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ASSUMPTIONS, GUARANTEES, CONTRACTS
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Component-Based Design

Composition: what for?

I Building large systems from smaller components (subsystems).

Important and related notions and questions:

I Modularity: what are the right components? how independent are
they from each other?

I Reusability: what are the right components? how generic/reusable
are they?

I Compatibility/Composability: can two components be composed?

I Compositionality: many meanings, e.g., can the properties of the
overall system be derived from those of its subsystems?

I Substitutability: when can a component replace another one?

I Incrementality: can a component be added “later”?

I Reconfigurability

I ...
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Overview: contracts as behavioral types

Stavros Tripakis: EECS 144/244 – Discrete Systems Contracts, Asynchronous Composition, Fairness 4 / 50



Substitutability 
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Substitutability 
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How to ensure properties are preserved? 
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Interface theories [Alfaro, Henzinger, et al.] 

• Interface = component abstraction 

• Interface composition: A • B = C 

– Check compatibility here! (local, lightweight) 

• Interface refinement: A’  A   

• Theorems: 

5 

(1) If A’  A and A satisfies P then A’ satisfies P.  

(2) If A’  A  and B’  B, then A’ • B’    A • B. 

(1) and (2)   =>   substitutability 
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Type theories 
 

 

 

 

 

 

6 

C A Z 

Real Int  

Stavros Tripakis: EECS 144/244 – Discrete Systems Contracts, Asynchronous Composition, Fairness 4 / 50



Type theories 
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C A Z 

Real Bool  Type error! 
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Interface theories = behavioral type 
theories 

 

 

 

 

 

 

8 

],[ maxmin vvv

C A 

mslatency 10

Z 

Real Bool  Type error! 
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Relational interfaces 

9 

 

Divide 
x1  
x2 

y 

 0000 212  yxxx
block 

relational interface 

[ACM TOPLAS 2011] 

standard type 

(Real, Real) -> Real 
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Relational interfaces: 
type checking 
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Relational interfaces: 
type inference 
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Subtyping for substitutability 
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Can be computed using SAT/SMT solvers 
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’ can replace  in any context 
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Key aspects of contracts

Inputs, outputs.

Assumptions vs. requirements on inputs.

Guarantees on outputs.
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Recall: total vs. partial transition functions

Suppose Σ = a, b, c.

s0A1: s1 s2 s3
a b c

s′0A2: s′1

s′2

s′3

s′4

s′5

s′6

· · ·

· · ·

· · ·

b

a

c

b

a

c

What if the transition function of the “receiver” A2 is also partial?
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Recall: non-input-completeness

Different meanings and usages of partial inputs:
I Requirements: I require that the environment never provides

this input (at that time).
I This can be useful for contract-based design.
I More about this when we talk about composition.

Example:

init()

read()

write()

I Assumptions: I know that the environment will never provide
this input (at that time).
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Assumptions vs. Requirements on the Inputs

Example: Division component.

Div
y

x1

x2

Two possible ways to look at its contract:

I Assumption on inputs:

x2 6= 0→ y =
x1
x2

I Requirements on inputs:

x2 6= 0 ∧ y =
x1
x2

As we shall see, these have different implications during composition.
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Formalizing Contracts

Contracts for synchronous components: relational interfaces
[Tripakis et al., 2011].

Generalizations of Mealy machines:

I Finite sets of input and output variables.

I Set of nodes (like the states of a Mealy machine).

I Every node annotated by a predicate on input and output
variables: static contract (holds at a given step).

I Transitions between nodes specify dynamic contracts.
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Relational Interfaces: the Stateless Case

Example: Division interface.

Div
y

x1

x2

Div = ( {x1, x2}︸ ︷︷ ︸
input variables

, {y}︸︷︷︸
output variables

, x2 6= 0 ∧ y =
x1
x2︸ ︷︷ ︸

“static” contract

)

Meaning: at every synchronous step:

1. Environment proposes inputs x1, x2.

I If x1, x2 already violate the contract (if x2 = 0), environment
is to blame. Otherwise:

2. Component chooses output y.

I If x1, x2, y violate the contract, component is to blame.

Stavros Tripakis: EECS 144/244 – Discrete Systems Contracts, Asynchronous Composition, Fairness 10 / 50



Relational Interfaces: the Stateless Case

Example: Division interface.

Div
y

x1

x2

Div = ( {x1, x2}︸ ︷︷ ︸
input variables

, {y}︸︷︷︸
output variables

, x2 6= 0 ∧ y =
x1
x2︸ ︷︷ ︸

“static” contract

)

Meaning: at every synchronous step:

1. Environment proposes inputs x1, x2.

I If x1, x2 already violate the contract (if x2 = 0), environment
is to blame. Otherwise:

2. Component chooses output y.

I If x1, x2, y violate the contract, component is to blame.

Stavros Tripakis: EECS 144/244 – Discrete Systems Contracts, Asynchronous Composition, Fairness 10 / 50



Relational Interfaces: the Stateful Case

Example: single-place buffer.

Stateful interface: type changes 
d lldynamically

1 li 1‐place
buffer

write full
read empty

Global contract:
(holds at every round)

fullempty  )  (
Local (state‐dependent) contracts:

d

readwrite

fp y




)  (

)(

write

write read 

readempty 
 s1s0

empty full
read

51
writefull 

 empty full
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Relational Interfaces: the Stateful Case

Meaning: at every synchronous step:

0. Contract := contract of current state.

1. Environment proposes inputs x1, x2.
I If x1, x2 already violate the contract (if x2 = 0), environment

is to blame. Otherwise:

2. Component chooses output y.
I If x1, x2, y violate the contract, component is to blame.

3. Find which guard of the automaton is satisfied by the vector
x1, x2, y (guard must be unique ⇒ determinism).

4. Take corresponding transition, updating automaton state (and
therefore also the contract that must hold on the next step).
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Stateful interface: type changes 
d lldynamically

1 li 1‐place
buffer

write full
read empty

Global contract:
(holds at every round)

fullempty  )  (
Local (state‐dependent) contracts:

d

readwrite
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write
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Looking more closely at our contracts

Division interface with non-deterministic output.

Div
y

x1

x2

Div =̂ ({x1, x2}, {y}, φDiv )

φDiv =̂ x2 6= 0 ∧ φsign
φsign =̂ (y = 0↔ x1 = 0) ∧

(
y < 0↔ (x1 < 0 < x2 ∨ x2 < 0 < x1)

)
If x1 = x2 = 1, output can be any y > 0.

I Very useful for abstraction.
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Why non-input-complete contracts are useful

Consider the alternative contract

x2 6= 0→ φsign

I This allows y to take any value when x2 = 0.

I But it also assumes that y will take some value!
I What if the component “breaks” when fed with illegal inputs?

I e.g., algorithm may not terminate when inputs are illegal
I hardware may “burn up” when input voltage is too high.
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Why non-input-complete contracts are useful (continued)

Catching incompatible compositions early:

x2 = 0 Div
y

x1

x2

If the contract of Div is x2 6= 0 ∧ · · · then the composite contract is
false, indicating incompatibility.

If the contract of Div is x2 6= 0→ · · · then the composite contract
(after hiding x2) is true. How to interpret this?

I We cannot interpret it as “incompatible”: true may simply mean
“nothing is known about this component”.

I We could try to verify the composition against a specific property,
e.g., y ∈ [L,U ].

I Not easy to come up with such properties.
I May not want to do “full” verification.
I Instead: “light-weight” type-checking.
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So ...

I relational + non-deterministic + non-input-complete
contracts are good.

I Next: from such contracts, (non-standard) definitions of
composition and refinement appear to follow inevitably.
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Serial composition

true Div
y

x1

x2

How should we define the composite contract?

I Standard definition: composition = conjunction

true ∧ x2 6= 0 ∧ · · ·

I this does not seem to indicate any incompatibility ...
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Serial composition: problem with standard definition

What if we replace true with x2 = 0 ?

true

x1

x2 x2 = 0 Div
y

x1

x2

I Standard definition: composition = conjunction

x2 = 0 ∧ x2 6= 0 ∧ · · · ≡ false

I this indicates incompatibility ...

I Yet x2 = 0 seems a valid substitute for true: it more deterministic,
i.e., “more defined”. It should be a valid refinement of true.

I Conclusion: The standard definition violates preservation of
refinement by composition ... /
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Serial composition: alternative definition

true Div
y

x1

x2

Instead, we define the composite contract as follows:

I “Demonic” non-determinism:

true ∧ x2 6= 0 ∧ · · · ∧ (∀x2 : true → x2 6= 0)︸ ︷︷ ︸
this is the additional constraint

∀x2 : true → x2 6= 0 ≡ ∀x2 : x2 6= 0 ≡ false

I Incompatibility detected!
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Serial composition: general case

φ1 φ2

φserial

x y z

I Composite contract:

φserial =̂ φ1 ∧ φ2 ∧ (∀y : φ1 → ∃z : φ2)

I Let in(φ2) =̂ ∃z : φ2. Then

φserial =̂ φ1 ∧ φ2 ∧
(
∀y : φ1 → in(φ2)

)
I Note: if φ2 is input-complete or φ1 is deterministic, then
φserial ≡ φ1 ∧ φ2.
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Refinement

φ1vφ2
x yx y

When can we say that φ2 is a valid refinement of φ1?

I Standard view: refinement = implication

φ2 v φ1 =̂ φ2 → φ1

I Does not work (refinement does not preserve compatibility):

x = 0 true
x

compatible

x = 0 x 6= 0
x

incompatible, even though x 6= 0→ true

Need to treat inputs and outputs differently.
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Alternating Refinement

φ1vφ2
x yx y

I Alternating refinement:

φ2 v φ1 =̂
(
in(φ1)→ in(φ2)

)
∧
((

in(φ1) ∧ φ2
)
→ φ1

)

If φ1, φ2 are input-complete, then (φ2 v φ1) ≡ (φ2 → φ1).

Main result [Tripakis et al., 2011]:

I Refinement is equivalent to substitutability (fully abstract):
φ2 v φ1 iff φ2 can replace φ1 in any context.

I Note that other definitions are sufficient but not necessary for
substitutability, e.g.:(

in(φ1)→ in(φ2)
)
∧
(
φ2 → φ1

)
C.f. Liskov-Wing’s behavioral subtyping [Liskov and Wing, 1994].
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Contracts in the Automata World

Interface Automata [de Alfaro and Henzinger, 2001].

s0A1: s1 s2 s3
a! b! c!

s′0A2: s′1

s′3

s′4

s′5

s′6

· · ·

· · ·

b?

c?

b?

a?

c?

The composition of A1 and A2 is invalid: A1 offers a as output,
but A2 is not able to accept it as input.
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ASYNCHRONOUS COMPOSITION
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Recall: Synchronous Composition of Kripke Structures

Given two KS K1 and K2 with

Ki = (Pi, Si, S
i
0, Li, Ri)

the synchronous composition of K1 and K2 is a new KS

K1 ×K2 = (P1 ∪ P2, S1 × S2, S1
0 × S2

0 , L,R)

where

I L
(
(s1, s2)

)
= L1(s1) ∪ L2(s2)

I
(
(s1, s2), (s

′
1, s

′
2)
)
∈ R iff (s1, s

′
1) ∈ R1 and (s2, s

′
2) ∈ R2
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Asynchronous Composition of Kripke Structures

Given two KS K1 and K2 with

Ki = (Pi, Si, S
i
0, Li, Ri)

the asynchronous composition of K1 and K2 is a new KS

K1||K2 = (P1 ∪ P2, S1 × S2, S1
0 × S2

0 , L,R)

where

I L
(
(s1, s2)

)
= L1(s1) ∪ L2(s2)

I
(
(s1, s2), (s

′
1, s

′
2)
)
∈ R iff (s1, s

′
1) ∈ R1 and s′2 = s2 or

(s2, s
′
2) ∈ R2 and s′1 = s1
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Recall: Symbolic Synchronous Composition of Kripke
Structures

Given two KS K1 and K2, each represented symbolically as

Ki = (Init i,Trans i)

their synchronous composition K1 ×K2 can be represented
symbolically as

K1 ×K2 = (Init1 ∧ Init2,Trans1 ∧ Trans2)

How can the asynchronous composition K1||K2 be represented
symbolically?

K1||K2 = (Init1 ∧ Init2,Trans1 ∨ Trans2)

is this correct?
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Symbolic Asynchronous Composition of Kripke Structures

Given two KS K1 and K2, each represented symbolically as

Ki = (Init i,Trans i)

their asynchronous composition K1||K2 can be represented
symbolically as

K1||K2 =
(
Init1 ∧ Init2, (Trans1 ∧ ~x′2 = ~x2) ∨ (Trans2 ∧ ~x′1 = ~x1)

)
where ~xi are the variables of Ki.

Is it correct now?
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Symbolic Asynchronous Composition of Kripke Structures

Consider two asynchronous processes writing to a shared variable x:

s0 || p0

x++ x++

Composite transition relation:

x′ = x+ 1 ∧ x′ = x︸ ︷︷ ︸
from process 1

∨x′ = x+ 1 ∧ x′ = x︸ ︷︷ ︸
from process 2

≡ false

Need to talk explicitly about shared variables.
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Symbolic Asynchronous Composition of Kripke Structures

Given two KS K1 and K2, each represented symbolically as

Ki = (Init i,Trans i)

their asynchronous composition K1||K2 can be represented
symbolically as

K1||K2 =
(
Init1 ∧ Init2, (Trans1 ∧ ~x′2 = ~x2) ∨ (Trans2 ∧ ~x′1 = ~x1)

)
where:

I ~xi are the variables owned by Ki: they are written only by Ki

(they can be read by Kj , j 6= i).

I Trans i may refer also to shared variables ~v, which are written
by both K1 and K2.
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Symbolic Asynchronous Composition of Kripke Structures

Consider two asynchronous processes writing to a shared variable x:

s0 || p0

x++ x++

Composite transition relation:

x′ = x+ 1︸ ︷︷ ︸
from process 1

∨ x′ = x+ 1︸ ︷︷ ︸
from process 2

Only one variable, x, shared.
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Asynchronous Process Communication

Two prominent paradigms:
I Shared memory

I A common pool of shared (global) variables
I Common problems: avoid corrupt values, races, deadlocks

(e.g., when semaphores are used), ...

I Message passing
I Generally “cleaner” (but perhaps more difficult to implement)
I Can even ensure determinism in some cases! (see Kahn

Process Networks later in this course)

Spin / Promela offers both [Holzmann, 2003].

NuSMV offers synchronous composition (asynchronous is
deprecated).
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DIGRESSION:

FORMALISMS, LANGUAGES and TOOLS
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Languages vs. Formalisms

Formalisms: abstract, mathematical objects.

Languages implement formalisms: they have concrete syntax.
They usually come together with tools.

Example:

I Formalism: FSM.

I Language: the language of NuSMV.

A language can implement many formalisms.

Quiz: Which formalisms from those we have seen (DFA, FSMs,
transition systems, ...) does NuSMV implement? What about
Spin?
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Designer’s dilemmas (some of many)

Which formalism do I need?
Which language and tool should I choose?

Viewpoints Languages and ToolsFormalisms

Differential 
Equations

State 
Machines

Timed and 
Hybrid Automata

Dataflow

Discrete 
Event

EOO Languages
Example: Modelica

Block Diagram Languages
Examples: Simulink and Scicos

Multi-Formalism Languages and Tools
Examples: Ptolemy II, AToM3, and Modelyze

Hardware Description Languages
Examples: VHDL, Verilog, and AMS extensions 

Reactive languages
Examples: SCADE/Lustre and Giotto

Model Checkers
Examples: Spin, NuSMV, and UPPAAL 

Control 
Performance

Design

Software
Design

Control 
Robustness  

Design

For a discussion, see [Broman et al., 2012].
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FAIRNESS
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Fairness: Motivation

s0 || p0 p1

x++

x > 4

Will the rightmost process ever get to move to p1?

Asynchronous composition transition relation:

x′ = x+ 1 ∧ p′ = p︸ ︷︷ ︸
from process 1

∨ (x > 4→ p′ = p1) ∧ (x ≤ 4→ p′ = p0) ∧ x′ = x︸ ︷︷ ︸
from process 2

How to ensure that no process gets neglected forever?
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Weak Fairness

If a transition is always enabled after some point on, it
will eventually be taken.

or better:

A trace s0, s1, s2, ... is weakly unfair if there exists a
transition which is enabled at all states si for some
i ≥ K for some K, but never taken.
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Weak Fairness

Weak fairness solves this problem:

s0 || p0 p1

x++

x > 4

The trace where the transition from p0 to p1 never happens is
weakly unfair.
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Weak Fairness is Sometimes too Weak

s0 || p0 p1

x++

x > 4 ∧ even(x)

Here, the trace where the transition from p0 to p1 never happens is
not weakly unfair, because the transition is not continually enabled.
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Weak Fairness is Sometimes too Weak

More realistic application:

How to ensure that both processes eventually enter their critical
section?
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Strong Fairness

If a transition is infinitely-often enabled after some point
on, it will eventually be taken.

or better:

A trace s0, s1, s2, ... is strongly unfair if there exists a
transition which is enabled infinitely often in the trace
but never taken.

Stavros Tripakis: EECS 144/244 – Discrete Systems Contracts, Asynchronous Composition, Fairness 43 / 50



Model-checking in the presence of fairness

Suppose we want to check M |= φ but it fails because some traces
of M violate φ.

Suppose all these traces are unfair.

How to exclude them from consideration?

Check a different formula:

M |= φfair → φ

where φfair characterizes the fair traces.
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Model-checking in the presence of fairness

Homework: Let M be the system formed by the asynchronous
composition of the two processes shown below. M does not satisfy
the LTL formula Fp1. Why?

s0 || p0 p1

x++

x > 4 ∧ even(x)

M satisfies Fp1 if we assume strong fairness. What would φfair be
so that

M |= φfair → Fp1?
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Fairness not limited to asynchronous composition

Example:

MODULE inverter(input)

VAR

output : boolean;

INIT

output = FALSE

TRANS

next(output) = !input | next(output) = output

This models a non-deterministic transition system.
Possible fairness requirement: if input changes, output must eventually
also change.

Another example: a communication channel cannot keep on losing a
message forever.
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SUMMARY: DISCRETE SYSTEMS
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Discrete Systems

I Modeling formalisms:
I automata, state machines
I transition systems
I temporal logics.

I Application domain: circuits.
I Analysis and optimization algorithms:

I state-space exploration (enumerative, symbolic)
I bounded model-checking
I SAT solving
I timing analysis and retiming for circuits (today).

I Composition:
I synchronous, asynchronous composition
I synchronous feedback
I contracts
I fairness.

I Tools: Spin and NuSMV.
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Next week: Dataflow

Please install:

Ptolemy II: http://ptolemy.eecs.berkeley.edu/ptolemyII/
ptII8.0/index.htm

SDF3: http://www.es.ele.tue.nl/sdf3/
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