
1

Fundamental Algorithms
for System Modeling,
Analysis, and Optimization

Stavros Tripakis
UC Berkeley
EECS 144/244
Fall 2016

Copyright © 2010-2014, E. A. Lee, J. Roychowdhury, S. A. Seshia, S. Tripakis,
All rights reserved

Synchronous Composition

Thanks to Edward A. Lee for several slides

EECS 144/244, UC Berkeley: 2

Composition of discrete systems

Two major paradigms:

Synchronous:

All subsystems move together, in “lock-step”.

Application domains: synchronous circuits, embedded
control, …

Asynchronous:

Each subsystem moves at its own pace: interleaving.

Application domains: concurrent software, distributed
systems, …

2

EECS 144/244, UC Berkeley: 3

Fundamental characteristic of synchronous
systems

Notion of synchronous round (or cycle, or reaction)

All subsystems synchronize at beginning/end of round.

inputs

outputs

inputs

outputs

…

rounds

round 1 round 2

EECS 144/244, UC Berkeley: 4

Example: synchronous block diagram

A

C

rounds

A, B, C A, C, B …

B

3

EECS 144/244, UC Berkeley: 5

Example: synchronous block diagram

A

C

rounds

A, …

B

B
C

A, B
C

can also execute B, C in parallel

Deterministic concurrency (contrast to threads)

EECS 144/244, UC Berkeley: 6

What about models with feedback?

Copyright The Mathworks

Engine control model in Simulink

4

EECS 144/244, UC Berkeley: 7

Defining the semantics of synchronous feedback

Two basic approaches:

Non-deterministic semantics: used for verification (e.g.,
tools like NuSMV)

Deterministic semantics: used for implementation (e.g.,
circuits or synchronous languages)

EECS 144/244, UC Berkeley: 8

Non-deterministic semantics

Main idea:

composition = conjunction of transition relations

5

EECS 144/244, UC Berkeley: 9

Composition as conjunction of transition relations

Systems A and B described symbolically:

Sets of variables (some may be common): ܺ, ܺ

Initial state formulas: ݅݊݅ݐ ܺ	 , ݐ݅݊݅ ܺ	

Next state formulas: ݎݐ ܺ, ܺ
ᇱ , ݎݐ ܺ, ܺ

ᇱ

A B

EECS 144/244, UC Berkeley: 10

Composition as conjunction of transition relations

Composite system described by:

Set of variables: ܺ ∪ ܺ

Initial state formula: ݅݊݅ݐ ܺ	 ∧ ݐ݅݊݅ ܺ	

Next state formula: ݎݐ ܺ, ܺ
ᇱ ∧ ݎݐ ܺ, ܺ

ᇱ

A B

6

EECS 144/244, UC Berkeley: 11

Example: a model with feedback in NuSMV

MODULE identity(input)
VAR
output : boolean;
TRANS
output = input

MODULE inverter(input)
VAR
output : boolean;
TRANS
output = !input

EECS 144/244, UC Berkeley: 12

Example: a model with feedback in NuSMV

Together: ݔ ൌ ݕ ∧ ݕ ൌ ݔ														 No solution.

NuSMV issues warning about “fair states set” being
empty.

MODULE identity(input)
VAR
output : boolean;
TRANS
output = input

MODULE inverter(input)
VAR
output : boolean;
TRANS
output = !input

ݔ

ݕ

ݔ ൌ ݕ ݕ ൌ ݔ

7

EECS 144/244, UC Berkeley: 13

Example: a model with feedback in NuSMV

Together: ݔ ൌ ݕ ∧ ݕ ൌ ݔ Two solutions.

NuSMV considers both states as reachable.

MODULE inverter(input)
VAR
output : boolean;
TRANS
output = !input

MODULE inverter(input)
VAR
output : boolean;
TRANS
output = !input

ݔ

ݕ

ݔ ൌ ݕ ݕ ൌ ݔ

EECS 144/244, UC Berkeley: 14

Modeling (for verification) vs. programming
(implementing)

Non-deterministic semantics OK for verification: can be
seen as over-approximation of all possible behaviors.

Synchronous models essential also for programming:

Real-Time Workshop

Verilog/VHDL

8

EECS 144/244, UC Berkeley: 15

Modeling (for verification) vs. programming (for
implementation)

When programming, semantics need to be well-defined
and implementable.

E.g., what circuit are we supposed to synthesize from this
model?

ݔ ൌ ݕ ∧ ݕ ൌ ݔ

EECS 144/244, UC Berkeley: 16

Modeling (for verification) vs. programming (for
implementation)

When programming, semantics need to be well-defined
and implementable.

E.g., what circuit are we supposed to synthesize from this
model?

ݔ ൌ ݕ ∧ ݕ ൌ ݔ

ambiguous behavior

9

EECS 144/244, UC Berkeley: 17

Modeling (for verification) vs. programming (for
implementation)

When programming, semantics need to be well-defined
and implementable.

E.g., what circuit are we supposed to synthesize from this
model?

ݔ ൌ ݕ ∧ ݕ ൌ ݔ

Guaranteed to stabilize?

EECS 144/244, UC Berkeley: 18

Modeling (for verification) vs. programming (for
implementation)

When programming, semantics need to be well-defined
and implementable.

E.g., what circuit are we supposed to synthesize from this
model?

ݔ ൌ ݕ ∧ ݕ ൌ ݔ

Possible oscillation:

0 → 1 → 0 → ⋯

0 → 1 → 0 → ⋯

10

EECS 144/244, UC Berkeley: 19

Defining the semantics of synchronous feedback

Two basic approaches:

Non-deterministic semantics: used for verification

Deterministic semantics: used for implementation – two
approaches to ensure determinism:

1. Strict approach: Forbid instantaneous feedback:
e.g., as in Lustre, SCADE, Simulink (unless if
algebraic loops explicitly enabled)

2. Non-strict approach: Constructive fixpoint
semantics: e.g., as in Esterel, Ptolemy

EECS 144/244, UC Berkeley: 20

“Strict” approach: forbid instantaneous feedback

Forbid feedback unless if “broken” by unit-delay
components (Moore machines)

OK

Not OK

More about solving algebraic loops in
lectures on continuous systems

11

EECS 144/244, UC Berkeley: 21

“Strict” approach: forbid instantaneous feedback

Forbid feedback unless if “broken” by unit-delay
components (Moore machines)

Why does this work?

At the beginning of each cycle, outputs of Moore
machines are known => acyclic dependency graph.

OK

EECS 144/244, UC Berkeley: 22

Defining the semantics of synchronous feedback

Two basic approaches:

Non-deterministic semantics: used for verification (e.g.,
tools like NuSMV)

Deterministic semantics: used for programming – two
approaches to ensure determinism:

1. Strict approach: Forbid instantaneous feedback

2. Non-strict approach: Constructive fixpoint semantics

12

EECS 144/244, UC Berkeley: 23

Strict approach is sometimes too strict

[Malik, Trans. on CAD, 1994]

Some circuits have cycles, but their output is well-defined for all inputs.

EECS 144/244, UC Berkeley: 24

Practical cyclic combinational circuits

[Malik, Trans. on CAD, 1994]

	ݖ ൌ 	݂݅	 ܿ ܨ	݄݊݁ݐ ܩ ݔ ܩ	݁ݏ݈݁	 ܨ ݔ

Is there an equivalent
acyclic circuit?

13

EECS 144/244, UC Berkeley: 25

Esterel:
A Synchronous/Reactive Programming Language

present I then

present S then emit T end

else

present T then emit S end

end

“There is a path from S to T and a path from T to S,
hence a cycle. However, it is obvious from the source
code that only one path can be used at a time, and,
therefore, that the circuit is well-behaved.”

[Shiple, Berry, and Touati, 1996]

EECS 144/244, UC Berkeley: 26

“Good” and “bad” cyclic circuits

good

bad: no solution,
oscillation

bad: two solutions,
possible oscillation

14

EECS 144/244, UC Berkeley: 27

How to analyze cyclic circuits?

good

bad: no solution,
oscillation

bad: two solutions,
possible oscillation

Constructive fixpoint

semantics

EECS 144/244, UC Berkeley: 28

Analyzing cyclic circuits using the constructive
fixpoint approach: basic idea

Start with all signal values unknown (denoted : “bottom”)

Try to derive known values based on circuit logic.

Iterate until no more known values can be derived.

If all values known, circuit is good.

15

EECS 144/244, UC Berkeley: 29

Analyzing cyclic circuits using the constructive
fixpoint approach: example

0

EECS 144/244, UC Berkeley: 30

Analyzing cyclic circuits using the constructive
fixpoint approach: example

0
0

0

Fixpoint reached.

16

EECS 144/244, UC Berkeley: 31

Analyzing cyclic circuits using the constructive
fixpoint approach: other examples

1

0

1

EECS 144/244, UC Berkeley: 32

Constructive semantics (ternary logic) vs. classic
logic

We could interpret our circuits also in classic logic: only
0, 1 (true, false). No “unknown” ሺ٣ሻ value.

But there are bad circuits with unique fixpoints in classic
logic:

Logically, the output of the
AND gate is 0. But if x=0,
and the inverters have
delay, then this circuit will
oscillate.

17

EECS 144/244, UC Berkeley: 33

Applying the procedure

[Malik, Trans. on CAD, 1994]

Initialize with input values and “unknown” on other nodes.

1

EECS 144/244, UC Berkeley: 34

Applying the procedure

[Malik, Trans. on CAD, 1994]

Evaluate lower gate.

1

1

18

EECS 144/244, UC Berkeley: 35

Applying the procedure

At this point, all nodes are known => fixpoint reached.

Evaluate gates in arbitrary order until nothing changes.

1
1

1

Does this mean the circuit

is valid (“constructive”)?

Not necessarily:

must try all other possible inputs

EECS 144/244, UC Berkeley: 36

Implicitly using
Parallel (Non-Strict) Or

The non-strict or (often called the “parallel or”) can
produce a known output even if the input is not
completely know. Here is a table showing the output as a
function of two inputs:

 F T

 T

F F T

T T T T

input 1

in
pu

t 2

Extending gates in
“ternary” (constructive)
logic

19

EECS 144/244, UC Berkeley: 37

Implicitly using
Parallel (Non-Strict) And

The non-strict and (often called the “parallel and”) can
produce a known output even if the input is not
completely know. Here is a table showing the output as a
function of two inputs:

 F T

 F

F F F F

T F T

input 1

in
pu

t 2

EECS 144/244, UC Berkeley: 38

Applying the procedure with input 0 on our circuit
and a variant of it

[Malik, Trans. on CAD, 1994]

Initialize with input values and “unknown” on other nodes.

0 0

20

EECS 144/244, UC Berkeley: 39

Applying the procedure with input 0 on our circuit
and a variant of it

Unknown nodes remain. Constructive semantics rejects these circuits.

Evaluate gates in arbitrary order until no progress is made.

0 0
0 0

EECS 144/244, UC Berkeley: 40

Key Property

The procedure always converges to a unique solution for
all nodes.

That solution is the least fixed point of a monotonic
function on a complete partial order (CPO).

The Kleene fixed-point theorem assures that such a least
fixed point exists, is unique, and can be found via this
procedure.

The solution may contain unknown values! ሺ٣ሻ

21

EECS 144/244, UC Berkeley: 41

A circuit (with inputs known) with m nodes can be
represented as a function F:{0,1,٣}m {0,1,٣}m

fixpoint	equation:
ܨ ݏ ൌ ݏ

EECS 144/244, UC Berkeley: 42

Our CPO (Complete Partially Ordered Set)

This means:

 0 and 1

0 1
Hasse diagram

22

EECS 144/244, UC Berkeley: 43

Product CPO on Pairs

This means:

(,0) (1,0) (,1) (1,1) …

This generalizes to arbitrary m-tuples.

Height is m +1

Hasse diagram

(,)

(0,) (1,) (, 1)(, 0)

(0, 1)(0, 0) (1, 1)(1, 0)

EECS 144/244, UC Berkeley: 44

Monotonic (Order Preserving) Functions

Let (A,) and (B,) be posets.

A function f : A B is called monotonic if

a a' f (a) f (a')

23

EECS 144/244, UC Berkeley: 45

Parallel Or is Monotonic on our CPO

(,)

(0,) (1,) (, 1)(, 0)

(0, 1)(0, 0) (1, 1)(1, 0)

 F T

 T

F F T

T T T T

input 1

in
pu

t 2

0 1

EECS 144/244, UC Berkeley: 46

Parallel And is also Monotonic

(,)

(0,) (1,) (, 1)(, 0)

(0, 1)(0, 0) (1, 1)(1, 0)

input 1

in
pu

t 2

0 1

 F T

 F

F F F F

T F T

24

EECS 144/244, UC Berkeley: 47

What about logical NOT ?

What does the extended truth table (with “uknown”) for
NOT look like?

Is NOT monotonic?

EECS 144/244, UC Berkeley: 48

Composition of monotonic functions is monotonic
=> F:{0,1,٣}m {0,1,٣}m is monotonic

25

Fundamental Algorithms
for System Modeling,
Analysis, and Optimization

Stavros Tripakis
UC Berkeley
EECS 144/244
Fall 2016

Copyright © 2010-2013, E. A. Lee, J. Roychowdhury, S. A. Seshia, S. Tripakis,
All rights reserved

Synchronous Composition – Part 2

Thanks to Edward A. Lee for several slides

EECS 144/244, UC Berkeley: 50

Defining the semantics of synchronous feedback

Two basic approaches:

Non-deterministic semantics: used for verification (e.g.,
tools like NuSMV)

Deterministic semantics: used for programming – two
approaches to ensure determinism:

1. Strict approach: Forbid instantaneous feedback

2. Non-strict approach: Constructive fixpoint semantics

26

EECS 144/244, UC Berkeley: 51

A closed circuit (inputs known) with m nodes = a
monotonic function F:{0,1,٣}m {0,1,٣}m

fixpoint	equation:
ܨ ݏ ൌ ݏ

EECS 144/244, UC Berkeley: 52

Partial orders: basics

27

EECS 144/244, UC Berkeley: 53

Partial Orders

A partial order on the set A is a binary relation that is,

for all a, b, c A ,

 reflexive: a a

 antisymmetric: a b and b a a = b

 transitive: a b and b c a c

A partially ordered set (poset) is a set A and a binary
relation , written (A,) .

EECS 144/244, UC Berkeley: 54

Total Orders

Elements a and b of a poset (A,) are comparable if
either a b or b a . Otherwise they are incomparable.

A poset (A,) is totally ordered if every pair of elements is
comparable.

Totally ordered sets are also called linearly ordered sets
and chains.

28

EECS 144/244, UC Berkeley: 55

Examples

1. 0 < 1

2. 1 <
3. child < parent

4. child > parent

5. 11,000/3,501 is a better approximation to than 22/7

6. integer n is a divisor of integer m.

7. Set A is a subset of set B.

Which of these are partial orders? Total orders?

Which are the corresponding posets?

EECS 144/244, UC Berkeley: 56

Fixed Point Theorem
(a variant of the Kleene fixed-point theorem)

Let (A,) be the CPO {0,1,٣}m (on m-tuples)

Let f : A A be a monotonic function

Let C = { f n(), n {1, … , m} }

 C = f m() is the least fixed point of f

Intuition: The least fixed point of a monotonic function
is obtained by applying the function first to unknown,
then to the result, then to that result, etc.

Bounded by the height of the CPO, ݉.

29

EECS 144/244, UC Berkeley: 57

Join (Least Upper Bound)

An upper bound of a subset B A of a poset (A,) is an
element a A such that for all b B we have b a.

A least upper bound (LUB) or join of B is an upper bound
a such that for all other upper bounds a' we have a a'.

The join of B is written B.

When the join of B exists, then B is said to be joinable.

EECS 144/244, UC Berkeley: 58

Least Upper Bound – Examples

Does the upper bound exist for

{(0,), (, 0)}? {(0,), (, 1)}?

Does the upper bound exist for: 0<1<2<… ?

(,)

Hasse diagram(0,) (1,) (, 1)(, 0)

(0, 1)(0, 0) (1, 1)(1, 0)

30

EECS 144/244, UC Berkeley: 59

Proof of Theorem (part 1: C is a fixed point)

Note that C is a chain in a finite poset:

 f ()

f () f 2() by monotonicity

…

f m-1() f m()

Since the longest chain in the poset has length m + 1 ,
this sequence has to stop increasing and settle to a fixed
point: f k-1() = f k() for some k .

Moreover, f k() = C . Hence, C is a fixed point of f .

EECS 144/244, UC Berkeley: 60

Proof of Theorem (part 2: C is the least fixed
point)

Let a be another fixed point: f (a) = a

Show that C is the least fixed point: C a

Since f is monotonic:

 a

f () f (a) = a

…

f m() f m(a) = a

So a is an upper bound of the chain C, hence C a.

31

EECS 144/244, UC Berkeley: 61

Brute Force Application of the Theorem

 Start with signals “unknown” at
all nodes of the circuit.

 Evaluate components (gates) in
arbitrary order repeatedly until no
further progress is made.

 If the result has all signals “known,”
then declare it to be the
constructive solution.

 Otherwise, reject model as non-
constructive (buggy).

EECS 144/244, UC Berkeley: 62

Does evaluation order matter?

In the circuit below, evaluation order matters:

• 1, 2, 3, 4: requires three passes to converge.

• 3, 1, 4, 2: requires one pass to converge.

[Shiple, Berry, and Touati, 1996]

There exists research
to optimize this [see

paper by Edwards-Lee]

32

EECS 144/244, UC Berkeley: 63

What if inputs are unknown?

We will extend the solution to open systems.

From closed … … to open systems

We want to avoid the brute-force method of checking all possible inputs.

EECS 144/244, UC Berkeley: 64

Instead: use symbolic execution

Main idea: instead of iterating over values, iterate over
functions:

 Start with unknown function of the inputs at all nodes
except inputs.

 Update the functions in arbitrary order repeatedly until
no further progress is made.

 If the result has all functions known, then declare the
circuit constructive.

33

EECS 144/244, UC Berkeley: 65

Symbolic execution

Assume a single binary input (for now). For each node a
in the circuit, define a function from the input to the node
value:

These give the outputs as a function of x only.

EECS 144/244, UC Berkeley: 66

Symbolic execution strategy

Start with all nodes except inputs being given by the
unknown function:

Then update these functions iteratively until
convergence. But how to update the functions?

34

EECS 144/244, UC Berkeley: 67

First: how to represent
the functions

Represent each function of the form:

using two characteristic functions of the form:

where

How can these be represented in practice?

Using BDDs!

EECS 144/244, UC Berkeley: 68

Symbolic execution strategy using
characteristic functions
Start with all nodes except inputs being given by the
unknown function:

Then update these functions iteratively until
convergence. But how to update the functions?

c

35

EECS 144/244, UC Berkeley: 69

Operating on characteristic functions

Gates relate characteristic functions of the outputs with
those of the inputs:

a
a a

b

ccc

b

EECS 144/244, UC Berkeley: 70

Symbolic execution strategy using
characteristic functions
Update nodes in
arbitrary order:

etc.

c

36

EECS 144/244, UC Berkeley: 71

Convergence

Quickly converge to these characteristic functions:

How do we know whether the circuit is constructive?

c

EECS 144/244, UC Berkeley: 72

Checking whether circuit is constructive

Quickly converge to these characteristic functions:

Circuit is constructive iff at all nodes a we have for all x

i.e. the value is known! (Checking this is a SAT problem)

c

37

EECS 144/244, UC Berkeley: 73

Does the procedure always converge?
Is the answer unique?

Consider a poset {0, 1} where 0 < 1.

This induces a poset on the set of functions of form:

This poset has a bottom element: the function

This poset is finite, with structure much like the flat order.
The Kleene fixed-point theorem applies. Extends easily
to tuples of functions.

How?

EECS 144/244, UC Berkeley: 74

Gate operations on characteristic functions are
monotonic functions!

These are monotonic in the sense that if you know more
about the inputs, then you learn more about the outputs:

a
a a

b

ccc

b

38

EECS 144/244, UC Berkeley: 75

Extension to sequential circuits: circuits with state

First need to find which inputs are problematic, if any.

Then need to determine whether those inputs can occur
(reachability analysis on a state machine)
[Shiple, Berry, and Touati, DATE, 1996]

EECS 144/244, UC Berkeley: 76

Asynchronous Composition

See 11-asynchronous.pdf

39

EECS 144/244, UC Berkeley: 77

Bibliography

Malik, S. (1994). Analysis of cyclic combinational circuits. IEEE Trans. Computer-
Aided Design, 13(7):950–956.

Edwards, S. and Lee, E. (July 2003). The semantics and execution of a
synchronous block-diagram language. Science of Computer Programming,
48:21–42(22).

Shiple, T., Berry, G., and Touati, H. (1996). Constructive analysis of cyclic circuits.
In European Design and Test Conference (EDTC’96). IEEE Computer Society.

Berry, G. (1999). The Constructive Semantics of Pure Esterel.

Davey, B. A. and Priestley, H. A. (2002). Introduction to Lattices and Order.
Cambridge University Press, 2nd edition.

