EECS 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization **Discrete Systems** Lecture: Contracts, Asynchronous Composition, Fairness

Stavros Tripakis

University of California, Berkeley

ASSUMPTIONS, GUARANTEES, CONTRACTS

Stavros Tripakis: EECS 144/244 – Discrete Systems Contracts, Asynchronous Composition, Fairness 2/50

Component-Based Design

Composition: what for?

Building large systems from smaller components (subsystems).

Important and related notions and questions:

- Modularity: what are the right components? how independent are they from each other?
- Reusability: what are the right components? how generic/reusable are they?
- Compatibility/Composability: can two components be composed?
- Compositionality: many meanings, e.g., can the properties of the overall system be derived from those of its subsystems?
- Substitutability: when can a component replace another one?
- Incrementality: can a component be added "later"?
- Reconfigurability

▶ ..

Overview: contracts as behavioral types

Stavros Tripakis: EECS 144/244 – Discrete Systems Contracts, Asynchronous Composition, Fairness 4/50

Substitutability

Substitutability

Stavros Tripakis: EECS 144/244 – Discrete Systems

Substitutability

System refinement

Interface theories [Alfaro, Henzinger, et al.]

- Interface = component abstraction
- Interface composition: A B = C
 - Check compatibility here! (local, lightweight)
- Interface refinement: $A' \leq A$
- Theorems:

(1) If $A' \leq A$ and A satisfies P then A' satisfies P. (2) If $A' \leq A$ and $B' \leq B$, then $A' \bullet B' \leq A \bullet B$.

(1) and (2) => substitutability

Type theories

Type theories

Stavros Tripakis: EECS 144/244 – Discrete Systems Contracts, Asynchronous Composition, Fairness 4/50

Interface theories = **behavioral** type theories

Relational interfaces

Relational interfaces: type checking

Type error!

Relational interfaces: type inference

Subtyping for substitutability

def

 ϕ' subtype of ϕ \Rightarrow (and sometimes \Leftrightarrow) ϕ' can replace ϕ in any context

Can be computed using SAT/SMT solvers

14

Stavros Tripakis: EECS 144/244 – Discrete Systems

 $\phi' \prec \phi$

Contracts, Asynchronous Composition, Fairness 4 / 50

 $in(\phi) \Rightarrow in(\phi')$ $(in(\phi) \land \phi') \Rightarrow \phi$

Inputs, outputs.

Assumptions vs. requirements on inputs.

Guarantees on outputs.

Recall: total vs. partial transition functions

Suppose $\Sigma = a, b, c$.

What if the transition function of the "receiver" A_2 is also partial?

Stavros Tripakis: EECS 144/244 - Discrete Systems

Recall: non-input-completeness

Different meanings and usages of partial inputs:

- Requirements: I require that the environment never provides this input (at that time).
 - This can be useful for *contract-based design*.
 - More about this when we talk about composition.

Example:

Assumptions: I know that the environment will never provide this input (at that time).

Assumptions vs. Requirements on the Inputs

Example: Division component.

$$\begin{array}{c|c} x_1 \\ \hline \\ x_2 \end{array} \end{array} Div \begin{array}{c} y \\ \hline \end{array}$$

Two possible ways to look at its contract:

Assumption on inputs:

$$x_2 \neq 0 \to y = \frac{x_1}{x_2}$$

Requirements on inputs:

$$x_2 \neq 0 \land y = \frac{x_1}{x_2}$$

Stavros Tripakis: EECS 144/244 – Discrete Systems

Assumptions vs. Requirements on the Inputs

Example: Division component.

$$\begin{array}{c|c} x_1 \\ \hline \\ x_2 \end{array} \end{array} Div \begin{array}{c} y \\ \hline \end{array}$$

Two possible ways to look at its contract:

Assumption on inputs:

$$x_2 \neq 0 \to y = \frac{x_1}{x_2}$$

Requirements on inputs:

$$x_2 \neq 0 \land y = \frac{x_1}{x_2}$$

As we shall see, these have different implications during composition.

Stavros Tripakis: EECS 144/244 - Discrete Systems

Contracts for synchronous components: *relational interfaces* [Tripakis et al., 2011].

Generalizations of Mealy machines:

- Finite sets of input and output variables.
- Set of nodes (like the states of a Mealy machine).
- Every node annotated by a predicate on input and output variables: static contract (holds at a given step).
- ► Transitions between nodes specify *dynamic* contracts.

Relational Interfaces: the Stateless Case

Example: Division interface.

Relational Interfaces: the Stateless Case

Example: Division interface.

Meaning: at every synchronous step:

- 1. Environment proposes inputs x_1, x_2 .
 - If x₁, x₂ already violate the contract (if x₂ = 0), environment is to blame. Otherwise:
- 2. Component chooses output y.
 - If x_1, x_2, y violate the contract, component is to blame.

Relational Interfaces: the Stateful Case

Example: single-place buffer.

Stavros Tripakis: EECS 144/244 - Discrete Systems

Relational Interfaces: the Stateful Case

Meaning: at every synchronous step:

- 0. Contract := contract of current state.
- 1. Environment proposes inputs x_1, x_2 .
 - ► If x₁, x₂ already violate the contract (if x₂ = 0), environment is to blame. Otherwise:
- 2. Component chooses output y.
 - If x_1, x_2, y violate the contract, component is to blame.
- 3. Find which guard of the automaton is satisfied by the vector x_1, x_2, y (guard must be unique \Rightarrow determinism).
- 4. Take corresponding transition, updating automaton state (and therefore also the contract that must hold on the *next* step).

Division interface with non-deterministic output.

$$Div \stackrel{\cong}{=} (\{x_1, x_2\}, \{y\}, \phi_{Div})$$

$$\phi_{Div} \stackrel{\cong}{=} x_2 \neq 0 \land \phi_{sign}$$

$$\phi_{sign} \stackrel{\cong}{=} (y = 0 \leftrightarrow x_1 = 0) \land (y < 0 \leftrightarrow (x_1 < 0 < x_2 \lor x_2 < 0 < x_1))$$

If $x_1 = x_2 = 1$, output can be any y > 0.

Very useful for abstraction.

$$Div \cong (\{x_1, x_2\}, \{y\}, \phi_{Div})$$

$$\phi_{Div} \cong x_2 \neq 0 \land \phi_{sign}$$

$$\phi_{sign} \cong (y = 0 \leftrightarrow x_1 = 0) \land (y < 0 \leftrightarrow (x_1 < 0 < x_2 \lor x_2 < 0 < x_1))$$

• **Relational**: e.g.,
$$y = 0 \leftrightarrow x_1 = 0$$

$$\blacktriangleright$$
 as opposed to simple types like: Real $imes$ Real o Real

$$Div \ \ \ \widehat{=} \ \ (\{x_1, x_2\}, \{y\}, \phi_{Div})$$

$$\phi_{Div} \quad \widehat{=} \quad x_2 \neq 0 \land \phi_{sign}$$

 $\phi_{sign} \quad \widehat{=} \quad (y = 0 \leftrightarrow x_1 = 0) \land \left(y < 0 \leftrightarrow (x_1 < 0 < x_2 \lor x_2 < 0 < x_1) \right)$

- **Relational**: e.g., $y = 0 \leftrightarrow x_1 = 0$
 - ightarrow as opposed to simple types like: Real imes Real o Real
- ▶ Non-deterministic: e.g., if $x_1 = x_2 = 1$, output can be any y > 0
 - very useful for abstraction

$$Div \ \widehat{=} \ (\{x_1, x_2\}, \{y\}, \phi_{Div})$$

$$\phi_{Div} \quad \widehat{=} \quad x_2 \neq 0 \land \phi_{sign}$$

 $\phi_{sign} \quad \widehat{=} \quad (y = 0 \leftrightarrow x_1 = 0) \land \left(y < 0 \leftrightarrow (x_1 < 0 < x_2 \lor x_2 < 0 < x_1) \right)$

- **Relational**: e.g., $y = 0 \leftrightarrow x_1 = 0$
 - ightarrow as opposed to simple types like: Real imes Real o Real
- ▶ Non-deterministic: e.g., if $x_1 = x_2 = 1$, output can be any y > 0
 - very useful for abstraction
- ▶ Non-input-complete: $x_2 \neq 0 \land \phi_{sign}$
 - as opposed to: $x_2 \neq 0 \rightarrow \phi_{sign}$

$$Div \ \widehat{=} \ (\{x_1, x_2\}, \{y\}, \phi_{Div})$$

$$\phi_{Div} \quad \widehat{=} \quad x_2 \neq 0 \land \phi_{sign}$$

 $\phi_{sign} \quad \hat{=} \quad (y = 0 \leftrightarrow x_1 = 0) \land \left(y < 0 \leftrightarrow (x_1 < 0 < x_2 \lor x_2 < 0 < x_1) \right)$

- **Relational**: e.g., $y = 0 \leftrightarrow x_1 = 0$
 - ightarrow as opposed to simple types like: Real imes Real o Real
- ▶ Non-deterministic: e.g., if $x_1 = x_2 = 1$, output can be any y > 0
 - very useful for abstraction
- ▶ Non-input-complete: $x_2 \neq 0 \land \phi_{sign}$
 - as opposed to: $x_2 \neq 0 \rightarrow \phi_{sign}$
 - this will make things a bit complicated ...
 - do we really need it?

Consider the alternative contract

$$x_2 \neq 0 \rightarrow \phi_{sign}$$

- This allows y to take any value when $x_2 = 0$.
- But it also assumes that y will take some value!
- What if the component "breaks" when fed with illegal inputs?
 - e.g., algorithm may not terminate when inputs are illegal
 - hardware may "burn up" when input voltage is too high.

Catching incompatible compositions early:

$$x_2 = 0 \xrightarrow[]{x_2} Div \xrightarrow[]{y}$$

If the contract of Div is $x_2 \neq 0 \land \cdots$ then the composite contract is *false*, indicating **incompatibility**.

Catching incompatible compositions early:

$$x_2 = 0 \xrightarrow[]{x_2} Div \xrightarrow[]{y}$$

If the contract of Div is $x_2 \neq 0 \land \cdots$ then the composite contract is *false*, indicating **incompatibility**.

If the contract of Div is $x_2 \neq 0 \rightarrow \cdots$ then the composite contract (after hiding x_2) is *true*. How to interpret this?

Catching incompatible compositions early:

$$x_2 = 0 \xrightarrow[]{x_1} Div \xrightarrow[]{y}$$

If the contract of Div is $x_2 \neq 0 \land \cdots$ then the composite contract is *false*, indicating **incompatibility**.

If the contract of Div is $x_2 \neq 0 \rightarrow \cdots$ then the composite contract (after hiding x_2) is *true*. How to interpret this?

We cannot interpret it as "incompatible": true may simply mean "nothing is known about this component".

Catching incompatible compositions early:

$$x_2 = 0 \xrightarrow[]{x_1} Div \xrightarrow[]{y}$$

If the contract of Div is $x_2 \neq 0 \land \cdots$ then the composite contract is *false*, indicating **incompatibility**.

If the contract of Div is $x_2 \neq 0 \rightarrow \cdots$ then the composite contract (after hiding x_2) is *true*. How to interpret this?

- We cannot interpret it as "incompatible": true may simply mean "nothing is known about this component".
- We could try to verify the composition against a specific property, e.g., $y \in [L, U]$.
 - Not easy to come up with such properties.
 - May not want to do "full" verification.
Why non-input-complete contracts are useful (continued)

Catching incompatible compositions early:

$$x_2 = 0 \xrightarrow[]{x_1} Div \xrightarrow[]{y}$$

If the contract of Div is $x_2 \neq 0 \land \cdots$ then the composite contract is *false*, indicating **incompatibility**.

If the contract of Div is $x_2 \neq 0 \rightarrow \cdots$ then the composite contract (after hiding x_2) is *true*. How to interpret this?

- We cannot interpret it as "incompatible": true may simply mean "nothing is known about this component".
- We could try to verify the composition against a specific property, e.g., $y \in [L, U]$.
 - Not easy to come up with such properties.
 - May not want to do "full" verification.
 - Instead: "light-weight" type-checking.

 relational + non-deterministic + non-input-complete contracts are good.

- relational + non-deterministic + non-input-complete contracts are good.
- Next: from such contracts, (non-standard) definitions of composition and refinement appear to follow inevitably.

Serial composition

How should we define the composite contract?

Serial composition

How should we define the composite contract?

Standard definition: composition = conjunction

true $\wedge x_2 \neq 0 \wedge \cdots$

this does not seem to indicate any incompatibility ...

Serial composition: problem with standard definition

What if we replace *true* with $x_2 = 0$?

Standard definition: composition = conjunction

$$x_2 = 0 \land x_2 \neq 0 \land \cdots \equiv false$$

Serial composition: problem with standard definition

What if we replace true with $x_2 = 0$?

Standard definition: composition = conjunction

$$x_2 = 0 \land x_2 \neq 0 \land \cdots \equiv false$$

this indicates incompatibility ...

Yet x₂ = 0 seems a valid substitute for true: it more deterministic, i.e., "more defined". It should be a valid refinement of true.

Serial composition: problem with standard definition

What if we replace true with $x_2 = 0$?

Standard definition: composition = conjunction

$$x_2 = 0 \land x_2 \neq 0 \land \cdots \equiv false$$

this indicates incompatibility ...

- Yet x₂ = 0 seems a valid substitute for true: it more deterministic, i.e., "more defined". It should be a valid refinement of true.
- Conclusion: The standard definition violates preservation of refinement by composition ... ©

Serial composition: alternative definition

Instead, we define the composite contract as follows:

"Demonic" non-determinism:

10

$$true \land x_2 \neq 0 \land \dots \land \underbrace{(\forall x_2 : true \to x_2 \neq 0)}_{(\forall x_2 : true \to x_2 \neq 0)}$$

this is the additional constraint

Serial composition: alternative definition

Instead, we define the composite contract as follows:

"Demonic" non-determinism:

₩₩

$$true \land x_2 \neq 0 \land \dots \land \underbrace{(\forall x_2 : true \to x_2 \neq 0)}$$

this is the additional constraint

 $\forall x_2: true \to x_2 \neq 0 \quad \equiv \quad \forall x_2: x_2 \neq 0 \quad \equiv \quad false$

Serial composition: alternative definition

Instead, we define the composite contract as follows:

"Demonic" non-determinism:

$$true \land x_2 \neq 0 \land \dots \land \underbrace{(\forall x_2 : true \to x_2 \neq 0)}$$

this is the additional constraint

 $\forall x_2: true \to x_2 \neq 0 \quad \equiv \quad \forall x_2: x_2 \neq 0 \quad \equiv \quad false$

Incompatibility detected!

Serial composition: general case

Composite contract:

$$\phi_{serial} \quad \widehat{=} \quad \phi_1 \land \phi_2 \land (\forall y : \phi_1 \to \exists z : \phi_2)$$

Serial composition: general case

Composite contract:

$$\phi_{serial} \quad \widehat{=} \quad \phi_1 \wedge \phi_2 \wedge (\forall y : \phi_1 \to \exists z : \phi_2)$$

• Let $in(\phi_2) \cong \exists z : \phi_2$. Then

$$\phi_{serial} \quad \widehat{=} \quad \phi_1 \wedge \phi_2 \wedge \left(\forall y : \phi_1 \to \mathsf{in}(\phi_2) \right)$$

Stavros Tripakis: EECS 144/244 – Discrete Systems Contracts, Asynchronous Composition, Fairness 21/50

Serial composition: general case

Composite contract:

$$\phi_{serial} \quad \widehat{=} \quad \phi_1 \wedge \phi_2 \wedge (\forall y : \phi_1 \to \exists z : \phi_2)$$

• Let $in(\phi_2) \cong \exists z : \phi_2$. Then

$$\phi_{serial} \quad \widehat{=} \quad \phi_1 \wedge \phi_2 \wedge \left(\forall y : \phi_1 \to \mathsf{in}(\phi_2) \right)$$

▶ Note: if ϕ_2 is input-complete or ϕ_1 is deterministic, then $\phi_{serial} \equiv \phi_1 \land \phi_2$.

Stavros Tripakis: EECS 144/244 - Discrete Systems

Contracts, Asynchronous Composition, Fairness 21 / 50

When can we say that ϕ_2 is a valid refinement of ϕ_1 ?

$$\xrightarrow{x} \phi_2 \xrightarrow{y} \qquad \sqsubseteq \qquad \xrightarrow{x} \phi_1 \xrightarrow{y}$$

When can we say that ϕ_2 is a valid refinement of ϕ_1 ?

Standard view: refinement = implication

$$\phi_2 \sqsubseteq \phi_1 \quad \widehat{=} \quad \phi_2 \to \phi_1$$

$$\xrightarrow{x} \phi_2 \xrightarrow{y} \qquad \sqsubseteq \qquad \xrightarrow{x} \phi_1 \xrightarrow{y}$$

When can we say that ϕ_2 is a valid refinement of ϕ_1 ?

Standard view: refinement = implication

$$\phi_2 \sqsubseteq \phi_1 \quad \widehat{=} \quad \phi_2 \to \phi_1$$

Does not work (refinement does not preserve compatibility):

$$\begin{array}{c} x = 0 & \xrightarrow{x} & true \\ \hline x = 0 & \xrightarrow{x} & x \neq 0 \\ \hline \end{array} \quad \text{incompatible, even though } x \neq 0 \rightarrow true \\ \end{array}$$

$$\xrightarrow{x} \phi_2 \xrightarrow{y} \qquad \sqsubseteq \qquad \xrightarrow{x} \phi_1 \xrightarrow{y}$$

When can we say that ϕ_2 is a valid refinement of ϕ_1 ?

Standard view: refinement = implication

$$\phi_2 \sqsubseteq \phi_1 \quad \widehat{=} \quad \phi_2 \to \phi_1$$

Does not work (refinement does not preserve compatibility):

x = 0 x true compatible x = 0 $x \neq 0$ incompatible, even though $x \neq 0 \rightarrow true$

Need to treat inputs and outputs differently.

Stavros Tripakis: EECS 144/244 - Discrete Systems

Alternating refinement:

$$\phi_2 \sqsubseteq \phi_1 \quad \widehat{=} \quad \left(\mathsf{in}(\phi_1) \to \mathsf{in}(\phi_2) \right) \land \left(\left(\mathsf{in}(\phi_1) \land \phi_2 \right) \to \phi_1 \right)$$

lf

Alternating refinement:

$$\phi_2 \sqsubseteq \phi_1 \quad \widehat{=} \quad \left(\mathsf{in}(\phi_1) \to \mathsf{in}(\phi_2) \right) \land \left(\left(\mathsf{in}(\phi_1) \land \phi_2 \right) \to \phi_1 \right)$$

$$\phi_1, \phi_2 \text{ are input-complete, then } (\phi_2 \sqsubseteq \phi_1) \equiv (\phi_2 \to \phi_1).$$

Alternating refinement:

$$\phi_2 \sqsubseteq \phi_1 \quad \widehat{=} \quad \left(\mathsf{in}(\phi_1) \to \mathsf{in}(\phi_2) \right) \land \left(\left(\mathsf{in}(\phi_1) \land \phi_2 \right) \to \phi_1 \right)$$

If ϕ_1, ϕ_2 are input-complete, then $(\phi_2 \sqsubseteq \phi_1) \equiv (\phi_2 \rightarrow \phi_1)$.

Main result [Tripakis et al., 2011]:

▶ Refinement is equivalent to substitutability (fully abstract): φ₂ ⊑ φ₁ iff φ₂ can replace φ₁ in any context.

Alternating refinement:

$$\phi_2 \sqsubseteq \phi_1 \quad \widehat{=} \quad \left(\mathsf{in}(\phi_1) \to \mathsf{in}(\phi_2) \right) \land \left(\left(\mathsf{in}(\phi_1) \land \phi_2 \right) \to \phi_1 \right)$$

If ϕ_1, ϕ_2 are input-complete, then $(\phi_2 \sqsubseteq \phi_1) \equiv (\phi_2 \rightarrow \phi_1)$.

Main result [Tripakis et al., 2011]:

- Refinement is equivalent to substitutability (*fully abstract*): φ₂ ⊑ φ₁ iff φ₂ can replace φ₁ in any context.
- Note that other definitions are sufficient but not necessary for substitutability, e.g.:

$$(\operatorname{in}(\phi_1) \to \operatorname{in}(\phi_2)) \land (\phi_2 \to \phi_1)$$

C.f. Liskov-Wing's behavioral subtyping [Liskov and Wing, 1994].

Contracts in the Automata World

Interface Automata [de Alfaro and Henzinger, 2001].

The composition of A_1 and A_2 is invalid: A_1 offers a as output, but A_2 is not able to accept it as input.

Stavros Tripakis: EECS 144/244 – Discrete Systems

ASYNCHRONOUS COMPOSITION

Stavros Tripakis: EECS 144/244 – Discrete Systems Contracts, Asynchronous Composition, Fairness 25 / 50

Given two KS K_1 and K_2 with

$$K_i = (P_i, S_i, S_0^i, L_i, R_i)$$

the synchronous composition of K_1 and K_2 is a new KS

$$K_1 \times K_2 = (P_1 \cup P_2, S_1 \times S_2, S_0^1 \times S_0^2, L, R)$$

where

►
$$L((s_1, s_2)) = L_1(s_1) \cup L_2(s_2)$$

► $((s_1, s_2), (s'_1, s'_2)) \in R$ iff $(s_1, s'_1) \in R_1$ and $(s_2, s'_2) \in R_2$

Given two KS K_1 and K_2 with

$$K_i = (P_i, S_i, S_0^i, L_i, R_i)$$

the asynchronous composition of K_1 and K_2 is a new KS

$$K_1||K_2 = (P_1 \cup P_2, S_1 \times S_2, S_0^1 \times S_0^2, L, R)$$

where

▶
$$L((s_1, s_2)) = L_1(s_1) \cup L_2(s_2)$$

▶ $((s_1, s_2), (s'_1, s'_2)) \in R$ iff $(s_1, s'_1) \in R_1$ and $s'_2 = s_2$ or $(s_2, s'_2) \in R_2$ and $s'_1 = s_1$

Given two KS K_1 and K_2 , each represented symbolically as

 $K_i = (Init_i, Trans_i)$

their synchronous composition $K_1 \times K_2$ can be represented symbolically as

$$K_1 \times K_2 = (Init_1 \wedge Init_2, Trans_1 \wedge Trans_2)$$

Given two KS K_1 and K_2 , each represented symbolically as

 $K_i = (Init_i, Trans_i)$

their synchronous composition $K_1 \times K_2$ can be represented symbolically as

$$K_1 \times K_2 = (Init_1 \wedge Init_2, Trans_1 \wedge Trans_2)$$

How can the asynchronous composition $K_1||K_2$ be represented symbolically?

Given two KS K_1 and K_2 , each represented symbolically as

 $K_i = (Init_i, Trans_i)$

their synchronous composition $K_1 \times K_2$ can be represented symbolically as

$$K_1 \times K_2 = (Init_1 \wedge Init_2, Trans_1 \wedge Trans_2)$$

How can the asynchronous composition $K_1||K_2$ be represented symbolically?

$$K_1||K_2 = (Init_1 \land Init_2, Trans_1 \lor Trans_2)$$

is this correct?

Stavros Tripakis: EECS 144/244 – Discrete Systems

Given two KS K_1 and K_2 , each represented symbolically as

$$K_i = (Init_i, Trans_i)$$

their asynchronous composition $K_1 || K_2$ can be represented symbolically as

 $K_1||K_2 = (Init_1 \land Init_2, (Trans_1 \land \vec{x}_2' = \vec{x}_2) \lor (Trans_2 \land \vec{x}_1' = \vec{x}_1))$

where $\vec{x_i}$ are the variables of K_i .

Given two KS K_1 and K_2 , each represented symbolically as

$$K_i = (Init_i, Trans_i)$$

their asynchronous composition $K_1 || K_2$ can be represented symbolically as

 $K_1||K_2 = (Init_1 \land Init_2, (Trans_1 \land \vec{x}_2' = \vec{x}_2) \lor (Trans_2 \land \vec{x}_1' = \vec{x}_1))$

where $\vec{x_i}$ are the variables of K_i .

Is it correct now?

Consider two asynchronous processes writing to a shared variable *x*:

Consider two asynchronous processes writing to a shared variable *x*:

Composite transition relation:

$$\underbrace{x' = x + 1 \land x' = x}_{\text{from process 1}} \lor \underbrace{x' = x + 1 \land x' = x}_{\text{from process 2}}$$

Consider two asynchronous processes writing to a shared variable *x*:

Composite transition relation:

$$\underbrace{x' = x + 1 \land x' = x}_{\text{from process 1}} \lor \underbrace{x' = x + 1 \land x' = x}_{\text{from process 2}} \equiv false$$

Consider two asynchronous processes writing to a shared variable x:

Composite transition relation:

$$\underbrace{x' = x + 1 \land x' = x}_{\text{from process 1}} \lor \underbrace{x' = x + 1 \land x' = x}_{\text{from process 2}} \equiv false$$

Need to talk explicitly about shared variables.

Given two KS K_1 and K_2 , each represented symbolically as

 $K_i = (Init_i, Trans_i)$

their asynchronous composition $K_1 || K_2$ can be represented symbolically as

 $K_1||K_2 = (Init_1 \land Init_2, (Trans_1 \land \vec{x}_2' = \vec{x}_2) \lor (Trans_2 \land \vec{x}_1' = \vec{x}_1))$

where:

- *x*_i are the variables owned by K_i: they are written only by K_i (they can be read by K_j, j ≠ i).
- ► Trans_i may refer also to shared variables v, which are written by both K₁ and K₂.
Symbolic Asynchronous Composition of Kripke Structures

Consider two asynchronous processes writing to a shared variable x:

Composite transition relation:

$$\underbrace{x' = x + 1}_{\text{from process 1}} \lor \underbrace{x' = x + 1}_{\text{from process 2}}$$

from process 1 from process 2

Only one variable, x, shared.

Asynchronous Process Communication

Two prominent paradigms:

- Shared memory
 - A common pool of shared (global) variables
 - Common problems: avoid corrupt values, races, deadlocks (e.g., when semaphores are used), ...
- Message passing
 - Generally "cleaner" (but perhaps more difficult to implement)
 - Can even ensure determinism in some cases! (see Kahn Process Networks later in this course)

Spin / Promela offers both [Holzmann, 2003].

NuSMV offers synchronous composition (asynchronous is deprecated).

DIGRESSION:

FORMALISMS, LANGUAGES and TOOLS

Stavros Tripakis: EECS 144/244 – Discrete Systems Contracts, Asynchronous Composition, Fairness 34/50

Formalisms: abstract, mathematical objects.

Languages implement formalisms: they have concrete syntax. They usually come together with *tools*.

Example:

- Formalism: FSM.
- Language: the language of NuSMV.

Formalisms: abstract, mathematical objects.

Languages implement formalisms: they have concrete syntax. They usually come together with *tools*.

Example:

- Formalism: FSM.
- Language: the language of NuSMV.

A language can implement many formalisms.

Quiz: Which formalisms from those we have seen (DFA, FSMs, transition systems, ...) does NuSMV implement? What about Spin?

Designer's dilemmas (some of many)

Which formalism do I need? Which language and tool should I choose?

For a discussion, see [Broman et al., 2012].

Stavros Tripakis: EECS 144/244 – Discrete Systems

Stavros Tripakis: EECS 144/244 – Discrete Systems Contracts, Asynchronous Composition, Fairness 37 / 50

Fairness: Motivation

Will the rightmost process ever get to move to p_1 ?

Fairness: Motivation

Will the rightmost process ever get to move to p_1 ?

Asynchronous composition transition relation:

$$\underbrace{x' = x + 1 \land p' = p}_{\text{from process 1}} \lor \underbrace{(x > 4 \to p' = p_1) \land (x \le 4 \to p' = p_0) \land x' = x}_{\text{from process 2}}$$

Fairness: Motivation

Will the rightmost process ever get to move to p_1 ?

Asynchronous composition transition relation:

$$\underbrace{x' = x + 1 \land p' = p}_{\text{from process 1}} \lor \underbrace{(x > 4 \to p' = p_1) \land (x \le 4 \to p' = p_0) \land x' = x}_{\text{from process 2}}$$

How to ensure that no process gets neglected forever?

If a transition is always enabled after some point on, it will eventually be taken.

If a transition is always enabled after some point on, it will eventually be taken.

or better:

A trace $s_0, s_1, s_2, ...$ is weakly unfair if there exists a transition which is enabled at all states s_i for some $i \ge K$ for some K, but never taken.

Weak fairness solves this problem:

The trace where the transition from p_0 to p_1 never happens is weakly unfair.

Weak Fairness is Sometimes too Weak

Here, the trace where the transition from p_0 to p_1 never happens is *not* weakly unfair, because the transition is not continually enabled.

Weak Fairness is Sometimes too Weak

More realistic application:

How to ensure that both processes eventually enter their critical section?

Stavros Tripakis: EECS 144/244 - Discrete Systems

If a transition is infinitely-often enabled after some point on, it will eventually be taken.

or better:

A trace $s_0, s_1, s_2, ...$ is strongly unfair if there exists a transition which is enabled infinitely often in the trace but never taken.

Suppose we want to check $M \models \phi$ but it fails because some traces of M violate $\phi.$

Suppose all these traces are unfair.

How to exclude them from consideration?

Suppose we want to check $M \models \phi$ but it fails because some traces of M violate ϕ .

Suppose all these traces are unfair.

How to exclude them from consideration?

Check a different formula:

 $M \models \phi_{\mathsf{fair}} \to \phi$

where ϕ_{fair} characterizes the fair traces.

Model-checking in the presence of fairness

Homework: Let M be the system formed by the asynchronous composition of the two processes shown below. M does not satisfy the LTL formula Fp_1 . Why?

M satisfies Fp_1 if we assume strong fairness. What would $\phi_{\rm fair}$ be so that

$$M \models \phi_{\mathsf{fair}} \to Fp_1?$$

Fairness not limited to asynchronous composition

Example:

```
MODULE inverter(input)
VAR
   output : boolean;
INIT
   output = FALSE
TRANS
   next(output) = !input | next(output) = output
```

This models a non-deterministic transition system. Possible fairness requirement: if input changes, output must eventually also change.

Fairness not limited to asynchronous composition

Example:

```
MODULE inverter(input)
VAR
   output : boolean;
INIT
   output = FALSE
TRANS
   next(output) = !input | next(output) = output
```

This models a non-deterministic transition system. Possible fairness requirement: if input changes, output must eventually also change.

Another example: a communication channel cannot keep on losing a message forever.

SUMMARY: DISCRETE SYSTEMS

Stavros Tripakis: EECS 144/244 – Discrete Systems Contracts, Asynchronous Composition, Fairness 47 / 50

Discrete Systems

- Modeling formalisms:
 - automata, state machines
 - transition systems
 - temporal logics.
- Application domain: circuits.
- Analysis and optimization algorithms:
 - state-space exploration (enumerative, symbolic)
 - bounded model-checking
 - SAT solving
 - timing analysis and retiming for circuits (today).
- Composition:
 - synchronous, asynchronous composition
 - synchronous feedback
 - contracts
 - fairness.
- ► Tools: Spin and NuSMV.

Please install:

```
Ptolemy II: http://ptolemy.eecs.berkeley.edu/ptolemyII/
ptII8.0/index.htm
```

SDF3: http://www.es.ele.tue.nl/sdf3/

Bibliography

Broman, D., Lee, E., Tripakis, S., and Törngren, M. (2012). Viewpoints, Formalisms, Languages, and Tools for Cyber-Physical Systems. In 6th International Workshop on Multi-Paradigm Modeling (MPM'12). http://www.eecs.berkeley.edu/~stavros/papers/mpm2012.pdf.

de Alfaro, L. and Henzinger, T. (2001).

Interface automata. In Foundations of Software Engineering (FSE). ACM Press.

Holzmann, G. (2003).

The Spin Model Checker. Addison-Wesley.

Liskov, B. and Wing, J. (1994).

A behavioral notion of subtyping. ACM Trans. Program. Lang. Syst., 16(6):1811–1841.

Manna, Z. and Pnueli, A. (1991).

The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer-Verlag, New York.

Tripakis, S., Lickly, B., Henzinger, T. A., and Lee, E. A. (2011).

A Theory of Synchronous Relational Interfaces.

ACM Transactions on Programming Languages and Systems (TOPLAS), 33(4). Pre-print available at http://www.eecs.berkeley.edu/~stavros/papers/acm-toplas.pdf.