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Lecture N+2: Discrete to Continuous Systems 
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Synchronous, Discrete-Event, and  

Continuous-Time models in Ptolemy II 

At each tick of a “clock,” 

signals acquire values (or 

remain unknown, for non-

constructive circuits), based 

on a least fixed-point 

semantics. 

A signal is a set of events 

with time stamps (in model 

time). Components see 

input events in time-stamp 

order. 

A signal is defined 

everywhere (in model time). 

A “solver” determines where 

(on the time line) each 

signal is evaluated. The 

value of the signal may be 

“absent,” allowing for 

signals that are discrete or 

have gaps. 
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First Attempt at a Model for Time 
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This model is not rich enough because it does not allow a signal to 

have multiple events at the same time. 

First Attempt at a Model for Time 
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Example Motivating the Need for Simultaneous 

Events Within a Signal 

Newton’s Cradle: 

Steel balls on strings 

Collisions are events 

Momentum of the middle ball has three values at 

the time of collision. 

This example has continuous dynamics as well  

(I will return to this) 

 

 
Other examples: 

 Batch arrivals at a queue. 

 Software sequences abstracted as instantaneous. 

 Transient states.  
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A Better Model for Signals: 

Super-Dense Time 

 

 

 

 

 

 

 

 

This allows signals to have a sequence of values at any real time t. 
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Super Dense Time 
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Events and Firings 

Operationally, events are processed by presenting all 

input events at a tag to an actor and then firing it. 

 

However, this is not always possible! 
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Discrete Signals 

A signal s is discrete if there is an order embedding from 

its tag set  ( s )  (the tags for which it is defined and not 

abent) to the integers (under their usual order).  

 

A system S (a set of signals) is discrete if there is an 

order embedding from its tag set  ( s )  to the integers 

(under their usual order).  

 

 

Lee & Seshia, 2011 
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Extending “Discrete” to Superdense Time 

Just replace the reals with the set of superdense times 

and use the lexical ordering. 
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Examples 

1. Suppose we have a signal s whose tag set is  

{( , 0) |    R } 

 (this is a continuous-time signal).  This signal is not 

discrete. 

 

2. Suppose we have a signal s whose tag set is  

{( , 0) |    Rationals } 

 This signal is also not discrete. 
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A Zeno system is  

not discrete. 

The tag set here includes { 0, 1, 2, …}  

and { 1, 1.25, 1.36, 1.42, …} .  

Exercise: Prove that this system is not discrete. 
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Is the following system discrete? 
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Discreteness is Not a Compositional Property 

Given two discrete signals s, s'  it is not necessarily true 

that  S = { s, s' }  is a discrete system. 

Putting these two signals 

in the same model 

creates a Zeno condition. 
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Question 1: 

Can we find necessary and/or sufficient conditions to 

avoid Zeno systems? 
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Question 2: 

In the following model, if f2 has no delay, should f3 see 
two simultaneous input events with the same tag? Should 
it react to them at once, or separately? 

 

 

 

 

In Verilog, it is nondeterministic. In VHDL, it sees a 
sequence of two distinct events separated by “delta 
time” and reacts twice, once to each input. In the 
Ptolemy II DE domain, it sees the events together and 
reacts once. 
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Example 

In the following segment of a model, clearly we wish that 

the VariableDelay see the output of Rician when it 

processes an input from CurrentTime. 
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Question 3: 

What if the two sources in the following model deliver an 

event with the same tag?  Can the output signal have 

distinct events with the same tag? 

 

 

 

 

Recall that we require that a signal be a partial function 

s : T  V , where V  is a set of possible event values (a 

data type), and T  is a totally ordered set of tags. 
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One Possible Semantics for DE Merge 
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Implementation of DE Merge 

private List pendingEvents; 

fire() { 

  foreach input s { 

    if (s is present) { 

      pendingEvents.append(event from s); 

    } 

  } 

  if (pendingEvents has events) { 

    send to output (pendingEvents.first); 

    pendingEvents.removeFirst(); 

  } 

  if (pendingEvents has events) { 

    post event at the next index on the event queue; 

  } 

} 
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Question 4: 

What does this mean? 

 

 

 

 

 

The Merge presumably does not introduce delay, so what 

is the meaning of this model? 
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Superdense Time for Continuous-Time Signals 

 At each tag, the signal has exactly one value. At each time 
point, the signal has an infinite number of values. The red 
arrows indicate value changes between tags, which 
correspond to discontinuities. 
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Initial and Final Value Signals 

A signal                             has no chattering Zeno 

condition if there is an integer m > 0 such that 

 

 

A non-chattering signal has a corresponding final value 

signal,                        where  

 

 

It also has an initial value signal                       where 
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Piecewise Continuous Signals 

A piecewise continuous signal is a non-chattering signal 

 

 

where 

   The initial signal xi is continuous on the left, 

   The final signal xf is continuous on the right, and 

   The signal x has only one value at all t  T \ D where 

    D  T is a discrete set.  
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Example: Newton’s Cradle 

Assumptions 

 Ideal pendulum 

Balls have the same mass. 

 

Collisions happen 

instantaneously. 

When a collision happens, two 

and only two balls are 

involved. 

1 2 31 2 31 2 3

)sin( mgml  )sin( mgml 

Slide from Haiyang Zheng 
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A Model of Newton’s Cradle 

1 2 3 

Slide from Haiyang Zheng 
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Dynamics of Balls 

Three second order  

ODE’s are used to  

model the dynamics 

of three pendulums. 

Slide from Haiyang Zheng 
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One Behavior 

1 

2 

X-axis is time and Y-axis is displacement. 

X-axis is time and Y-axis is velocity. 

 Ball #1 is moved away from its 
equilibrium position with angle 
PI/8. 

 

  Perfectly elastic collisions. 

Slide from Haiyang Zheng 
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Interactions Between CT and DE 

Dynamics  

Two transitions at the 
same time, called 
simultaneous discrete 
events. 

 

These events cause a 
discontinuity consisting of 
three values. 

 

Agreement on the 
assumption of 
instantaneous collisions 

Slide from Haiyang Zheng 
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ODE Solvers 

Numerical solution approximates the state trajectory of the ODE by 

estimating its value at discrete time points:  

t t0 t1 t2 t3 ts ... 

Reasonable choices for these points depend on the function f. 

 

Using such solvers, signals are discrete-event signals. 

Ttt ,...},{ 10
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Simple Example 

This simple example integrates a ramp, generated by the 

CurrentTime actor. In this case, it is easy to find a closed 

form solution, 

)(tx

)(tx

2/)()( 2ttxttx 
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Trapezoidal Method 

Classical method 

estimates the area 

under the curve by 

calculating the area 

of trapezoids. 

 

 

However, with this 

method, an 

integrator is only 

causal, not strictly 

causal or delta 

causal. 

)(tx

)( ntx

)( 1ntx

2/))()(()()( 11   nnnn txtxhtxtx 

h
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Trapezoidal Method is Problematic with Feedback 

We have no assurance 

of a unique fixed point, 

nor a method for 

constructing it. 
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Forward Euler Solver 

Given x(tn) and a time increment h, calculate: 

)),(()()( 1

1

nnnn

nn

ttxfhtxtx

htt









This method is strictly causal, or, with a lower bound on 

the step size h, delta causal. It can be used in feedback 

systems. The solution is unique and non-Zeno. 
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Forward Euler on Simple Example 

In this case, we have 

used a fixed step size 

h = 0.1. The result is 

close, but diverges 

over time. 

)(tx

)(tx

)(tx

)(~ tx
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“Stiff” systems require small step sizes 

 

For spring-mass damper, 
large stiffness constant k 
makes the system “stiff.” 

Variable step-size methods 

will dynamically modify the 

step size h in response to 

estimates of the integration 

error. Even these, however, 

run into trouble when 

stiffness varies over time. 

Extreme case of increasing 

stiffness results in Zeno 

behavior: 
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Runge-Kutta 2-3 Solver (RK2-3) 

Given x(tn) and a time increment h, calculate 

 

 

 

 

then let 

 

 

 

Note that this is strictly (delta) causal, but requires three 

evaluations of f at three different times with three different 

inputs. 

)75.0,75.0)((

)5.0,5.0)((

)),((

12

01

0

hthKtxfK

hthKtxfK

ttxfK

nn

nn

nn






)( ntx

)5.0( htx n 

)75.0( htx n 

estimate of 

estimate of 

2101

1

)9/4()9/3()9/2()()( hKhKhKtxtx

htt

nn

nn








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Ideal Solver Semantics 

for Continuous-Time Systems 
[Liu and Lee, HSCC 2003] 

In the ideal solver semantics, an ODE governing 

the hybrid system has a unique solution for 

intervals [ti , ti+1), the interval between discrete 

time points. A discrete trace loses nothing by not 

representing values within these intervals.  

 

This elaborates our DE models only by requiring 

that an ODE solver be consulted when advancing 

time. 

t t0 t1 t2 t3 ts ... 
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Ideal Solver Semantics 
[Liu and Lee, HSCC 2003] 

Given an interval                   and an initial value 

and a function                             that is Lipschitz in x on 

the interval (meaning that there exists an L  0 such that  

 

 

then the following equation has a unique solution x 

satisfying the initial condition where  

 

 

The ideal solver yields the exact value of           . 

],[ 1 ii ttI )( itx
mm RTRf :

)(')()),('()),((, txtxLttxfttxfIt 

)),(()(, ttxftxIt  

)( 1itx
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Piecewise Lipschitz Systems 

In our CT semantics, signals have multiple values at the 

times of discontinuities. Between discontinuities, a 

necessary condition that we can impose is that the 

function f be Lipschitz, where we choose the points at the 

discontinuities to ensure this: 

t ti ti+1 ti+2 

],[ 1 ii ttI
mRNRs :

mRRx :
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Conclusions 

 Discrete-event models compose components that communicate timed 

events. They are widely used for simulation (of hardware, networks, 

and complex systems). 

 

 Superdense time uses tags that have a real-valued time-stamp and a 

natural number index, thus supporting sequences of causally-related 

simultaneous events. 

 

 A discrete system is one where the there is an order embedding from 

the set of tags in the system to the integers. 

 

 Continuous-time and hybrid systems can be built using superdense 

time, SR-style fixed-point semantics, and an ODE solver. 


