This set is larger: [B* → B*].
Proof: Consider the subset of total functions. Isomorphic
(there exists a bijection) to [N → N] using binary encoding
of the integers. This set is not countable (use Cantor’s
diagonal argument to show this).

l 22

Lee 05: 43

Taxonomy of Functions

Functions from initial state to final state:
 F = [N → N]

Partial recursive functions:

 PR ⊂ [N → N] (partial functions)

(Those functions for which there is a program that
terminates for zero or more initial states (arguments). The
domain of the function is the set on which it terminates).

Total recursive functions:

 TR ⊂ P ⊂ [N → N]
(There is a program that terminates for all initial states).

Lee 05: 44

Church-Turing Thesis

Every function that is computable by any practical
computer is in PR.

There are many “good” choices of finite action sets that
yield an isomorphic definition of the set PR

Evidence that this set is fundamental is that Turing
machines, lambda calculus, PCF (a basic recursive
programming language), and all practical computer
instruction sets yield isomorphic sets PR.

l 23

Lee 05: 45

Key Results in Computation

Turing: Instruction set with 7 instructions is enough to
write programs for all partial recursive functions.

l A program using this instruction set is called a Turing
machine

l A universal Turing machine is a Turing machine that can
execute a binary encoding of any Turing machine.

Church: Instructions are a small set of transformation
rules on strings called the lambda calculus.

l Equivalent to Turing machines.

Lee 05: 46

Turing Completeness

A Turing complete instruction set is a finite subset of PR
(and probably of TR) whose transitive closure is PR.

Many choices of underlying instruction sets A ⊂ [N → N]
are Turing complete and hence equivalent.

l 24

Lee 05: 47

Equivalence

Any two programs that implement the same partial
recursive function are equivalent.

l Terminate for the same initial states.
l End up in the same final states.

NOTE: Big problem for embedded software:
l All non-terminating programs are equivalent.
l All programs that terminate in the same “exception” state

are equivalent.

Lee 05: 48

Limitations of the 20-th Century
Theory of Computation

¢  Only terminating computations are handled.

This is not very useful…
But it gets even worse:

¢  There is no concurrency.

l 25

Lee 05: 49

Concurrency: Interactions Between Threads

suspend

The operating system
(typically) provides:

•  suspend/resume
•  mutual exclusion
•  semaphores

resume

another thread can
change the state

Recall that for a thread, which
instruction executes next
depends on the state, and what
it does depends on the state.

Lee 05: 50

Nonterminating and/or Interacting Threads:
Allow State to be Observed and Modified

external input

environment observes state

sequence p (c (bi)): B** → B**

initial state

environment modifies state
…

…

l 26

Lee 05: 51

Recall Execution of a Program

Given initial state b0 ∈ B*, then execution is:
 b1 = p (c (b0))(b0) = t (1)(b0)
 b2 = p (c (b1))(b1) = t (2)(b1)
 …
 bn = p (c (bn-1))(bn-1) = t (n)(bn-1)
 c (bn) = 0

When a thread executes alone, execution is a

composition of functions:
 t (n) ◦ … ◦ t (2) ◦ t (1)

Lee 05: 52

Interleaved Threads

Consider two threads with functions:
 t1(1), t1 (2), … , t1 (n)
 t2 (1), t2 (2), … , t2 (m)

These functions are arbitrarily interleaved.

Worse: The i-th action executed by the machine, if it
comes from program c (bi-1), is:

 t (i) = p (c (bi-1))
which depends on the state, which may be affected by
the other thread.

l 27

Lee 05: 53

Equivalence of Pairs of Programs

For concurrent programs p1 and p2 to be equivalent under
threaded execution to programs p1' and p2' , we need for
each arbitrary interleaving of the thread functions
produced by that interleaving to terminate and to
compose to the same function as all other interleavings
for both programs.

This is hopeless, except for trivial concurrent programs!

Lee 05: 54

Equivalence of Individual Programs

If program p1 is to be executed in a threaded
environment, then without knowing what other programs
will execute with it, there is no way to determine whether
it is equivalent to program p1' except to require the
programs to be identical.

This makes threading nearly useless, since it makes it
impossible to reason about programs.

l 28

Lee 05: 55

Determinacy

For concurrent programs p1 and p2 to be determinate
under threaded execution we need for each arbitrary
interleaving of the thread functions produced by that
interleaving to terminate and to compose to the same
function as all other interleavings.

This is again hopeless, except for trivial concurrent
programs!

Moreover, without knowing what other programs will
execute with it, we cannot determine whether a given
program is determinate.

Lee 05: 56

Manifestations of Problems

¢  Race conditions
•  Two threads modify the same portion of the state. Which one

gets there first?

¢  Consistency
•  A data structure with interdependent data is updated in multiple

atomic actions. Between these actions, the state is inconsistent.

¢  Deadlock
•  Fixes to the above two problems result in threads waiting for

each other to complete an action that they will never complete.

l 29

Lee 05: 57

Improving the Utility of the Thread Model

Brute force methods for making threads useful:

l Segmented memory (processes)
•  Pipes and file systems provide mechanisms for sharing data.
•  Implementation of these requires a thread model, but this

implementation is done by operating system expert, not by
application programmers.

l Functions (no side effects)
•  Disciplined programming design pattern, or…
•  Functional languages (like Concurrent ML)

l Single assignment of variables
•  Avoids race conditions

Lee 05: 58

Mechanisms for Achieving Determinacy

Less brute force (but also weaker):

¢  Semaphores
¢  Mutual exclusion locks (mutexes, monitors)
¢  Rendezvous

All require an atomic test-and-set operation, which is not
in the Turing machine instruction set.

l 30

Lee 05: 59

rendezvous is more
symmetric use of
semaphores

semaphore or monitor
used to stall a thread

race condition

Mechanisms for Interacting Threads

Potential for
race conditions,
inconsistency,
and deadlock
severely
compromise
software
reliability.

These methods
date back to the
1960’s
(Dijkstra).

Lee 05: 60

Deadlock

acquire lock x

“Acquire lock x” means the following atomic action:
 if x is false, set it to true,
 else stall until it is false.

where x is Boolean variable (a “semaphore”).
“Release lock x” means:

 set x to false.

acquire lock y

acquire lock y
stall

acquire lock x

stall

l 31

Lee 05: 61

Simple Rule for Avoiding Deadlock [Lea]

“Always acquire locks in the same order.”

However, this is very difficult to apply in practice:
¢  Method signatures do not indicate what locks they grab

(so you need access to all the source code of methods
you use).

¢  Symmetric accesses (where either thread can initiate
an interaction) become more difficult.

Lee 05: 62

remote procedure call

Distributed Computing: In Practice, Often Based
on Remote Procedure Calls (RPC)

Force-fitting the
sequential
abstraction onto
parallel
hardware.

l 32

Lee 05: 63

“asynchronous”
 procedure call

Combining Processes and RPC –
Split-Phase Execution, Futures,
Asynchronous Method Calls, Callbacks, …

These methods
are at least as
incomprehensible
as concurrent
threads or
processes.

Lee 05: 64

What is an Actor-Oriented MoC?

Actor oriented:

actor name

data (state)

ports

Input data

parameters

 Output data

What flows through
an object is

streams of data

class name

data

methods

call return

What flows through
an object is

sequential control

Traditional component interactions:

l 33

Lee 05: 65

Models of Computation
Implemented in Ptolemy II

CI – Push/pull component interaction
Click – Push/pull with method invocation
CSP – concurrent threads with rendezvous
CT – continuous-time modeling
DE – discrete-event systems
DDE – distributed discrete events
FSM – finite state machines
DT – discrete time (cycle driven)
Giotto – synchronous periodic
GR – 2-D and 3-D graphics
PN – process networks
DPN – distributed process networks
SDF – synchronous dataflow
SR – synchronous/reactive
TM – timed multitasking

Most of
these are
actor
oriented.

Lee 05: 66

Do we have a sound foundation for concurrent
programming?

If the foundation is
bad, then we either
tolerate brittle
designs that are
difficult to make work,
or we have to rebuild
from the foundations.

Note that this whole enterprise is
held up by threads

l 34

Lee 05: 67

Summary

¢ Theory of computation supports well only
l  terminating
l non-concurrent

 computation

¢ Threads are a poor concurrent model of computation

l weak formal reasoning possibilities
l  incomprehensibility
l race conditions
l  inconsistent state conditions
l deadlock risk

