

Fundamental Algorithms for System Modeling, Analysis, and Optimization

Edward A. Lee, Jaijeet Roychowdhury, Sanjit A. Seshia UC Berkeley EECS 144/244 Fall 2011

Copyright © 2010-11, E. A. Lee, J. Roychowdhury, S. A. Seshia, All rights reserved

Lec 12: Binary Decision Diagrams (BDDs)

Thanks to R. Rutenbar for some slides

Boolean Function Representations

- Syntactic: e.g.: CNF, DNF (SOP), Circuit
- Semantic: e.g.: Truth table, Binary Decision Tree, BDD

Reduced Ordered BDDs

- Introduced by Randal E. Bryant in mid-80s
 - IEEE Transactions on Computers 1986 paper is one of the most highly cited papers in EECS
- Useful data structure to represent Boolean functions
 - Applications in logic synthesis, verification, program analysis, Al planning, ...
- Commonly known simply as BDDs
 - Lee [1959] and Akers [1978] also presented BDDs, but not ROBDDs
- Many variants of BDDs have also proved useful
- Links to coding theory (trellises), etc.

3

RoadMap for this Lecture

- Cofactor of a Boolean function
- From truth table to BDD
- Properties of BDDs
- Operating on BDDs
- Variants

Cofactors

• A Boolean function F of n variables $x_1, x_2, ..., x_n$

$$F: \{0,1\}^n \rightarrow \{0,1\}$$

 Suppose we define new Boolean functions of n-1 variables as follows:

$$\begin{aligned} & \mathsf{F}_{\mathsf{x}_1} \left(\mathsf{x}_2, \, ..., \, \mathsf{x}_\mathsf{n} \right) \, = \mathsf{F}(\mathsf{1}, \, \mathsf{x}_2, \, \mathsf{x}_3, \, ..., \, \mathsf{x}_\mathsf{n}) \\ & \mathsf{F}_{\mathsf{x}_1} \left(\mathsf{x}_2, \, ..., \, \mathsf{x}_\mathsf{n} \right) = \mathsf{F}(\mathsf{0}, \, \mathsf{x}_2, \, \mathsf{x}_3, \, ..., \, \mathsf{x}_\mathsf{n}) \end{aligned}$$

F_{xi} and F_{xi} are called cofactors of F.
 F_{xi} is the positive cofactor, and F_{xi} is the negative cofactor

Shannon Expansion

•
$$F(x_1, ..., x_n) = x_i . F_{x_i} + x_i' . F_{x_i'}$$

• Proof?

Shannon expansion with many variables

•
$$F(x, y, z, w) = xy F_{xy} + x'y F_{xy} + xy' F_{xy'} + x'y' F_{x'y'}$$

7

Properties of Cofactors

- Suppose you construct a new function H from two existing functions F and G: e.g.,
 - -H=F'
 - -H = F.G
 - -H=F+G
 - Etc.
- What is the relation between cofactors of H and those of F and G?

Very Useful Property

- Cofactor of NOT is NOT of cofactors
- Cofactor of AND is AND of cofactors
- ...
- Works for any binary operator

ξ

BDDs from Truth Tables

Truth Table

Binary Decision Tree

Binary Decision Diagram (BDD)

Ordered Binary Decision Diagram (OBDD)

Reduced Ordered Binary Decision Diagram (ROBDD, simply called BDD)

Reduction

- Identify Redundancies
- 3 Rules:
- 1. Merge equivalent leaves
- 2. Merge isomorphic nodes
- 3. Eliminate redundant tests

Merge Equivalent Leaves

1.5

Merge Isomorphic Nodes

Example of Rule 3

2

What can BDDs be used for?

- Uniquely representing a Boolean function
 - And a Boolean function can represent sets
- Symbolic simulation of a combinational (or sequential) circuit
- Equivalence checking and verification
 - Satisfiability (SAT) solving

(RO)BDDs are canonical

 Theorem (R. Bryant): If G, G' are ROBDD's of a Boolean function f with k inputs, using same variable ordering, then G and G' are identical.

23

Sensitivity to Ordering

- Given a function with n inputs, one input ordering may require exponential # vertices in ROBDD, while other may be linear in size.
- Example: $f = x_1 x_2 + x_3 x_4 + x_5 x_6$

 $X_1 < X_2 < X_3 < X_4 < X_5 < X_6$

Applying an Operator to BDDs

 Strategy: Build a few core operators and define everything else in terms of those

Advantage:

- Less programming work
- Easier to add new operators later by writing "wrappers"

25

Core Operators

- Just two of them!
- Restrict(Function F, variable v, constant k)
 - Shannon cofactor of F w.r.t. v=k
- 2. ITE(Function I, Function T, Function E)
 - "if-then-else" operator

ITE

- Just like:
 - "if then else" in a programming language
 - A mux in hardware
- ITE(I(x), T(x), E(x))
 - If I(x) then T(x) else E(x)

The ITE Function

- ITE(I(x), T(x), E(x))
- =
- I(x) . T(x) + I'(x) . E(x)

What good is the ITE?

- How do we express
- NOT?
- OR?
- AND?

29

How do we implement ITE?

- Divide and conquer!
- Use Shannon cofactoring...
- Recall: Operator of cofactors is Cofactor of operators...

ITE Algorithm

```
ITE (bdd I, bdd T, bdd E) {
  if (terminal case) { return computed result; }
  else { // general case
    Let x be the topmost variable of I, T, E;
    PosFactor = ITE(I<sub>x</sub>, T<sub>x</sub>, E<sub>x</sub>);
    NegFactor = ITE(I<sub>x'</sub>, T<sub>x'</sub>, E<sub>x'</sub>);
    R = new node labeled by x;
    R.low = NegFactor; // R.low is 0-child of R
    R.high = PosFactor; // R.high is 1-child of R
    Reduce(R);
    return R;
}
```

31

Terminal Cases (complete these)

- ITE(1, T, E) =
- ITE(0, T, E) =
- ITE(I, T, T) =
- ITE(I, 1, 0) =

• ...

General Case

- Still need to do cofactor (Restrict)
- How hard is that?
 - Which variable are we cofactoring out? (2 cases)

33

Practical Issues

- Previous calls to ITE are cached
 - "memoization"
- Every BDD node created goes into a "unique table"
 - Before creating a new node R, look up this table
 - Avoids need for reduction

Sharing: Multi-Rooted DAG

- BDD for 4-bit adder:
 5 output bits → 5
 Boolean functions
- Each output bit (of the sum & carry) is a distinct rooted BDD
- But they share sub-DAGs

31

More on BDDs

- Circuit width and bounds on BDD size (reading exercise – slide summary posted)
- Dynamically changing variable ordering
- Some BDD variants

Sifting

- Dynamic variable re-ordering, proposed by R. Rudell
- Based on a primitive "swap" operation that interchanges x_i and x_{i+1} in the variable order
 - Key point: the swap is a local operation involving only levels i and i+1
- Overall idea: pick a variable x_i and move it up and down the order using swaps until the process no longer improves the size
 - A "hill climbing" strategy

42

Some BDD Variants

- Free BDDs (FBDDs)
 - Relax the restriction that variables have to appear in the same order along all paths
 - How can this help? → smaller BDD
 - Is it canonical? → NO

Some BDD Variants

- MTBDD (Multi-Terminal BDD)
 - Terminal (leaf) values are not just 0 or 1, but some finite set of numerical values
 - Represents function of Boolean variables with non-Boolean value (integer, rational)
 - E.g., input-dependent delay in a circuit, transition probabilities in a Markov chain
 - Similar reduction / construction rules to BDDs.

44

Some BDD packages

- CUDD from Colorado University, Fabio Somenzi's group
 - We will use the PerIDD front-end to CUDD in HW3
- BuDDy from IT Univ. of Copenhagen

Reading

- Bryant's 1992 survey paper is required reading (posted on the website)
- Optional reading: you can check out Don Knuth's chapter on BDDs (available off his website)