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Synchronous Composition

Thanks to Edward A. Lee for several slides

EECS 144/244, UC Berkeley: 2

Composition of discrete systems

Two major paradigms:

Synchronous:

All subsystems move together, in “lock-step”.

Application domains: synchronous circuits, embedded 
control, …

Asynchronous:

Each subsystem moves at its own pace: interleaving.

Application domains: concurrent software, distributed 
systems, …



2

EECS 144/244, UC Berkeley: 3

Fundamental characteristic of synchronous 
systems

Notion of synchronous round (or cycle, or reaction)

All subsystems synchronize at beginning/end of round.

inputs

outputs

inputs

outputs

…

rounds

round 1 round 2
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Example: synchronous block diagram 

A

C

rounds

A, B, C A, C, B …

B
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Example: synchronous block diagram 

A

C

rounds

A, …

B

B
C

A, B
C

can also execute B, C in parallel

Deterministic concurrency (contrast to threads)
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What about models with feedback?

Copyright The Mathworks

Engine control model in Simulink
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Defining the semantics of synchronous feedback

Two basic approaches:

Non-deterministic semantics: used for verification (e.g., 
tools like NuSMV)

Deterministic semantics: used for implementation (e.g., 
circuits or synchronous languages)
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Non-deterministic semantics

Main idea:

composition = conjunction of transition relations
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Composition as conjunction of transition relations

Systems A and B described symbolically:

Sets of variables (some may be common): ஺ܺ, ܺ஻

Initial state formulas: ݅݊݅ݐ஺ ஺ܺ	 , ஻ݐ݅݊݅ ܺ஻	

Next state formulas: ݎݐ஺ ஺ܺ, ஺ܺ
ᇱ , ஻ݎݐ ܺ஻, ܺ஻

ᇱ

A B
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Composition as conjunction of transition relations

Composite system described by:

Set of variables: ஺ܺ ∪ ܺ஻

Initial state formula: ݅݊݅ݐ஺ ஺ܺ	 ∧ ஻ݐ݅݊݅ ܺ஻	

Next state formula: ݎݐ஺ ஺ܺ, ஺ܺ
ᇱ ∧ ஻ݎݐ ܺ஻, ܺ஻

ᇱ

A B
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Example: a model with feedback in NuSMV

MODULE identity(input)
VAR
output : boolean;
TRANS
output = input

MODULE inverter(input)
VAR
output : boolean;
TRANS
output = !input
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Example: a model with feedback in NuSMV

Together: ݔ ൌ ݕ ∧ ݕ ൌ ൓ݔ														 No solution.

NuSMV issues warning about “fair states set” being 
empty.

MODULE identity(input)
VAR
output : boolean;
TRANS
output = input

MODULE inverter(input)
VAR
output : boolean;
TRANS
output = !input

ݔ

ݕ

ݔ ൌ ݕ ݕ ൌ ൓ݔ
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Example: a model with feedback in NuSMV

Together: ݔ ൌ ൓ݕ ∧ ݕ ൌ ൓ݔ Two solutions.

NuSMV considers both states as reachable.

MODULE inverter(input)
VAR
output : boolean;
TRANS
output = !input

MODULE inverter(input)
VAR
output : boolean;
TRANS
output = !input

ݔ

ݕ

ݔ ൌ ൓ݕ ݕ ൌ ൓ݔ
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Modeling (for verification) vs. programming 
(implementing)

Non-deterministic semantics OK for verification: can be 
seen as over-approximation of all possible behaviors.

Synchronous models essential also for programming:

Real-Time Workshop

Verilog/VHDL
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Modeling (for verification) vs. programming (for 
implementation)

When programming, semantics need to be well-defined
and implementable.

E.g., what circuit are we supposed to synthesize from this 
model?

ݔ ൌ ൓ݕ ∧ ݕ ൌ ൓ݔ
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Modeling (for verification) vs. programming (for 
implementation)

When programming, semantics need to be well-defined
and implementable.

E.g., what circuit are we supposed to synthesize from this 
model?

ݔ ൌ ൓ݕ ∧ ݕ ൌ ൓ݔ

ambiguous behavior
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Modeling (for verification) vs. programming (for 
implementation)

When programming, semantics need to be well-defined
and implementable.

E.g., what circuit are we supposed to synthesize from this 
model?

ݔ ൌ ൓ݕ ∧ ݕ ൌ ൓ݔ

Guaranteed to stabilize?
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Modeling (for verification) vs. programming (for 
implementation)

When programming, semantics need to be well-defined
and implementable.

E.g., what circuit are we supposed to synthesize from this 
model?

ݔ ൌ ൓ݕ ∧ ݕ ൌ ൓ݔ

Possible oscillation:

0 → 1 → 0 → ⋯

0 → 1 → 0 → ⋯
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Defining the semantics of synchronous feedback

Two basic approaches:

Non-deterministic semantics: used for verification

Deterministic semantics: used for implementation – two 
approaches to ensure determinism:

1. Strict approach: Forbid instantaneous feedback: 
e.g., as in Lustre, SCADE, Simulink (unless if 
algebraic loops explicitly enabled)

2. Non-strict approach: Constructive fixpoint
semantics: e.g., as in Esterel, Ptolemy

EECS 144/244, UC Berkeley: 20

“Strict” approach: forbid instantaneous feedback

Forbid feedback unless if “broken” by unit-delay 
components (Moore machines)

OK

Not OK

More about solving algebraic loops in 
lectures on continuous systems
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“Strict” approach: forbid instantaneous feedback

Forbid feedback unless if “broken” by unit-delay 
components (Moore machines)

Why does this work?

At the beginning of each cycle, outputs of Moore 
machines are known => acyclic dependency graph.

OK
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Defining the semantics of synchronous feedback

Two basic approaches:

Non-deterministic semantics: used for verification (e.g., 
tools like NuSMV)

Deterministic semantics: used for programming – two 
approaches to ensure determinism:

1. Strict approach: Forbid instantaneous feedback

2. Non-strict approach: Constructive fixpoint semantics
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Strict approach is sometimes too strict

[Malik, Trans. on CAD, 1994]

Some circuits have cycles, but their output is well-defined for all inputs.

EECS 144/244, UC Berkeley: 24

Practical cyclic combinational circuits

[Malik, Trans. on CAD, 1994]

	ݖ ൌ 	݂݅	 ܿ ܨ	݄݊݁ݐ ܩ ݔ ܩ	݁ݏ݈݁	 ܨ ݔ

Is there an equivalent
acyclic circuit?
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Esterel: 
A Synchronous/Reactive Programming Language

present I then

present S then emit T end

else

present T then emit S end

end

“There is a path from S to T and a path from T to S, 
hence a cycle. However, it is obvious from the source 
code that only one path can be used at a time, and, 
therefore, that the circuit is well-behaved.”

[Shiple, Berry, and Touati, 1996]

EECS 144/244, UC Berkeley: 26

“Good” and “bad” cyclic circuits

good

bad: no solution,
oscillation

bad: two solutions,
possible oscillation
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How to analyze cyclic circuits?

good

bad: no solution,
oscillation

bad: two solutions,
possible oscillation

Constructive fixpoint

semantics
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Analyzing cyclic circuits using the constructive 
fixpoint approach: basic idea

Start with all signal values unknown (denoted    : “bottom”)

Try to derive known values based on circuit logic.

Iterate until no more known values can be derived.

If all values known, circuit is good.
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Analyzing cyclic circuits using the constructive 
fixpoint approach: example

0

EECS 144/244, UC Berkeley: 30

Analyzing cyclic circuits using the constructive 
fixpoint approach: example

0
0

0

Fixpoint reached.
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Analyzing cyclic circuits using the constructive 
fixpoint approach: other examples

1

0

1
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Constructive semantics (ternary logic) vs. classic 
logic

We could interpret our circuits also in classic logic: only 
0, 1 (true, false). No “unknown” ሺ٣ሻ value.

But there are bad circuits with unique fixpoints in classic 
logic:

Logically, the output of the 
AND gate is 0. But if x=0, 
and the inverters have 
delay, then this circuit will 
oscillate.
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Applying the procedure

[Malik, Trans. on CAD, 1994]

Initialize with input values and “unknown” on other nodes.

1

EECS 144/244, UC Berkeley: 34

Applying the procedure

[Malik, Trans. on CAD, 1994]

Evaluate lower gate.

1

1
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Applying the procedure

At this point, all nodes are known => fixpoint reached.

Evaluate gates in arbitrary order until nothing changes.

1
1

1

Does this mean the circuit 

is valid (“constructive”)?

Not necessarily:

must try all other possible inputs
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Implicitly using
Parallel (Non-Strict) Or

The non-strict or (often called the “parallel or”) can 
produce a known output even if the input is not 
completely know. Here is a table showing the output as a 
function of two inputs:

 F T

   T

F  F T

T T T T

input 1

in
pu

t 2

Extending gates in
“ternary” (constructive)
logic



19

EECS 144/244, UC Berkeley: 37

Implicitly using
Parallel (Non-Strict) And

The non-strict and (often called the “parallel and”) can 
produce a known output even if the input is not 
completely know. Here is a table showing the output as a 
function of two inputs:

 F T

  F 

F F F F

T  F T

input 1

in
pu

t 2
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Applying the procedure with input 0 on our circuit 
and a variant of it

[Malik, Trans. on CAD, 1994]

Initialize with input values and “unknown” on other nodes.

0 0
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Applying the procedure with input 0 on our circuit 
and a variant of it

Unknown nodes remain. Constructive semantics rejects these circuits.

Evaluate gates in arbitrary order until no progress is made.

0 0
0 0
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Key Property

The procedure always converges to a unique solution for 
all nodes.

That solution is the least fixed point of a monotonic 
function on a complete partial order (CPO).

The Kleene fixed-point theorem assures that such a least 
fixed point exists, is unique, and can be found via this 
procedure.

The solution may contain unknown values! ሺ٣ሻ
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A circuit (with inputs known) with m nodes can be 
represented as a function F:{0,1,٣}m  {0,1,٣}m

fixpoint	equation:
ܨ ݏ ൌ ݏ

EECS 144/244, UC Berkeley: 42

Our CPO (Complete Partially Ordered Set)

This means:

  0        and             1



0 1
Hasse diagram
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Product CPO on Pairs

This means:

(,0)  (1,0)                   (,1)  (1,1)          … 

This generalizes to arbitrary m-tuples.

Height is m +1

Hasse diagram

(, )

(0, ) (1, ) (, 1)(, 0)

(0, 1)(0, 0) (1, 1)(1, 0)

EECS 144/244, UC Berkeley: 44

Monotonic (Order Preserving) Functions

Let (A,  ) and (B,  ) be posets.

A function f : A  B is called monotonic if

a  a'    f (a)  f (a' )
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Parallel Or is Monotonic on our CPO

(, )

(0, ) (1, ) (, 1)(, 0)

(0, 1)(0, 0) (1, 1)(1, 0)

 F T

   T

F  F T

T T T T

input 1

in
pu

t 2


0 1
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Parallel And is also Monotonic

(, )

(0, ) (1, ) (, 1)(, 0)

(0, 1)(0, 0) (1, 1)(1, 0)

input 1

in
pu

t 2



0 1

 F T

  F 

F F F F

T  F T
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What about logical NOT ?

What does the extended truth table (with “uknown”) for 
NOT look like?

Is NOT monotonic?

EECS 144/244, UC Berkeley: 48

Composition of monotonic functions is monotonic 
=> F:{0,1,٣}m  {0,1,٣}m is monotonic
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Synchronous Composition – Part 2

Thanks to Edward A. Lee for several slides

EECS 144/244, UC Berkeley: 50

Defining the semantics of synchronous feedback

Two basic approaches:

Non-deterministic semantics: used for verification (e.g., 
tools like NuSMV)

Deterministic semantics: used for programming – two 
approaches to ensure determinism:

1. Strict approach: Forbid instantaneous feedback

2. Non-strict approach: Constructive fixpoint semantics
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A closed circuit (inputs known) with m nodes = a 
monotonic function F:{0,1,٣}m  {0,1,٣}m

fixpoint	equation:
ܨ ݏ ൌ ݏ

EECS 144/244, UC Berkeley: 52

Partial orders: basics
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Partial Orders

A partial order on the set A is a binary relation  that is,

for all a, b, c  A ,

 reflexive: a  a

 antisymmetric:  a  b and b  a  a = b

 transitive:  a  b and b  c  a  c

A partially ordered set (poset) is a set A and a binary 
relation , written (A, ) .

EECS 144/244, UC Berkeley: 54

Total Orders

Elements a and b of a poset (A, ) are comparable if 
either  a  b   or b  a . Otherwise they are incomparable.

A poset (A, ) is totally ordered if every pair of elements is 
comparable.

Totally ordered sets are also called linearly ordered sets
and chains.
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Examples

1. 0 < 1

2. 1 < 
3. child < parent

4. child > parent

5. 11,000/3,501 is a better approximation to  than 22/7

6. integer n is a divisor of integer m.

7. Set A is a subset of set B.

Which of these are partial orders? Total orders?

Which are the corresponding posets?
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Fixed Point Theorem
(a variant of the Kleene fixed-point theorem)

Let (A,  ) be the CPO {0,1,٣}m (on m-tuples)

Let  f : A  A be a monotonic function

Let  C = { f n(), n  {1, … , m} }

 C = f m() is the least fixed point of f

Intuition: The least fixed point of a monotonic function 
is obtained by applying the function first to unknown, 
then to the result, then to that result, etc.

Bounded by the height of the CPO, ݉.
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Join (Least Upper Bound)

An upper bound of a subset B  A of a poset (A, ) is an 
element  a  A  such that for all b  B we have b  a.

A least upper bound (LUB) or join of B is an upper bound 
a such that for all other upper bounds a' we have a  a'.

The join of B is written  B.

When the join of B exists, then B is said to be joinable.

EECS 144/244, UC Berkeley: 58

Least Upper Bound – Examples 

Does the upper bound exist for

{(0,), (, 0)}? {(0,), (, 1)}?

Does the upper bound exist for: 0<1<2<… ?

(, )

Hasse diagram(0, ) (1, ) (, 1)(, 0)

(0, 1)(0, 0) (1, 1)(1, 0)
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Proof of Theorem (part 1:  C is a fixed point)

Note that  C is a chain in a finite poset:

  f ()

f ()  f 2()           by monotonicity

…

f m-1()  f m()

Since the longest chain in the poset has length m + 1 , 
this sequence has to stop increasing and settle to a fixed 
point: f k-1() = f k() for some k .

Moreover, f k() =  C . Hence,  C is a fixed point of f .

EECS 144/244, UC Berkeley: 60

Proof of Theorem (part 2:  C is the least fixed 
point)

Let a be another fixed point: f (a) = a

Show that  C is the least fixed point:  C  a

Since f is monotonic:

  a

f ()  f (a) = a

…

f m()  f m(a) = a

So a is an upper bound of the chain C, hence  C  a.
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Brute Force Application of the Theorem

 Start with signals “unknown” at 
all nodes of the circuit.

 Evaluate components (gates) in 
arbitrary order repeatedly until no 
further progress is made.

 If the result has all signals “known,”
then declare it to be the 
constructive solution.

 Otherwise, reject model as non-
constructive (buggy).

EECS 144/244, UC Berkeley: 62

Does evaluation order matter?

In the circuit below, evaluation order matters:

• 1, 2, 3, 4: requires three passes to converge.

• 3, 1, 4, 2: requires one pass to converge.

[Shiple, Berry, and Touati, 1996]

There exists research 
to optimize this [see 

paper by Edwards-Lee]
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What if inputs are unknown?

We will extend the solution to open systems.

From closed … … to open systems

We want to avoid the brute-force method of checking all possible inputs.

EECS 144/244, UC Berkeley: 64

Instead: use symbolic execution

Main idea: instead of iterating over values, iterate over 
functions:

 Start with unknown function of the inputs at all nodes 
except inputs.

 Update the functions in arbitrary order repeatedly until 
no further progress is made.

 If the result has all functions known, then declare the 
circuit constructive.
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Symbolic execution

Assume a single binary input (for now). For each node a
in the circuit, define a function from the input to the node 
value:

These give the outputs as a function of x only.

EECS 144/244, UC Berkeley: 66

Symbolic execution strategy

Start with all nodes except inputs being given by the 
unknown function:

Then update these functions iteratively until 
convergence. But how to update the functions?
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First: how to represent
the functions

Represent each function of the form:

using two characteristic functions of the form:

where

How can these be represented in practice? 

Using BDDs!

EECS 144/244, UC Berkeley: 68

Symbolic execution strategy using 
characteristic functions
Start with all nodes except inputs being given by the 
unknown function:

Then update these functions iteratively until 
convergence. But how to update the functions?

c
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Operating on characteristic functions

Gates relate characteristic functions of the outputs with 
those of the inputs:

a
a a

b

ccc

b

EECS 144/244, UC Berkeley: 70

Symbolic execution strategy using 
characteristic functions
Update nodes in 
arbitrary order:

etc.

c
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Convergence

Quickly converge to these characteristic functions:

How do we know whether the circuit is constructive?

c

EECS 144/244, UC Berkeley: 72

Checking whether circuit is constructive

Quickly converge to these characteristic functions:

Circuit is constructive iff at all nodes a we have for all x

i.e. the value is known! (Checking this is a SAT problem)

c



37

EECS 144/244, UC Berkeley: 73

Does the procedure always converge?
Is the answer unique?

Consider a poset {0, 1} where 0 < 1.

This induces a poset on the set of functions of form:

This poset has a bottom element: the function

This poset is finite, with structure much like the flat order. 
The Kleene fixed-point theorem applies. Extends easily 
to tuples of functions.

How?

EECS 144/244, UC Berkeley: 74

Gate operations on characteristic functions are 
monotonic functions!

These are monotonic in the sense that if you know more 
about the inputs, then you learn more about the outputs:

a
a a

b

ccc

b
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Extension to sequential circuits: circuits with state

First need to find which inputs are problematic, if any.

Then need to determine whether those inputs can occur 
(reachability analysis on a state machine)
[Shiple, Berry, and Touati, DATE, 1996]

EECS 144/244, UC Berkeley: 76

Asynchronous Composition

See 11-asynchronous.pdf
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