Equation-Based Object-Oriented Languages for Acausal Modeling and Simulation

Lecture 12a in EECS 144/244

University of California, Berkeley November 12, 2013

David Broman

broman@eecs.berkeley.edu

EECS Department University of California, Berkeley, USA

and

Linköping University, Sweden

Some of the slides are based OSMC tutorials and contributed by Peter Fritzson (Based on book and lecture nodes), David Broman, Emma Larsdotter Nilsson, Peter Bunus, Adrian Pop, Jan Brugård, Mohsen Torabzadeh-Tari, and Adeel Asghar. Copyright © Open Source Modelica Consortium.

Agenda

broman@eecs.berkeley.edu

2

Part I EOO Languages for CPS Part II Modelica Overview

3

Part I EOO Languages for CPS Part II Modelica Overview Part III Modelyze – an Extensible Research Language

4

Cyber-Physical Systems (CPS)

broman@eecs.berkeley.edu

Industrial Robots

Power Plants

Aircraft

Part II Modelica Overview

Modeling and Simulating Cyber-Physical Systems

Equation-Based Object-Oriented (EOO) Languages

Part II Modelica Overview Part III Modelyze – an Extensible Research Language

6

5

Equation-Based Object-Oriented (EOO) Languages

7

an Extensible Research Language

Overview

for CPS

Equation-Based Object-Oriented (EOO) Languages

10 **Equation-Based Object-Oriented (EOO)** Languages broman@eecs.berkeley.edu Domaininertia2 torque inertia1 cts $\overline{\phi_{sl}}$ Languag $\phi_{\mathcal{Q}}$ va, C++: Primaril dampe thods τ_1 Modeling J_1 J_2 acausal (non-causal) systems anguages: uations Multiple 1 s ph e.g., med hydraulid 2 1 s evel causal Part Part II Part III EOO Languages Modelyze -* Modelica for CPS Overview an Extensible Research Language

Equation-Based Object-Oriented (EOO) Languages

broman@eecs.berkeley.edu

11

12 broman@eecs.berkeley.edu

Part II Modelica Overview

Part I EOO Languages for CPS

Part II
 Modelica
 Overview

13

broman@eecs.berkeley.edu

A language for modeling of complex physical systems

Robotics ٠ Automotive ٠ Aircrafts Satellites • Power plants ٠ Systems biology Part I Part II Part III EOO Languages Modelica Modelyze for CPS Overview an Extensible Research Language

14

broman@eecs.berkeley.edu A language for modeling of complex physical systems

Primary designed for simulation, but there are also other usages of models, e.g. optimization.

Part I EOO Languages for CPS

Part II Modelica Overview

Free, open language specification:

Available at: www.modelica.org

Part I EOO Languages for CPS Part II Modelica Overview Part III Modelyze – an Extensible Research Language

16

broman@eecs.berkeley.edu

Modelica Tools

Free Environments

OpenModelica supported by OSMC Jmodelica.org supported by Modelon Modelicac (part of Scilab) SimForge

Dymola by Dassault Systemes SimulationX by ITI GmbH LMS Imagine.Lab AMESim by LMS MapleSim by Maplesoft MOSILAB by Fraunhofer FIRST

Commercial Environments

CyModelica by CyDesign Labs

OPTIMICA Studio by Modelon AB

MWorks by Suzhou Tongyuan

Wolfram SystemModeler by Wolfram

Part I EOO Languages for CPS

Part II Modelica Overview

What is special about Modelica? broman@eecs.berkeley.edu

Some Domains

Domain Type	Potential	Flow	Carrier	Modelica Library
Electrical	Voltage	Current	Charge	Electrical. Analog
Translational	Position	Force	Linear momentum	Mechanical. Translational
Rotational	Angle	Torque	Angular momentum	Mechanical. Rotational
Magnetic	Magnetic potential	Magnetic flux rate	Magnetic flux	
Hydraulic	Pressure	Volume flow	Volume	HyLibLight
Heat	Temperature	Heat flow	Heat	HeatFlow1D
Chemical	Chemical potential	Particle flow	Particles	Under construction
Pneumatic	Presure	Mass flow	Air	PneuLibLight

Part I EOO Languages for CPS Part II
 Modelica
 Overview

Part III Modelyze – an Extensible Research Language

22

Modelica Standard Library

broman@eecs.berkeley.edu

Part I EOO Languages for CPS

Part III Modelyze – an Extensible Research Language

24

Modelica in Autmotive Industry

broman@eecs.berkeley.edu

Part I EOO Languages for CPS Part II Modelica Overview

Modelica in Power Generation GTX Gas Turbine

broman@eecs.berkeley.edu

26

Brief Modelica History

Modelica design group meetings

- First meeting in fall 1996
- International group of people with expert knowledge in both language design and physical modeling
- · Industry and academia

Modelica Language Versions

v1.0 (1997), v2.0 (2002) v.2.2 (2005) v.3.0 (2007) 3.1 (2009) 3.2 (2010), 3.2 revision 1 (2012)

Modelica Association established 2000

• Open, non-profit organization

Modelica Conferences

• 9 international conferences (2000-2012)

Part I EOO Languages for CPS

```
Part II
Modelica
Overview
```


28

Typical Simulation Process

broman@eecs.berkeley.edu

MODELICA

Simple model - Hello World!

Equations and Inheritance

Part I EOO Languages for CPS

for CPS

Part II Modelica Overview

Overview

Part III Modelyze – an Extensible Research Language

an Extensible Research Language

Connections and Flow Variables

broman@eecs.berkeley.edu

Hybrid Modeling

broman@eecs.berkeley.edu

34

Hybrid modeling = continuous-time + discrete changes (events) (Using Modelica terminology)

Event creation – when

broman@eecs.berkeley.edu

Reinit - discontinuous changes

broman@eecs.berkeley.edu

36

The value of a *continuous-time* state variable can be instantaneously changed by a reinit-equation within a when-equation

Modelica – large and complex

We have just "scratched on the surface of the language"

Examples of the features which has not been covered

- · Functions and algorithm sections
- · Arrays and matrices
- Inner / outer variables (lookup in instance hierarchy)
- Annotations
- Loop constructs
- Partial classes
- Packages, blocks...

And much more...

Linköpings u
сикориндо и

broman@eecs.berkeley.edu

Part III

Modelyze – an extensible research language

Part I EOO Languages for CPS Part II Modelica Overview

What is Modelyze?

Modelyze Environment

References and Further Reading

- Sven Erik Mattsson, Hilding Elmqvist, and Martin Otter. Physical System Modeling with Modelica. Control Engineering Practice 6. Pages 501-510, 1998.
- Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1. Wiley-IEEE Press, New York, 2004.
- Peter Fritzson, Peter Aronsson, Håkan Lundvall, Kaj Nyström, Adrian Pop, Levon Saldamli, and David Broman The OpenModelica Modeling, Simulation, and Software Development Environment. Simulation News Europe. Issue 44, Pages 8-16, ARGESIM, 2005
- David Broman, Peter Fritzson, and Sébastien Furic. Types in the Modelica Language. In Proceedings of the Fifth International Modelica Conference, pages 303-315, Vienna, Austria, 2006.
- David Broman and Jeremy G. Siek. Modelyze: a gradually typed host language for embedding equation-based modeling languages. Technical Report UCB/EECS-2012-173, EECS Department, University of California, Berkeley, June 2012.

See <u>http://www.modelica.org</u> for more information on Modelica, including the latest language specification.

Part II Modelica Overview

42

Conclusions

broman@eecs.berkeley.edu

EOO Languages are particularly good for physical modeling because of their acausal capability

Modelica is the current state-of-the-art EOO language. The fundamental formalism is DAEs.

Modelyze is an extensible research language for embedding equation-based languages.

Part I EOO Languages for CPS

Part II Modelica Overview

