Multi-level Logic Optimization: Outline

Overview of Multi-level Optimization: An Example

Core Concepts:
 - Boolean Function Decomposition
 - Boolean and Algebraic Division
 - Identifying Divisors

Thanks to S. Devadas, K. Keutzer, S. Malik, R. Rutenbar for several slides
Boolean Network, Explained

It’s a graph:
- Primary inputs (variables)
- Primary outputs
- Intermediate nodes (in SOP form in terms of its inputs)

- Quality of network: area, delay, …
 - measured in terms of #(literals), depth, …
Tech.-Independent Multi-Level Optimization: Operations on Boolean Network

Involves performing the following operations “iteratively” until “good enough” result is obtained:

1. Simplification
 Minimizing two-level logic function (SOP for a single node)
2. Elimination
 Substituting one expression into another.
3. Decomposition
 Expressing a single SOP with 2 or more simpler forms
4. Extraction
 Finding & pulling out subexpressions common to many nodes
5. Substitution
 Like extraction, but nodes in the network are re-used

Example (due to G. De Micheli)

\[
\begin{align*}
v &= a'd + bd + c'd + ae' \\
p &= ce + de \\
r &= p + a' \\
s &= r + b' \\
t &= ac + ad + bc + bd + e \\
q &= a + b \\
u &= q'c + qc' + qc \\
w &= \\
x &= \\
y &= \\
z &=
\end{align*}
\]

#literals = 33, depth = 3
Example: Elimination

\[v = a'd + bd + c'd + ae' \]
\[p = ce + de \]
\[t = ac + ad + bc + bd + e \]
\[q = a + b \]
\[w \]
\[x \]
\[y \]
\[z \]

\#literals = 33, depth = 3

Example: Eliminate node r

\[v = a'd + bd + c'd + ae' \]
\[p = ce + de \]
\[t = ac + ad + bc + bd + e \]
\[q = a + b \]
\[u = q'c + qc' + qc \]

\#literals = 32, depth = 2
Example: Simplification

\[v = a'd + bd + c'd + ae' \]
\[p = ce + de \]
\[s = p + a' + b' \]
\[t = ac + ad + bc + bd + e \]
\[q = a + b \]
\[u = q'c + qc' + qc \]

#literals = 32, depth = 2

Example: Simplifying node u

\[v = a'd + bd + c'd + ae' \]
\[p = ce + de \]
\[s = p + a' + b' \]
\[t = ac + ad + bc + bd + e \]
\[q = a + b \]
\[u = q + c \]

#literals = 28, depth = 2
Example: Decomposition

\[v = a'd + bd + c'd + ae' \]
\[p = ce + de \]
\[s = p + a' + b' \]
\[t = ac + ad + bc + bd + e \]
\[q = a + b \]
\[u = q + c \]

\#literals = 28, depth = 2

Example: Decomposing node v

\[j = a' + b + c' \]
\[v = jd + ae' \]
\[p = ce + de \]
\[s = p + a' + b' \]
\[t = ac + ad + bc + bd + e \]
\[q = a + b \]
\[u = q + c \]

\#literals = 27, depth = 2
Example: Extraction

\[j = a' + b + c' \quad v = jd + ae' \]
\[p = ce + de \quad s = p + a' + b' \]
\[t = ac + ad + bc + bd + e \]
\[q = a + b \quad u = q + c \]

#literals = 27, depth = 2

Example: Extracting from p and t

\[j = a' + b + c' \quad v = jd + ae' \]
\[p = ke \quad s = p + a' + b' \]
\[t = ka + kb + e \]
\[k = c + d \]
\[q = a + b \quad u = q + c \]

#literals = 23, depth = 3
Example: What next? Can we improve further?

\[v = j d + a e' \]
\[p = k e \]
\[s = p + a' + b' \]
\[t = k a + k b + e \]
\[q = a + b \]
\[u = q + c \]

\#literals = 23, depth = 3

Which Operations Do We Know How to Do?

1. **Simplification**
 Minimizing two-level logic function (SOP for a single node)

2. **Elimination**
 Substituting one expression into another.

3. **Decomposition**
 Expressing a single SOP with 2 or more simpler forms

4. **Extraction**
 Finding & pulling out subexpressions common to many nodes

5. **Substitution**
 Like extraction, but nodes in the network are re-used
Decomposition by Factoring/Division

Starting with a SOP Form
\[f = ac + ad + bc + bd + ae' \]
We want to generate an equivalent Factored form
\[f = (a + b)(c + d) + ae' \]

Reason: Factored forms are ‘natural’ multi-level representations – tree-like expressions

To do factoring, we need to
- Identify divisors
- Perform division

Divisors and Decomposition

Given Boolean function \(F \), we want to write it as
\[F = D \cdot Q + R \]
where \(D \) – Divisor, \(Q \) – Quotient, \(R \) – Remainder

Decomposition: Searching for divisors which are common to many functions in the network
- identify divisors which are common to several functions
- introduce common divisor as a new node
- re-express existing nodes using the new divisor
Topics

What is division?
- Boolean vs. Algebraic

How to perform division

How to identify divisors

Boolean Division

Given Boolean function F, we want to write it as

$$F = D \cdot Q + R$$

Definition:

D is a **Boolean divisor** of F if Q and R exist such that $F = DQ + R$, $DQ \neq 0$. ($F \neq 0$)

D is said to be a **factor** of F if, D is a divisor of F and in addition, $R = 0$; i.e., $F = DQ$.
Boolean Division: Key Results

- D is a factor of F iff $F \cdot D' = 0$
 - ON-SET(D) contains ON-SET(F)

- $F \cdot D \neq 0$ iff D is a divisor of F

- How many possible factors D can there be for a given F?

Boolean Division: Proof Ideas

D is a factor of F iff $F \cdot D' = 0$
- (only if part): $F = DQ$, so $F \cdot D' = 0$
- (if part): Given that $F \cdot D' = 0$, $F \subseteq D$, so $F = DF$, or $F = D(F+X)$ where $X \cdot D = 0$.

 Thus, $F = DH$ for some H.

F. D ! = 0 iff D is a divisor of F
- (if): $F = DQ + R$, $FD = DQ + DR$, since $DQ \neq 0$, $FD \neq 0$
- (only if): $FD \neq 0$ and $F = FD + FD'$, take $Q=F+d$, $R=FD'$, where $dD = 0$.

How many possible factors D can there be for a given F?
- Doubly exponential in number of variables
Algebraic Model

Idea: Perform division using only the rules (axioms) of real numbers, not all of Boolean algebra

Real Numbers
- \(a \cdot b = b \cdot a \)
- \(a + b = b + a \)
- \(a \cdot (b \cdot c) = (a \cdot b) \cdot c \)
- \(a + (b + c) = (a + b) + c \)
- \(a \cdot (b + c) = a \cdot b + a \cdot c \)
- \(a \cdot 1 = a \quad a \cdot 0 = 0 \quad a + 0 = a \)

Boolean Algebra
- \(a \cdot b = b \cdot a \)
- \(a + b = b + a \)
- \(a \cdot (b \cdot c) = (a \cdot b) \cdot c \)
- \(a + (b + c) = (a + b) + c \)
- \(a \cdot (b + c) = a \cdot b + a \cdot c \)
- \(a \cdot 1 = a \quad a \cdot 0 = 0 \quad a + 0 = a \)
- \(a + (b \cdot c) = (a + b) \cdot (a + c) \)
- \(a + a' = 1 \quad a \cdot a' = 0 \quad a \cdot a = a \)
- \(a + a = a \)
- \(a + 1 = 1 \quad a + ab = a \quad a \cdot (a + b) = a \)
- ...

Algebraic Division

- A literal and its complement are treated as unrelated
 Each literal as a fresh variable
 E.g.
 \[f = ab + a'x + b'y \quad \text{as} \quad f = ab + dx + ey \]

- Treat SOP expression as a polynomial
 Division/factoring then becomes polynomial division/factoring

- Boolean identities are ignored
 - Except in pre-processing
 - Simple local simplifications like \(a + ab \rightarrow a \) performed
Algebraic vs. Boolean factorization

\[f = a\overline{b} + a\overline{c} + b\overline{a} + b\overline{c} + c\overline{a} + c\overline{b} \]

Algebraic factorization produces
\[f = a(\overline{b} + \overline{c}) + a\overline{(b + c)} + b\overline{c} + c\overline{b} \]

Boolean factorization produces
\[f = (a + b + c)(\overline{a} + \overline{b} + \overline{c}) \]

Algebraic Division Example

\[F = ac + ad + bc + bd + ae \]

Find Q, R, where \(F = DQ + R \) for
1. \(D = a + b \)
2. \(D = a \)
Algebraic Division Algorithm

What we want: $|F|$, $|D|

Given F, D, find Q, R

F, D expressed as sets of cubes (same for Q, R)

Approach:

For each cube C in D

- let $B = \{ \text{cubes in } F \text{ contained in } C \}$
 - if (B is empty) return $Q = \{ \}$, $R = F$
 - let $B = \{ \text{cubes in } B \text{ with variables in } C \text{ removed} \}$

 if (C is the first cube in D we’re looking at)

 - let $Q = B$

 else $Q = Q \cap B$

$R = F \setminus (Q \times D)$;

Taking Stock

- What we know:
 - How to perform Algebraic division given a divisor D

- What we don’t
 - How to find a divisor D?

- Recall what we wanted to do:

 Given 2 functions F and G, find a common divisor D
 and factorize them as

 $F = D \cdot Q_1 + R_1$

 $G = D \cdot Q_2 + R_2$
New Terminology: Kernels

A kernel of a Boolean expression F is a cube-free expression that results when you divide F by a single cube.

- That “single cube” is called a co-kernel.

Cube-free expression: Cannot factor out a single cube that leaves behind no remainder.

Examples: Which are cube-free?
- $F_1 = a + b \checkmark$
- $F_2 = abc + abd \times$

Kernels: Examples

$F = ae + be + cde + ab$

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Co-kernel</th>
</tr>
</thead>
<tbody>
<tr>
<td>${a,b,cd}$</td>
<td>e</td>
</tr>
<tr>
<td>${e,b}$</td>
<td>?</td>
</tr>
<tr>
<td>?</td>
<td>b</td>
</tr>
<tr>
<td>${ae,be,cde,ab}$</td>
<td>?</td>
</tr>
</tbody>
</table>

Note: can view kernels as sets of cubes.
Why are Kernels Useful?

Multi-level logic optimizer wants to find common divisors of two (or more) functions f and g

Theorem: [Brayton & McMullen]
f and g have a non-trivial (multiple-cube) common divisor d if and only if there exist kernels $k_f \in K(f)$, $k_g \in K(g)$ such that $k_f \cap k_g$ is non-trivial, i.e., not a cube

(Here set intersection is applied to the sets of cubes in k_f and k_g)

:. can use kernels of f and g to locate common divisors

Theorem, Sketched Informally

$F = D1 \cdot K1 + R1$
$G = D2 \cdot K2 + R2$

$K1 = (X + Y + \ldots) + \text{stuff1}$
$K2 = (X + Y + \ldots) + \text{stuff2}$

Then,

- $F = (X + Y + \ldots) D1 + \text{stuff3}$
- $G = (X + Y + \ldots) D2 + \text{stuff4}$

So, if we find kernels and intersect them, the intersection gives us our common divisor
Kernel Intersection: Example

<table>
<thead>
<tr>
<th>F = ae + be + cde + ab</th>
<th>G = ad + ae + bd + be + bc</th>
</tr>
</thead>
<tbody>
<tr>
<td>K(f)</td>
<td>K(g)</td>
</tr>
<tr>
<td>Kernel</td>
<td>Co-kernel</td>
</tr>
<tr>
<td>{a,b,cd}</td>
<td>e</td>
</tr>
<tr>
<td>{e,b}</td>
<td>a</td>
</tr>
<tr>
<td>{e,a}</td>
<td>b</td>
</tr>
<tr>
<td>{ae,be,cde,ab}</td>
<td>1</td>
</tr>
</tbody>
</table>

How do we find Kernels?

Overview: Given a function F
1. Pick a variable x appearing in F, and use it as a divisor
2. Find the corresponding kernel K if one exists (at least 2 cubes in F contain x)
 - If not, go back to (1) and pick another variable
3. Use K in place of F and recurse to find kernels of K
 - F = x K + R and K = y M + S → F = xy M + ...
 - Add kernels of K to those of F
4. Go back to (1) and pick another variable to keep finding kernels
Finding Kernels: Example

\[F = abc + abd + bcd \]

- \(F/\overline{a} \)
 - \(bc + bd \)
 - \(\overline{a}/\overline{c} \)
 - \(\overline{a}/d \)

- \(F/\overline{b} \)
 - \(ac + ad + cd \)
 - \(\overline{b}c \)
 - \(\overline{b}/\overline{d} \)

- \(F/\overline{c} \)
 - \(ab + bd \)
 - \(ab + bc \)

- \(F/\overline{d} \)
 - \(ab + cd \)
 - \(\overline{d}/\overline{c} \)
 - \(\overline{d}/\overline{a} \)

Both contain \(c \).

Intersection is \(bc \).

Recurse on \(F/bc = a+d \)

Take intersection of all cubes containing a variable
Kernel Finding Algorithm

```plaintext
FindKernels(F) {
    K = { };  
    for (each variable x in F) {
        if (F has at least 2 cubes containing x) {
            let S = {cubes in F containing x};
            let c = cube resulting from intersection of all cubes in S
            K = K ∪ FindKernels(F/c);  //recursion
        }
    }
    K = K ∪ F ;
    return K;
}
```

Reading