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Lecture N+2: Discrete to Continuous Systems



Synchronous, Discrete-Event, and
Continuous-Time models in Ptolemy Il

SR Director
source sink
actor signal actor

At each tick of a “clock,”
signals acquire values (or
remain unknown, for non-
constructive circuits), based
on a least fixed-point
semantics.

DE Director
source sink
actor signal actor

A signal is a set of events
with time stamps (in model
time). Components see
input events in time-stamp
order.

Continuous Director

source sink
actor signal actor

A signal is defined
everywhere (in model time).
A “solver” determines where
(on the time line) each
signal is evaluated. The
value of the signal may be
“absent,” allowing for
signals that are discrete or
have gaps.
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First Attempt at a Model for Time

Let R, be the non-negative real humbers. Let V' be an
arbitrary family of values (a data type, or alphabet). Let

V. =Vulie)

be the set of values plus “absent.” Let s be a signal, given
as a partial function:

s: Ry — Ve

defined on an initial segment of R
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First Attempt at a Model for Time

s: Ry — Vo
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Initial segment I € R, where the signal is defined.

Lo B ) |

Absent: s(7) = ¢ for almost all 7 = I.

This model is not rich enough because it does not allow a signal to
have multiple events at the same time.
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Example Motivating the Need for Simultaneous
Events Within a Signal

Newton 's Cradle:

Steel balls on strings

Collisions are events

Momentum of the middle ball has three values at

m the time of collision.
This example has continuous dynamics as well
(I will return to this)

Other examples:
o Batch arrivals at a queue.
o Software sequences abstracted as instantaneous.

o Transient states.
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A Better Model for Signals:
Super-Dense Time

Let 7" = R, x N be a set of “tags” where N is the natural
numbers, and give a signal s as a partial function:

s: 1T — V.

defined on an Initial segment of 7', assuming a lexical or-
dering on 1"

(tl,ﬂ.l) < (tg,ﬂ-g) = 1y <tg, Orty =t andny < no.

This allows signals to have a sequence of values at any real time t.
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Super Dense Time

Values V <

Initial segment I € R, x N where the signal is defined
]

Absent: s(7) = ¢ for almost all 7 € .
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Events and Firings
s — Vz
e Atagis atime-index pair, 7 = (t,n) € T'=R, x N.

e An event is a tag-value pair, e = (7,v) € T' x V.

e s(7)isaneventif s(7) # <.

Operationally, events are processed by presenting all
Input events at a tag to an actor and then firing It.

However, this Is not always possible!
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-ee & Seshia, 2011 probing Further: Discrete Signals

Discrete signals consist of a sequence of instantaneous events in time. Here, we
make this intuitive concept precise.

Consider a signal of the form e: R — {absent } UX, where X is any set of values.
This signal is a discrete signal if, intuitively, it is absent most of the time and we can
count, in order, the times at which it is present (not absent). Each time it is present,

we have a discrete event.
This ability to count the events in order is important. For example, if e is present at

all rational numbers 7, then we do not call this signal discrete. The times at which it is
present cannot be counted in order. It is not, intuitively, a sequence of instantaneous
events in time (it is a set of instantaneous events in time, but not a sequence).

To define this formally, let T C R be the set of times where e is present. Specifi-

cally,
T={teR : e(t) # absent}.

Then e is discrete if there exists a one-to-one function f: T — N that is order pre-
serving. Order preserving simply means that for all #;,, € T where 1; < 1, we
have that f(t;) < f(t»). The existence of such a one-to-one function ensures that we
can count off the events in temporal order. Some properties of discrete signals are
studied in Exercise 6.




Extending “Discrete” to Superdense Time

Just replace the reals with the set of superdense times
and use the lexical ordering.
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Examples

1. Suppose we have a signal s whose tag set Is

{(rz,0)| 7 eR}
(this Is a continuous-time signal). This signal is not
discrete.

2. Suppose we have a sighal s whose tag set is

{(z,0)| r € Rationals }
This signal is also not discrete.
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”_I .Zeno. [imedPlotter
File Edit Special Help

A Zeno system Is
not discrete. o

1810

A LT

oo 02 04 06 08 1.0 12 14 16 18 2.0

Zeno Conditions

=] i e 2

DE Director

Clock Time
ooo|

penad: 1.0 * .

offsets: {0.0}

values {1.2}

&
SingleEvent Merge
VariableDealay

This model illustrates a Zeno condition, where an infinite number of events
occur before time 2.0, and hence the Clock actor is unable to ever produce
its output at time 2.0,

The tag set here includes {0, 1,2, ...}
and {1,1.25,1.36,1.42, ...} .

Exercise: Prove that this system is not diSGI&LE, ,.s uc serkeley: 12



Is the following system discrete?

DE Director

1

L
SingleEvent Merge

. VariableDealay

time: 0.0
value: 1.0

Expression ¥4 notZeno.TimedPlotter

File Edit Special Help
=] ) G| 22
Not Zeno, but Problematic =1L
20f ' ' ' . . . —
1487

11N

oo 02 04 06 08 1.0 12 14 16 18 2.0
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Discreteness i1s Not a Compositional Property

Given two discrete signals s, s' It Is not necessarily true
that S={s,s'} Is adiscrete system.

I'g -no

nCompositional. TimedPlotter2
File Edit Special Help

B(=1[ES
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TimedPlotter

20F
15[
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0.ar
0oL
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oo 02 04 06 08 10 12 14 18 18 Z0

Fﬂ .nonCompositional2. TimedPlotter,
File Edit Special Help

CEX
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TimedPlotter
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Putting these two signals
In the same model
creates a Zeno condition.
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Question 1:

Can we find necessary and/or sufficient conditions to
avoid Zeno systems?
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Question 2:

In the following model, if f, has no delay, should f; see
two simultaneous input events with the same tag? Should
It react to them at once, or separately?

In Verilog, it is nondeterministic. In VHDL, it sees a
sequence of two distinct events separated by “delta
time” and reacts twice, once to each input. In the
Ptolemy Il DE domain, it sees the events together and
reacts once.
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Example

In the following segment of a model, clearly we wish that
the VariableDelay see the output of Rician when it
processes an input from CurrentTime.

Clock CurrentTime

N ( j VariableDelay
ﬂi’_

Source process
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Question 3:

What if the two sources in the following model deliver an
event with the same tag? Can the output signal have
distinct events with the same tag?

f| Merge

/s

Recall that we require that a signal be a partial function
s: T—>V,whereV Iis a set of possible event values (a
data type), and T Is a totally ordered set of tags.

EECS 144/244, UC Berkeley: 18



One Possible Semantics for DE Merge

Merge
51
59 S

At time £, iInput sequences are Iinterleaved. That is, if the
Inputs are s; and sy and

s1(t,0) = vy,
Sg(f, D} = M. Sl(f‘ l} = W9

(otherwise absent) then the output s is

s(t,0) =vy, s(t.1)=wy, s(t,2)=wo.
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Implementation of DE Merge

Merge

Y AR
b =

private List pendingEvents;
fire () {
foreach input s {
if (s 1is present) {
pendingEvents.append (event from s);

}

1if (pendingEvents has events) {
send to output (pendingEvents.first);

pendingEvents.removeFirst () ;

}

if (pendingEvents has events) {
post event at the next index on the event queue;

}
EECS 144/244, UC Berkeley: 20



Question 4:

What does this mean?

Merge

The Merge presumably does not introduce delay, so what
IS the meaning of this model?
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Superdense Time for Continuous-Time Signals

0.0,0 10,0 20,0 3.0,0

At each tag, the signal has exactly one value. At each time

point, the signal has an infinite number of values. The red

arrows indicate value changes between tags, which

correspond to discontinuities. 22
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Initial and Final Value Signals

A signal x: 1" x N — V' has no chattering Zeno
condition if there Is an integer m > 0 such that

vn >m, x(t,n)=z(t,m)

A non-chattering signal has a corresponding final value
signal, z¢: 1T — V where

Vtel, x¢(t)=2a(t,m)

It also has an initial value signal z,;: 1" — V where
viel, x;(t)=x(t0)
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Piecewise Continuous Signals

A piecewise continuous signal is a non-chattering signal

r:T'x N —=V

where

o T
o T
o T

ne Initial signal x; Is continuous on the left,
ne final signal x;1s continuous on the right, and
ne signal x has only one value atallt € T\ D where

D T Is a discrete set.
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Example: Newton’ s Cradle

N & r's Cradle '
Mawior's Crad Assumptions

ldeal pendulum
Balls have the same mass.

2| |3
. . _CoII|S|ons happen
Instantaneously.
0 When a collision happens, two
HEEAN and only two balls are
\mg iInvolved.
mlé = —mgsin(6)

25
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A Model of Newton’ s Cradle

theta_1_dot CT Director

[=]=]
e initialTheta_1:-PI/8 E“ﬁ

e initialTheta_1_dot: 0.0 .
theta_2 dot MadalModel positions

theta 1 dot x 1 ooo

-~

@ initialTheta_2: 0.0
@ initialTheta_2 dot: 0.0

Ly

e initialTheta_3:0.0
@ initialTheta

e ((x_2 + diameter) >= x_3)

&& (theta_2_ dot > theta_3_dot)
date.theta_1_daot_initial = initial Theta_1 dot
dsiate.theta_2_dot_initial = initialTheta_2_dot; ate.theta_2_dot_initial =theta_3_dot,
state theta_3_dot_initial = initialTheta_3_dot; etz il hel) Stz el e s

NMawior’s Cradle

date.theta_1_initial = initialTheta_1;

state.theta_2_initial = initial Theta_2;
state.theta_3_initial = initialTheta_3
((x_1 + diameter) == x_2) 1 2 3

&& (theta_1_dot > theta_2 dot)

state.theta 1 dot initial = theta 2 dot; oo
date theta_2_dot_initial = theta_1_dot

Slide from Haiyang Zheng ECS 144/244, UC Berkeley: 26




Dynamics of Balls

This class defines the dynamics of a pendulum.

@ acceleration: acceleration Const

@ length: length
o x offset: 0.0
@y offset: 0.0

y position ¥

X position

PolarToCartesian

Ep>> initialTheta: 0.0
E>> initialTheta_dot: 0.0

theta_dot

Three second order
ODE’ s are used to

model the dynamics
of three pendulums.

Slide from Haiyang Zheng

Expression
& * -1*sin(theta)*acceleration/length

theta

ball1

=
=

initial Theta,

initial Theta_dot %}D t

Y

=

heta 1 dot

ball2

theta dot
L 4

) {

>
%]

initial Theta
initiaIThata_dolj

Y

=

heta 2 dot

ball3

theta dot
L 4

Y

IX
(%]

initial T heta,
initial Theta_dot

theta dot .

) ¢

theta_3_dot

-

27
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One Behavior

X-axis is time and Y-axis is velocity.

theta 1_dot =1l
Ball #1 is moved away from its
equilibrium position with angle
P1/8. ° | —T
Perfectly elastic collisions. o 1 2 3] & 5 s 7 s 5 1
theta 2_dot =1l
positions @EEE ol ‘\ ‘ |
o | | | | | | | | ' ke m I ‘ |
4—4/-\ /\_5. Wl . N2
2 a o 1 2z 3§ 4 5 & 7 8 9 10
i 7 — Fheta_ls_dolt .@E.EE
0 1 2 3 4 ”5 5 7 a g 10 0.0
X-axis is time and Y-axis is displacement. S — "
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Interactions Between CT and DE
Dynamics

theta 2_dot

=1y i

o4
021 ‘

A/ : ‘\

theta_2_dot

=1) I

0.4r

0.3r

021

01r
0.0

1.6021738990995000 1.6021738991000000

1.60217358991005001

Slide from Haiyang Zheng

Two transitions at the
same time, called
simultaneous discrete
events.

These events cause a
discontinuity consisting of
three values.

Agreement on the
assumption of
Instantaneous collisions

29
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ODE Solvers

Numerical solution approximates the state trajectory of the ODE by
estimating its value at discrete time points:

{t. 4, T

o M

b T ... t
Reasonable choices for these points depend on the function f.

Using such solvers, signals are discrete-event signals.
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Simple Example

This simple example integrates a ramp, generated by the
CurrentTime actor. In this case, it is easy to find a closed
form solution,

X(t)=t = x(t)=t*/2

CT Director S[H[E]

4487

Int:agrator App.rf:dmate sk |
35[0 X(t)
CurrentTime I a0t
= & 2ar
B | e || X(t)
1.07

nar
0.0

Expression

0.0 0.5 1.0 1.5 20 2.4 3.0
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Trapezoidal Method

Classical method X(t)
estimates the area
under the curve by
calculating the area :

. X(t
of trapezoids. (L.a)

X(t v
().
However, with this

method, an

Integrator is only x

causal, not strictly

causal or delta . .
causal. X(tn+1) — X(tn) + h(X(tn) + X(tn+1)) / 2
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Trapezoidal Method is Problematic with Feedback

Confinuous-Time (CT) Solver

- This model shows a nonlinear feedback We have no aSSU rance
® sigma: 10.0 system that exhibits chaotic behavior. : : :
# lambda: 25.0 It is modeled in continuous time. The Of a- u n Iq ue flxed pOInt1

XY Plotter eb:2.0 CT director uses a sophisticated
r ordinary differential equation solver nor a methOd for

to execute the model. This particular

model is known as a Lorenz attractor. ConStrUCti ng |t

L3

Integratpr 1 F8 Lorenz.XY Plotter
File Edit Special Help

Expression 1

sigma*(x2-x1)

B| | | 2]

Strange Attractor
Integratpr 2 i ' ' '

Expression 2 .
~__E (lambda-x3)"x1-x2 20f

Integrator 3 157

L Expression 3 :
- x1*:2-b*x3 mr
e
.

Author: Jie Liu

W

107

14

=201

-14 -10 =3 0 ] 10 14
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Forward Euler Solver

Given x(t,) and a time increment h, calculate:
1:n+1 — tn + h
X(t,..) = X(t,) +h f (x(t,).t,)

This method is strictly causal, or, with a lower bound on
the step size h, delta causal. It can be used in feedback
systems. The solution is unique and non-Zeno.
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Forward Euler on Simple Example
| EGE
Approximate
45F 7 | ' ' N ' /I'
. 401 vy
In this case, we have X(/)/
used a fixed step size ol ﬁgﬁ,.w"‘ _
h=0.1. The result is | X(t) '
close, but diverges ol
over time. e
CT Director Exact @E@E
Integrator Approxim ate 43 : | | | | | |
CurrentTime I j;: X(t)
ﬁ,@, {
Expression l Emﬂ. 122 B X(t)
Y 101
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“Stiff” systems require small step sizes

Force due to spring extension: Variable step-size methods

Fy(t) = k(p — (1)) will dy_naml(_:ally modify the
step size h in response to
Force due to viscous damping: estimates of the integration

error. Even these, however,

Fo(t) = —ci(t) run into trouble when

Newton'’s second law: stiffness varies oyer tlmg.
Extreme case of increasing
Fi(t) + Fy(t) = MI(t) stiffness results in Zeno
behavior:
or

Mi(t) + ci(t) + kx(t) = kp. |

U

For spring-mass damper,
large stiffness constant k
makes the system “stiff.”
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Runge-Kutta 2-3 Solver (RK2-3)

Given x(t,) and a time increment h, calculate

i [ {(
<o =1 (X(tn)’tn) es(timzalte of

K, = f(x(t )+0.5hK,,t +0.5h) "  X(t +0.5h)

_ . estimate of
K, = f(x(t )+0.75hK,,t_+0.75h) (t. +0.75h)

then let

t ,=t +h
X(t,.,)=X(t, )+ (2/9)hK, +(3/9)hK, + (4/9)hK,

Note that this is strictly (delta) causal, but requires three
evaluations of f at three different times with three different

Inputs. EECS 144/244, UC Berkeley: 37



|deal Solver Semantics

for Continuous-Time Systems
[Liu and Lee, HSCC 2003]

In the ideal solver semantics, an ODE governing
the hybrid system has a unique solution for
Intervals [t; , t.,,), the interval between discrete
time points. A discrete trace loses nothing by not
representing values within these intervals.

This elaborates our DE models only by requiring
that an ODE solver be consulted when advancing

time.

th t tt; ... i t
EECS 144/244, UC Berkeley: 38



|deal Solver Semantics
[Liu and Lee, HSCC 2003]

Given an interval | =[t.,t. ,] and an initial value X(t;)
and a function f : R™ xT — R™ that is Lipschitz in x on
the interval (meaning that there exists an L > 0 such that

vtel, |f(x@).t)-f(x'@).0)]<Lx®)-x @)

then the following equation has a unique solution x
satisfying the initial condition where

viel, x(t)=f(x(t),1)

The ideal solver yields the exact value of X(t.,,).
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Piecewise Lipschitz Systems

In our CT semantics, signals have multiple values at the
times of discontinuities. Between discontinuities, a
necessary condition that we can impose is that the
function f be Lipschitz, where we choose the points at the

discontinuities to ensure this:

I — [tl ’ti+1]
S:RxN —->R"
X:R—R"
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Conclusions

o Discrete-event models compose components that communicate timed
events. They are widely used for simulation (of hardware, networks,
and complex systems).

o Superdense time uses tags that have a real-valued time-stamp and a
natural number index, thus supporting sequences of causally-related
simultaneous events.

o A discrete system is one where the there is an order embedding from
the set of tags in the system to the integers.

o Continuous-time and hybrid systems can be built using superdense
time, SR-style fixed-point semantics, and an ODE solver.
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