
1

EECS 144/244, UC Berkeley: 1

Fundamental Algorithms for
System Modeling, Analysis,
and Optimization

Jaijeet Roychowdhury, Stavros Tripakis
UC Berkeley
EECS 144/244
Fall 2015

Copyright © 2010-date, E. A. Lee, J. Roychowdhury, S. A. Seshia,
S. Tripakis, All rights reserved

Discrete Systems1

Reminder: systems

• System: atomic system | composite system

• Atomic system: state + dynamics (+ inputs/outputs)

• Composite system: set of subsystems + composition

• Dynamics: rules defining how state evolves in time

• Composition: rules defining how subsystems interact

2

2

Classes of systems/models
considered in this course

 Continuous: differential equations, …

 Discrete: state machines, transition systems, …

 Timed: discrete-event, timed automata, …

 Dataflow: process networks, SDF, …

 Probabilistic: Markov chains, …

3

4

DISCRETE SYSTEMS

3

Discrete systems

Automata, state machines, transition systems, …

• States

• Transitions: discrete moves from one state to the
next

• “logical” time = order of transitions

• As opposed to quantitative, “real-time” models such
as differential equations or timed automata (we will
see those later).

5

Finite State Machines

Machines of type Moore or Mealy

Main application: digital circuits

6

4

Moore machines

States: {q0, q1, q2, q3}

Initial state: q0

Input symbols: {x,y,z}

Output symbols: {a,b,c}

Output function:

ݐݑ ∶ 	ݏ݁ݐܽݐܵ	 → ݏݐݑݐݑܱ	
Transition function:

:ݐݔ݁݊ 	ݏ݁ݐܽݐܵ	 ൈ 	ݏݐݑ݊ܫ	 → ݏ݁ݐܽݐܵ	

7

Moore machine: a circuit view

next out

clock

x(n)

y(n)

s(n)

8

5

Mealy machines

States: {S0, S1, S2}

Initial state: S0

Input symbols: {0,1}

Output symbols: {0,1}

Output function:

ݐݑ ∶ ݏ݁ݐܽݐܵ	 ൈ ݏݐݑ݊ܫ	 → ݏݐݑݐݑܱ	
Transition function:

:ݐݔ݁݊ 	ݏ݁ݐܽݐܵ	 ൈ 	ݏݐݑ݊ܫ	 → ݏ݁ݐܽݐܵ	

9

Mealy machine: a circuit view

next out

clock

x(n)

y(n)

s(n)

10

Finite State Machines – Formal Definition
An FSM is a tuple

(I, O, S, s0, δ, λ)

I: set of inputs
O: set of outputs
S: set of states
s0 ∈ S: initial state
δ : S × I → S: transition function
λ: output function

I If the FSM is of type Moore:

λ : S → O

I If the FSM is of type Mealy:

λ : S × I → O

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2015 State machines, circuits 11 / 30

Example: Mealy Machine

structure:

arbiter

in1∈ {0, 1}

in2∈ {0, 1}
out ∈ {0, 1, 2}

behavior:
00/0 00/0

01/1

10/2

11/1 01/1

10/211/2

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2015 State machines, circuits 12 / 30

CIRCUITS

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2015 State machines, circuits 13 / 30

Synchronous Circuits – Generic structural view:

Combinational logic part: a network of logical gates (AND, OR, NOT,
XOR, ...).

Memory/state of the circuit: some type of digital memory element (e.g.,
D-type flip-flop).

Synchronous: clock arriving conceptually synchronously (simultaneously) at
all flip-flops.

Circuit: a network of connected gates and flip-flops (“netlist”).

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2015 State machines, circuits 14 / 30

Memory element: D flip-flop

D (input)

clock
output

Behavior (simplified1):

Clock input defines a set of times t1, t2, t3, ... (e.g., up-edges of
a periodic pulse).

The value of output remains constant during the interval
[tk, tk+1) and equal to the value of the input D at tk.

“Door-opening” metaphor.

Memory elements often have more inputs (e.g., resets to
initialize state).

1More accurate description of timing behavior in timing analysis lecture.
Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2015 State machines, circuits 15 / 30

Is the D flip-flop a state machine?

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2015 State machines, circuits 16 / 30

Combinational logic gates

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2015 State machines, circuits 17 / 30

Are logic gates state machines?

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2015 State machines, circuits 18 / 30

Digital Circuits: Networks of Flip-Flops and Logic

Gates
For now, we consider acyclic circuits: they can have feedback, but
any feedback loops are “broken” by flip-flops:

Are the dynamics of such circuits well-defined? How?

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2015 State machines, circuits 19 / 30

From Circuits to State Machines

Is this a state machine?

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2015 State machines, circuits 20 / 30

From Circuits to State Machines

Is this a state machine? Is it a Mealy or Moore machine?
How are (I, O, S, s0, δ, λ) defined?
What would a Moore Machine look like?

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2015 State machines, circuits 21 / 30

State Machines and Synchronous Circuits

Is this a good drawing?

00/0 00/0

01/1

10/2

11/1 01/1

10/211/2

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2015 State machines, circuits 22 / 30

Drawing Mealy Machines Correctly
Traditional drawing mixes transition and output functions, although these
are independent (this matters in the case of circuits, for instance, where
outputs might change multiple times before stabilizing – c.f. discussion on
circuits that follows):

arbiter

in1∈ {0, 1}

in2∈ {0, 1}
out ∈ {0, 1, 2}

00/0 00/0

01/1

10/2

11/1 01/1

10/211/2

Better drawing:

out := case in1 in2
00 : 0;
01 : 1;
10 : 2;
11 : 1;

end

out := case in1 in2
00 : 0;
01 : 1;
10 : 2;
11 : 2;

end

00 00

01

10

11

01

10

11

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2015 State machines, circuits 23 / 30

Modeling and Implementation/Synthesis

What we have done / what we will do next:

Circuit FSM

Modeling

Implementation/Synthesis

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2015 State machines, circuits 24 / 30

From FSMs to Circuits

“Brute-force” implementation:

log n flip-flops, where n = |S| = number of states of the FSM.

log k input wires, where k = |I| = number of input symbols.

logm output wires, where m = |O| = number of output
symbols.

Multiplexers to implement transition and output functions.

More efficient implementations: the logic synthesis problem.
Several subproblems:

State encoding (or state assignment)

Logic minimization

...

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2015 State machines, circuits 25 / 30

From FSMs to Circuits

Let’s implement this FSM (on whiteboard):

00/0 00/0

01/1

10/2

11/1 01/1

10/211/2

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2015 State machines, circuits 26 / 30

From FSMs to Circuits
Several combinatorial optimization problems.
E.g., state assignment (state encoding): how to encode the states of a
given FSM as boolean vectors. Which of the many possible encodings to
choose?
Example (taken from [Kohavi, 1978]):

373 12.1 Introductory example

Table 12.1 Machine M1

NS z

PS x = 0 x = 1 x = 0 x = 1

A A D 0 1
B A C 0 0
C C B 0 0
D C A 0 1

Table 12.2 Excitation and output tables for M1

Y1Y2 z

y1y2 x = 0 x = 1 x = 0 x = 1

A 00 00 10 0 1
B 01 00 11 0 0
C 11 11 01 0 0
D 10 11 00 0 1

(a) Assignment α

Y1Y2 z

y1y2 x = 0 x = 1 x = 0 x = 1

A 00 00 11 0 1
B 01 00 10 0 0
C 10 10 01 0 0
D 11 10 00 0 1

(b) Assignment β

f1(x, y1)

zy1

x

Y1

(a) Circuit diagram.

y2
Y2

z
y1

x

Y1

(b) Block diagram.

f2(x, y1, y2)
y2

Y2
f0(x, y2)

Fig. 12.1 First realization of
M1.

373 12.1 Introductory example

Table 12.1 Machine M1

NS z

PS x = 0 x = 1 x = 0 x = 1

A A D 0 1
B A C 0 0
C C B 0 0
D C A 0 1

Table 12.2 Excitation and output tables for M1

Y1Y2 z

y1y2 x = 0 x = 1 x = 0 x = 1

A 00 00 10 0 1
B 01 00 11 0 0
C 11 11 01 0 0
D 10 11 00 0 1

(a) Assignment α

Y1Y2 z

y1y2 x = 0 x = 1 x = 0 x = 1

A 00 00 11 0 1
B 01 00 10 0 0
C 10 10 01 0 0
D 11 10 00 0 1

(b) Assignment β

f1(x, y1)

zy1

x

Y1

(a) Circuit diagram.

y2
Y2

z
y1

x

Y1

(b) Block diagram.

f2(x, y1, y2)
y2

Y2
f0(x, y2)

Fig. 12.1 First realization of
M1.Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2015 State machines, circuits 27 / 30

From FSMs to Circuits

The two state encodings result in two very different circuits:

373 12.1 Introductory example

Table 12.1 Machine M1

NS z

PS x = 0 x = 1 x = 0 x = 1

A A D 0 1
B A C 0 0
C C B 0 0
D C A 0 1

Table 12.2 Excitation and output tables for M1

Y1Y2 z

y1y2 x = 0 x = 1 x = 0 x = 1

A 00 00 10 0 1
B 01 00 11 0 0
C 11 11 01 0 0
D 10 11 00 0 1

(a) Assignment α

Y1Y2 z

y1y2 x = 0 x = 1 x = 0 x = 1

A 00 00 11 0 1
B 01 00 10 0 0
C 10 10 01 0 0
D 11 10 00 0 1

(b) Assignment β

f1(x, y1)

zy1

x

Y1

(a) Circuit diagram.

y2
Y2

z
y1

x

Y1

(b) Block diagram.

f2(x, y1, y2)
y2

Y2
f0(x, y2)

Fig. 12.1 First realization of
M1.

374 Structure of sequential machines

f1(x,y1)

z

y1

x

Y1

(a) Circuit diagram.

y2

z

y1

x

Y1

(b) Block diagram.

f2(x,y2)
y2Y2

f0(x,y1, y2)

x

Y2

x

x

Fig. 12.2 Second realization of
M1.

for example, the block labeled f1(x, y1) corresponds to the combinational logic
associated with memory element Y1, and so on.

The logic equations corresponding to assignment β, shown in Table 12.2b,
are

Y1 = x ′y1 + xy ′
1 = f1(x, y1),

Y2 = xy ′
2 = f2(x, y2),

z = xy ′
1y

′
2 + xy1y2 = f0(x, y1, y2).

In this case Y1 is independent of y2 and Y2 is independent of y1. In other
words, the next value of each state variable can be computed from its present
value and the value of the present input, regardless of the value of the other
state variable. The dependency of the output function, however, has increased
in comparison with its dependency in assignment α, shown in Table 12.2a.
The circuit and block diagrams corresponding to assignment β are shown in
Fig. 12.2.

The preceding two realizations of machine M1 clearly demonstrate that
the choice of assignment affects the complexity of the circuit and determines
the dependency of the next-state variables and the overall structure of the
machine. Our objective in this chapter is to investigate the relationship of the

Figures taken from [Kohavi, 1978].

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2015 State machines, circuits 28 / 30

An elegant notation for (not necessarily finite)

state machines: Lustre
A program in the synchronous language
Lustre [Halbwachs et al., 1991]:

node Edge (X : bool) returns (E : bool);

let

E = false -> X and not pre X ;

tel

Can you guess its meaning?

E0 = false

Ek+1 = Xk+1 ∧ ¬Xk

Quiz: write a counter in Lustre.
Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2015 State machines, circuits 29 / 30

Bibliography

Hachtel, G. D. and Somenzi, F. (1996).

Logic Synthesis and Verification Algorithms.
Kluwer.

Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D. (1991).

The synchronous dataflow programming language Lustre.
Proceedings of the IEEE, 79(9):1305–1320.

Hopcroft, J. E. and Ullman, J. D. (1990).

Introduction To Automata Theory, Languages, And Computation.
Addison-Wesley.

Kohavi, Z. (1978).

Switching and finite automata theory, 2nd ed.
McGraw-Hill.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2015 State machines, circuits 30 / 30

