Boolean Function Representations

- Syntactic: e.g.: CNF, DNF (SOP), Circuit
- Semantic: e.g.: Truth table, Binary Decision Tree, BDD
Reduced Ordered BDDs

- Introduced by Randal E. Bryant in mid-80s
 - IEEE Transactions on Computers 1986 paper is one of the most highly cited papers in EECS
- Useful data structure to represent Boolean functions
 - Applications in logic synthesis, verification, program analysis, AI planning, …
- Commonly known simply as BDDs
 - Lee [1959] and Akers [1978] also presented BDDs, but not ROBDDs
- Many variants of BDDs have also proved useful
- Links to coding theory (trellises), etc.

RoadMap for this Lecture

- Cofactor of a Boolean function
- From truth table to BDD
- Properties of BDDs
- Operating on BDDs
- Variants
Cofactors

- A Boolean function F of n variables x_1, x_2, \ldots, x_n

 \[F : \{0,1\}^n \rightarrow \{0,1\} \]

- Suppose we define new Boolean functions of $n-1$ variables as follows:

 \[F_{x_1}(x_2, \ldots, x_n) = F(1, x_2, x_3, \ldots, x_n) \]
 \[F_{x_1'}(x_2, \ldots, x_n) = F(0, x_2, x_3, \ldots, x_n) \]

- F_{x_i} and $F_{x_i'}$ are called cofactors of F.
 F_{x_i} is the positive cofactor, and $F_{x_i'}$ is the negative cofactor

Shannon Expansion

- $F(x_1, \ldots, x_n) = x_i \cdot F_{x_i} + x_i' \cdot F_{x_i'}$

- Proof?
Shannon expansion with many variables

• \(F(x, y, z, w) = \)
 \[xy F_{xy} + x'y F_{x'y} + xy' F_{xy'} + x'y' F_{x'y'} \]

Properties of Cofactors

• Suppose you construct a new function \(H \) from two existing functions \(F \) and \(G \): e.g.,
 – \(H = F' \)
 – \(H = F \cdot G \)
 – \(H = F + G \)
 – Etc.

• What is the relation between cofactors of \(H \) and those of \(F \) and \(G \)?
Very Useful Property

- Cofactor of NOT is NOT of cofactors
- Cofactor of AND is AND of cofactors
- ...
- Works for any binary operator

BDDs from Truth Tables

Truth Table → Binary Decision Tree → Binary Decision Diagram (BDD) → Ordered Binary Decision Diagram (OBDD) → Reduced Ordered Binary Decision Diagram (ROBDD, simply called BDD)
Example: Odd Parity Function

Edge labels along a root-leaf path form an assignment to a, b, c, d

Binary Decision Tree

Nodes & Edges

- How is F related to χ, F_1, F_2?
Ordering: variables appear in same order from root to leaf along any path

- Imposed arbitrary order:
 - $a < b < c < d$

Each node is some cofactor of the function

Reduction

- Identify Redundancies

- 3 Rules:
 1. Merge equivalent leaves
 2. Merge isomorphic nodes
 3. Eliminate redundant tests
Merge Equivalent Leaves

"a" is either 0 or 1

Merge Isomorphic Nodes

Redirect

stays same down here
Eliminate Redundant Tests

Example
Example

Final ROBDD for Odd Parity Function

\[2n - 1 \text{ non-terminal nodes} \]
Example of Rule 3

What can BDDs be used for?

• Uniquely representing a Boolean function
 – And a Boolean function can represent sets
• Symbolic simulation of a combinational (or sequential) circuit
• Equivalence checking and verification
 – Satisfiability (SAT) solving
(RO)BDDs are canonical

- **Theorem (R. Bryant):** If G, G' are ROBDD's of a Boolean function f with k inputs, using same variable ordering, then G and G' are identical.

Sensitivity to Ordering

- Given a function with n inputs, one input ordering may require exponential # vertices in ROBDD, while other may be linear in size.
- **Example:** $f = x_1 x_2 + x_3 x_4 + x_5 x_6$
 - $x_1 < x_2 < x_3 < x_4 < x_5 < x_6$
 - $x_1 < x_4 < x_5 < x_2 < x_3 < x_6$
Applying an Operator to BDDs

- Strategy: Build a few core operators and define everything else in terms of those

Advantage:
- Less programming work
- Easier to add new operators later by writing “wrappers”

Core Operators

- Just two of them!
 1. Restrict(Function F, variable v, constant k)
 - Shannon cofactor of F w.r.t. v=k
 2. ITE(Function I, Function T, Function E)
 - “if-then-else” operator
ITE

• Just like:
 – “if then else” in a programming language
 – A mux in hardware
• ITE(I(x), T(x), E(x))
 – If I(x) then T(x) else E(x)

The ITE Function

• ITE(I(x), T(x), E(x))
• =
• I(x) . T(x) + I’(x). E(x)
What good is the ITE?

• How do we express
• NOT?
• OR?
• AND?

How do we implement ITE?

• Divide and conquer!
• Use Shannon cofactoring…
• Recall: Operator of cofactors is Cofactor of operators…
ITE Algorithm

ITE (bdd I, bdd T, bdd E) {
 if (terminal case) { return computed result; }
 else { // general case
 Let x be the topmost variable of I, T, E;
 PosFactor = ITE(I\textsubscript{x}, T\textsubscript{x}, E\textsubscript{x});
 NegFactor = ITE(I\textsubscript{x}', T\textsubscript{x}', E\textsubscript{x}');
 R = new node labeled by x;
 R.low = NegFactor; // R.low is 0-child of R
 R.high = PosFactor; // R.high is 1-child of R
 Reduce(R);
 return R;
 }
}

Terminal Cases (complete these)

- ITE(1, T, E) =
- ITE(0, T, E) =
- ITE(I, T, T) =
- ITE(I, 1, 0) =
- ...
General Case

• Still need to do cofactor (Restrict)

• How hard is that?
 – Which variable are we cofactoring out? (2 cases)

Practical Issues

• Previous calls to ITE are cached
 – “memoization”

• Every BDD node created goes into a “unique table”
 – Before creating a new node R, look up this table
 – Avoids need for reduction
Sharing: Multi-Rooted DAG

- BDD for 4-bit adder: 5 output bits → 5 Boolean functions
- Each output bit (of the sum & carry) is a distinct rooted BDD
- But they share sub-DAGs

More on BDDs

- Circuit width and bounds on BDD size (reading exercise – slide summary posted)
- Dynamically changing variable ordering
- Some BDD variants
Sifting

• Dynamic variable re-ordering, proposed by R. Rudell
• Based on a primitive “swap” operation that interchanges x_i and x_{i+1} in the variable order
 – Key point: the swap is a local operation involving only levels i and $i+1$
• Overall idea: pick a variable x_i and move it up and down the order using swaps until the process no longer improves the size
 – A “hill climbing” strategy

Some BDD Variants

• Free BDDs (FBDDs)
 – Relax the restriction that variables have to appear in the same order along all paths
 – How can this help? \rightarrow smaller BDD
 – Is it canonical? \rightarrow NO
Some BDD Variants

• MTBDD (Multi-Terminal BDD)
 – Terminal (leaf) values are not just 0 or 1, but some finite set of numerical values
 – Represents function of Boolean variables with non-Boolean value (integer, rational)
 • E.g., input-dependent delay in a circuit, transition probabilities in a Markov chain
 – Similar reduction / construction rules to BDDs

Some BDD packages

• CUDD – from Colorado University, Fabio Somenzi’s group
 – We will use the PerlDD front-end to CUDD in HW3
• BuDDy – from IT Univ. of Copenhagen
Reading

• Bryant’s 1992 survey paper is required reading (posted on the website)
• Optional reading: you can check out Don Knuth’s chapter on BDDs (available off his website)