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Synchronous Composition

Thanks to Edward A. Lee for several slides
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Composition of discrete systems

Two major paradigms:

Synchronous:

All subsystems move together, in “lock-step”.

Application domains: synchronous circuits, embedded 
control, …

Asynchronous:

Each subsystem moves at its own pace: interleaving.

Application domains: concurrent software, distributed 
systems, …
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Fundamental characteristic of synchronous 
systems

Notion of synchronous round (or cycle, or reaction)

All subsystems synchronize at beginning/end of round.

inputs

outputs

inputs

outputs

…

rounds

round 1 round 2
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Example: synchronous block diagram 

A

C

rounds

A, B, C A, C, B …

B
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Example: synchronous block diagram 

A

C

rounds

A, …

B

B
C

A, B
C

can also execute B, C in parallel

Deterministic concurrency (contrast to threads)
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What about models with feedback?

Copyright The Mathworks

Engine control model in Simulink
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Defining the semantics of synchronous feedback

Two basic approaches:

Non-deterministic semantics: used for verification (e.g., 
tools like NuSMV)

Deterministic semantics: used for implementation (e.g., 
circuits or synchronous languages)
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Non-deterministic semantics

Main idea:

composition = conjunction of transition relations
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Composition as conjunction of transition relations

Systems A and B described symbolically:

Sets of variables (some may be common): ܺ, ܺ

Initial state formulas: ݅݊݅ݐ ܺ	 , ݐ݅݊݅ ܺ	

Next state formulas: ݎݐ ܺ, ܺ
ᇱ , ݎݐ ܺ, ܺ

ᇱ

A B
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Composition as conjunction of transition relations

Composite system described by:

Set of variables: ܺ ∪ ܺ

Initial state formula: ݅݊݅ݐ ܺ	 ∧ ݐ݅݊݅ ܺ	

Next state formula: ݎݐ ܺ, ܺ
ᇱ ∧ ݎݐ ܺ, ܺ

ᇱ

A B
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Example: a model with feedback in NuSMV

MODULE identity(input)
VAR
output : boolean;
TRANS
output = input

MODULE inverter(input)
VAR
output : boolean;
TRANS
output = !input
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Example: a model with feedback in NuSMV

Together: ݔ ൌ ݕ ∧ ݕ ൌ ݔ														 No solution.

NuSMV issues warning about “fair states set” being 
empty.

MODULE identity(input)
VAR
output : boolean;
TRANS
output = input

MODULE inverter(input)
VAR
output : boolean;
TRANS
output = !input

ݔ

ݕ

ݔ ൌ ݕ ݕ ൌ ݔ
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Example: a model with feedback in NuSMV

Together: ݔ ൌ ݕ ∧ ݕ ൌ ݔ Two solutions.

NuSMV considers both states as reachable.

MODULE inverter(input)
VAR
output : boolean;
TRANS
output = !input

MODULE inverter(input)
VAR
output : boolean;
TRANS
output = !input

ݔ

ݕ

ݔ ൌ ݕ ݕ ൌ ݔ
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Modeling (for verification) vs. programming 
(implementing)

Non-deterministic semantics OK for verification: can be 
seen as over-approximation of all possible behaviors.

Synchronous models essential also for programming:

Real-Time Workshop

Verilog/VHDL
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Modeling (for verification) vs. programming (for 
implementation)

When programming, semantics need to be well-defined
and implementable.

E.g., what circuit are we supposed to synthesize from this 
model?

ݔ ൌ ݕ ∧ ݕ ൌ ݔ
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Modeling (for verification) vs. programming (for 
implementation)

When programming, semantics need to be well-defined
and implementable.

E.g., what circuit are we supposed to synthesize from this 
model?

ݔ ൌ ݕ ∧ ݕ ൌ ݔ

ambiguous behavior
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Modeling (for verification) vs. programming (for 
implementation)

When programming, semantics need to be well-defined
and implementable.

E.g., what circuit are we supposed to synthesize from this 
model?

ݔ ൌ ݕ ∧ ݕ ൌ ݔ

Guaranteed to stabilize?
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Modeling (for verification) vs. programming (for 
implementation)

When programming, semantics need to be well-defined
and implementable.

E.g., what circuit are we supposed to synthesize from this 
model?

ݔ ൌ ݕ ∧ ݕ ൌ ݔ

Possible oscillation:

0 → 1 → 0 → ⋯

0 → 1 → 0 → ⋯
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Defining the semantics of synchronous feedback

Two basic approaches:

Non-deterministic semantics: used for verification

Deterministic semantics: used for implementation – two 
approaches to ensure determinism:

1. Strict approach: Forbid instantaneous feedback: 
e.g., as in Lustre, SCADE, Simulink (unless if 
algebraic loops explicitly enabled)

2. Non-strict approach: Constructive fixpoint
semantics: e.g., as in Esterel, Ptolemy

EECS 144/244, UC Berkeley: 20

“Strict” approach: forbid instantaneous feedback

Forbid feedback unless if “broken” by unit-delay 
components (Moore machines)

OK

Not OK

More about solving algebraic loops in 
lectures on continuous systems
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“Strict” approach: forbid instantaneous feedback

Forbid feedback unless if “broken” by unit-delay 
components (Moore machines)

Why does this work?

At the beginning of each cycle, outputs of Moore 
machines are known => acyclic dependency graph.

OK
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Defining the semantics of synchronous feedback

Two basic approaches:

Non-deterministic semantics: used for verification (e.g., 
tools like NuSMV)

Deterministic semantics: used for programming – two 
approaches to ensure determinism:

1. Strict approach: Forbid instantaneous feedback

2. Non-strict approach: Constructive fixpoint semantics
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Strict approach is sometimes too strict

[Malik, Trans. on CAD, 1994]

Some circuits have cycles, but their output is well-defined for all inputs.

EECS 144/244, UC Berkeley: 24

Practical cyclic combinational circuits

[Malik, Trans. on CAD, 1994]

	ݖ ൌ 	݂݅	 ܿ ܨ	݄݊݁ݐ ܩ ݔ ܩ	݁ݏ݈݁	 ܨ ݔ

Is there an equivalent
acyclic circuit?
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Esterel: 
A Synchronous/Reactive Programming Language

present I then

present S then emit T end

else

present T then emit S end

end

“There is a path from S to T and a path from T to S, 
hence a cycle. However, it is obvious from the source 
code that only one path can be used at a time, and, 
therefore, that the circuit is well-behaved.”

[Shiple, Berry, and Touati, 1996]

EECS 144/244, UC Berkeley: 26

“Good” and “bad” cyclic circuits

good

bad: no solution,
oscillation

bad: two solutions,
possible oscillation
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How to analyze cyclic circuits?

good

bad: no solution,
oscillation

bad: two solutions,
possible oscillation

Constructive fixpoint

semantics

EECS 144/244, UC Berkeley: 28

Analyzing cyclic circuits using the constructive 
fixpoint approach: basic idea

Start with all signal values unknown (denoted    : “bottom”)

Try to derive known values based on circuit logic.

Iterate until no more known values can be derived.

If all values known, circuit is good.
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Analyzing cyclic circuits using the constructive 
fixpoint approach: example

0

EECS 144/244, UC Berkeley: 30

Analyzing cyclic circuits using the constructive 
fixpoint approach: example

0
0

0

Fixpoint reached.
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Analyzing cyclic circuits using the constructive 
fixpoint approach: other examples

1

0

1
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Constructive semantics (ternary logic) vs. classic 
logic

We could interpret our circuits also in classic logic: only 
0, 1 (true, false). No “unknown” ሺ٣ሻ value.

But there are bad circuits with unique fixpoints in classic 
logic:

Logically, the output of the 
AND gate is 0. But if x=0, 
and the inverters have 
delay, then this circuit will 
oscillate.
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Applying the procedure

[Malik, Trans. on CAD, 1994]

Initialize with input values and “unknown” on other nodes.

1
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Applying the procedure

[Malik, Trans. on CAD, 1994]

Evaluate lower gate.

1

1
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Applying the procedure

At this point, all nodes are known => fixpoint reached.

Evaluate gates in arbitrary order until nothing changes.

1
1

1

Does this mean the circuit 

is valid (“constructive”)?

Not necessarily:

must try all other possible inputs
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Implicitly using
Parallel (Non-Strict) Or

The non-strict or (often called the “parallel or”) can 
produce a known output even if the input is not 
completely know. Here is a table showing the output as a 
function of two inputs:

 F T

   T

F  F T

T T T T

input 1

in
pu

t 2

Extending gates in
“ternary” (constructive)
logic
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Implicitly using
Parallel (Non-Strict) And

The non-strict and (often called the “parallel and”) can 
produce a known output even if the input is not 
completely know. Here is a table showing the output as a 
function of two inputs:

 F T

  F 

F F F F

T  F T

input 1

in
pu

t 2
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Applying the procedure with input 0 on our circuit 
and a variant of it

[Malik, Trans. on CAD, 1994]

Initialize with input values and “unknown” on other nodes.

0 0
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Applying the procedure with input 0 on our circuit 
and a variant of it

Unknown nodes remain. Constructive semantics rejects these circuits.

Evaluate gates in arbitrary order until no progress is made.

0 0
0 0
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Key Property

The procedure always converges to a unique solution for 
all nodes.

That solution is the least fixed point of a monotonic 
function on a complete partial order (CPO).

The Kleene fixed-point theorem assures that such a least 
fixed point exists, is unique, and can be found via this 
procedure.

The solution may contain unknown values! ሺ٣ሻ
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A circuit (with inputs known) with m nodes can be 
represented as a function F:{0,1,٣}m  {0,1,٣}m

fixpoint	equation:
ܨ ݏ ൌ ݏ

EECS 144/244, UC Berkeley: 42

Our CPO (Complete Partially Ordered Set)

This means:

  0        and             1



0 1
Hasse diagram
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Product CPO on Pairs

This means:

(,0)  (1,0)                   (,1)  (1,1)          … 

This generalizes to arbitrary m-tuples.

Height is m +1

Hasse diagram

(, )

(0, ) (1, ) (, 1)(, 0)

(0, 1)(0, 0) (1, 1)(1, 0)

EECS 144/244, UC Berkeley: 44

Monotonic (Order Preserving) Functions

Let (A,  ) and (B,  ) be posets.

A function f : A  B is called monotonic if

a  a'    f (a)  f (a' )
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Parallel Or is Monotonic on our CPO

(, )

(0, ) (1, ) (, 1)(, 0)

(0, 1)(0, 0) (1, 1)(1, 0)

 F T

   T

F  F T

T T T T

input 1

in
pu

t 2


0 1
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Parallel And is also Monotonic

(, )

(0, ) (1, ) (, 1)(, 0)

(0, 1)(0, 0) (1, 1)(1, 0)

input 1

in
pu

t 2



0 1

 F T

  F 

F F F F

T  F T
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What about logical NOT ?

What does the extended truth table (with “uknown”) for 
NOT look like?

Is NOT monotonic?

EECS 144/244, UC Berkeley: 48

Composition of monotonic functions is monotonic 
=> F:{0,1,٣}m  {0,1,٣}m is monotonic
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Synchronous Composition – Part 2

Thanks to Edward A. Lee for several slides
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Defining the semantics of synchronous feedback

Two basic approaches:

Non-deterministic semantics: used for verification (e.g., 
tools like NuSMV)

Deterministic semantics: used for programming – two 
approaches to ensure determinism:

1. Strict approach: Forbid instantaneous feedback

2. Non-strict approach: Constructive fixpoint semantics
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A closed circuit (inputs known) with m nodes = a 
monotonic function F:{0,1,٣}m  {0,1,٣}m

fixpoint	equation:
ܨ ݏ ൌ ݏ

EECS 144/244, UC Berkeley: 52

Partial orders: basics
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Partial Orders

A partial order on the set A is a binary relation  that is,

for all a, b, c  A ,

 reflexive: a  a

 antisymmetric:  a  b and b  a  a = b

 transitive:  a  b and b  c  a  c

A partially ordered set (poset) is a set A and a binary 
relation , written (A, ) .
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Total Orders

Elements a and b of a poset (A, ) are comparable if 
either  a  b   or b  a . Otherwise they are incomparable.

A poset (A, ) is totally ordered if every pair of elements is 
comparable.

Totally ordered sets are also called linearly ordered sets
and chains.
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Examples

1. 0 < 1

2. 1 < 
3. child < parent

4. child > parent

5. 11,000/3,501 is a better approximation to  than 22/7

6. integer n is a divisor of integer m.

7. Set A is a subset of set B.

Which of these are partial orders? Total orders?

Which are the corresponding posets?
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Fixed Point Theorem
(a variant of the Kleene fixed-point theorem)

Let (A,  ) be the CPO {0,1,٣}m (on m-tuples)

Let  f : A  A be a monotonic function

Let  C = { f n(), n  {1, … , m} }

 C = f m() is the least fixed point of f

Intuition: The least fixed point of a monotonic function 
is obtained by applying the function first to unknown, 
then to the result, then to that result, etc.

Bounded by the height of the CPO, ݉.
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Join (Least Upper Bound)

An upper bound of a subset B  A of a poset (A, ) is an 
element  a  A  such that for all b  B we have b  a.

A least upper bound (LUB) or join of B is an upper bound 
a such that for all other upper bounds a' we have a  a'.

The join of B is written  B.

When the join of B exists, then B is said to be joinable.

EECS 144/244, UC Berkeley: 58

Least Upper Bound – Examples 

Does the upper bound exist for

{(0,), (, 0)}? {(0,), (, 1)}?

Does the upper bound exist for: 0<1<2<… ?

(, )

Hasse diagram(0, ) (1, ) (, 1)(, 0)

(0, 1)(0, 0) (1, 1)(1, 0)
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Proof of Theorem (part 1:  C is a fixed point)

Note that  C is a chain in a finite poset:

  f ()

f ()  f 2()           by monotonicity

…

f m-1()  f m()

Since the longest chain in the poset has length m + 1 , 
this sequence has to stop increasing and settle to a fixed 
point: f k-1() = f k() for some k .

Moreover, f k() =  C . Hence,  C is a fixed point of f .
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Proof of Theorem (part 2:  C is the least fixed 
point)

Let a be another fixed point: f (a) = a

Show that  C is the least fixed point:  C  a

Since f is monotonic:

  a

f ()  f (a) = a

…

f m()  f m(a) = a

So a is an upper bound of the chain C, hence  C  a.
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Brute Force Application of the Theorem

 Start with signals “unknown” at 
all nodes of the circuit.

 Evaluate components (gates) in 
arbitrary order repeatedly until no 
further progress is made.

 If the result has all signals “known,”
then declare it to be the 
constructive solution.

 Otherwise, reject model as non-
constructive (buggy).
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Does evaluation order matter?

In the circuit below, evaluation order matters:

• 1, 2, 3, 4: requires three passes to converge.

• 3, 1, 4, 2: requires one pass to converge.

[Shiple, Berry, and Touati, 1996]

There exists research 
to optimize this [see 

paper by Edwards-Lee]
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What if inputs are unknown?

We will extend the solution to open systems.

From closed … … to open systems

We want to avoid the brute-force method of checking all possible inputs.

EECS 144/244, UC Berkeley: 64

Instead: use symbolic execution

Main idea: instead of iterating over values, iterate over 
functions:

 Start with unknown function of the inputs at all nodes 
except inputs.

 Update the functions in arbitrary order repeatedly until 
no further progress is made.

 If the result has all functions known, then declare the 
circuit constructive.
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Symbolic execution

Assume a single binary input (for now). For each node a
in the circuit, define a function from the input to the node 
value:

These give the outputs as a function of x only.

EECS 144/244, UC Berkeley: 66

Symbolic execution strategy

Start with all nodes except inputs being given by the 
unknown function:

Then update these functions iteratively until 
convergence. But how to update the functions?
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First: how to represent
the functions

Represent each function of the form:

using two characteristic functions of the form:

where

How can these be represented in practice? 

Using BDDs!
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Symbolic execution strategy using 
characteristic functions
Start with all nodes except inputs being given by the 
unknown function:

Then update these functions iteratively until 
convergence. But how to update the functions?

c



35

EECS 144/244, UC Berkeley: 69

Operating on characteristic functions

Gates relate characteristic functions of the outputs with 
those of the inputs:

a
a a

b

ccc

b

EECS 144/244, UC Berkeley: 70

Symbolic execution strategy using 
characteristic functions
Update nodes in 
arbitrary order:

etc.

c
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Convergence

Quickly converge to these characteristic functions:

How do we know whether the circuit is constructive?

c
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Checking whether circuit is constructive

Quickly converge to these characteristic functions:

Circuit is constructive iff at all nodes a we have for all x

i.e. the value is known! (Checking this is a SAT problem)

c
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Does the procedure always converge?
Is the answer unique?

Consider a poset {0, 1} where 0 < 1.

This induces a poset on the set of functions of form:

This poset has a bottom element: the function

This poset is finite, with structure much like the flat order. 
The Kleene fixed-point theorem applies. Extends easily 
to tuples of functions.

How?
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Gate operations on characteristic functions are 
monotonic functions!

These are monotonic in the sense that if you know more 
about the inputs, then you learn more about the outputs:

a
a a

b

ccc

b
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Extension to sequential circuits: circuits with state

First need to find which inputs are problematic, if any.

Then need to determine whether those inputs can occur 
(reachability analysis on a state machine)
[Shiple, Berry, and Touati, DATE, 1996]

EECS 144/244, UC Berkeley: 76

Asynchronous Composition

See 11-asynchronous.pdf
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