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ASSUMPTIONS, GUARANTEES, CONTRACTS
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Component-Based Design

Composition: what for? s

>

Building large systems from smaller components (subsystems).

Important and related notions and questions:

>

Modularity: what are the right components? how independent are
they from each other?

Reusability: what are the right components? how generic/reusable
are they?

Compatibility/Composability: can two components be composed?

Compositionality: many meanings, e.g., can the properties of the
overall system be derived from those of its subsystems?

Substitutability: when can a component replace another one?
Incrementality: can a component be added “later”?

Reconfigurability
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Overview: contracts as behavioral types
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Substitutability
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Substitutability
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Substitutability

How to ensure properties are preserved?
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System refinement

system property

E P
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Interface theories [Alfaro, Henzinger, et al.]

Interface = component abstraction

Interface composition: Ae B=C
— Check compatibility here! (local, lightweight)

Interface refinement: A’ <A

Theorems:

(1) If A’ <A and A satisfies P then A’ satisfies P.
(2)If A <A and B’<B,then A’ e« B’ < A B,

(1) and (2) => substitutability
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Type theories

v
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Type theories

Type error!

Bool ¢ Real
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Interface theories = behavioral type
theories

Type error! Bool ¢ Real
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[ACM TOPLAS 2011]

Relational interfaces

(Real, Real) -> Real
-~ |

x1 standard type
« —»| Divide y

~ X, 20A (¥ >0AX,>0=>y>0)|

block . .
relational interface
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Relational interfaces:
type checking

X1 — .
z — —____,| Divide y
x2

# % #0A(4>0A%>0=>y>0)

Type error!

12
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Relational interfaces:
type inference

X1 —— .
_ _____,| Divide Y
x2

X, 20A (¥ >0AX,>0=>y>0)|

Inferred
constraint

13
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Subtyping for substitutability

¢| < ¢ d=ef in(¢) — in(¢.)
(IN(@)~@') = ¢

¢’ subtype of ¢
= (and sometimes <)
¢’ can replace ¢ in any context

Can be computed using SAT/SMT solvers
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Key aspects of contracts

Inputs, outputs.
Assumptions vs. requirements on inputs.

Guarantees on outputs.
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Recall: total vs. partial transition functions

Suppose X = a, b, c.

What if the transition function of the “receiver” A, is also partial?
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Recall: non-input-completeness

Different meanings and usages of partial inputs:

» Requirements: | require that the environment never provides
this input (at that time).

» This can be useful for contract-based design.
» More about this when we talk about composition.

Example:
read()

HC j init()

write()

» Assumptions: | know that the environment will never provide
this input (at that time).
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Assumptions vs. Requirements on the Inputs

Example: Division component.

x1

2y | Div ——

Two possible ways to look at its contract:

» Assumption on inputs:

75
) 7& 0— Yy = -1
Z2
» Requirements on inputs:
7
T AONYy = —
Z2
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Assumptions vs. Requirements on the Inputs

Example: Division component.

x1

2y | Div ——

Two possible ways to look at its contract:

» Assumption on inputs:

75
) 75 0— Yy = -1
Z2
» Requirements on inputs:
7
T AONYy = —
Z2

As we shall see, these have different implications during composition.
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Formalizing Contracts

Contracts for synchronous components: relational interfaces
[Tripakis et al., 2011].

Generalizations of Mealy machines:

» Finite sets of input and output variables.
» Set of nodes (like the states of a Mealy machine).

» Every node annotated by a predicate on input and output
variables: static contract (holds at a given step).

» Transitions between nodes specify dynamic contracts.
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Relational Interfaces: the Stateless Case

Example: Division interface.

x1

2y | Div ——

. Z1
Div = ( {z1,z2} , Yy} sz FO0Ay=—)
N—_—— ~—~ T2
input variables output variables —

“static” contract

Stavros Tripakis: EECS 144/244 — Discrete Systems Contracts, Asynchronous Composition, Fairness

10/50



Relational Interfaces: the Stateless Case

Example: Division interface.

x1

2y | Div ——

. Z1
Div = ( {z1,z2} , Yy} sz FO0Ay=—)
N—_—— ~—~ T2
input variables output variables —

“static” contract
Meaning: at every synchronous step:

1. Environment proposes inputs z1, xs.

» If 21,25 already violate the contract (if z2 = 0), environment
is to blame. Otherwise:

2. Component chooses output y.

> If z1, 29,y violate the contract, component is to blame.
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Relational Interfaces: the Stateful Case

Example: single-place buffer.

)
write. ——! 1-place [——»

read —— puffer [—> empty
-

Global contract:
(holds at every round) Local (state-dependent) contracts:

—(empty A full)

—i write —iread
VAN
—(write A read ) write
—>,
VAN
_

empty = —read read
empty full

AN

full = —write
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Relational Interfaces: the Stateful Case

wiite 1-place ful
read buffer empty

Glol act
(holds round) Local (state-dependent) contracts

~(empty A ull') — write —read
Meaning: at every synchronous step: Cle nread ) — wite
empty = —read “read
0. Contract := contract of current state. n empty ful
full = —write

1. Environment proposes inputs x1, xo.
» If 21,25 already violate the contract (if z2 = 0), environment
is to blame. Otherwise:
2. Component chooses output y.
> If z1, 29,y violate the contract, component is to blame.
3. Find which guard of the automaton is satisfied by the vector
x1, %2,y (guard must be unique = determinism).
4. Take corresponding transition, updating automaton state (and
therefore also the contract that must hold on the next step).
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Looking more closely at our contracts

Division interface with non-deterministic output.

x1

2y | Div ——

Div = ({-Tla 1’2}, {y}a ¢Div)
(bDiv = x5 7é OA ¢sign
bsign = :0<—>x1:0)/\(y<0<—>(m1<0<962\/$2<0<371))

If x4 = 29 = 1, output can be any y > 0.

> Very useful for abstraction.
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Looking more closely at our contracts

Div = ({z1,22},{y}, ¢piv)
P Div = $2750/\¢’si9n

o~

bsign = (Y=021=0A(y<0¢ (r1 <0<z3Va<0<a1))

> Relational: eg., y =0+ x; =0

> as opposed to simple types like: Real x Real — Real
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Looking more closely at our contracts

Div = ({z1,22},{y}, opw)
¢piv = T2 # 0N daign
N — (y:O<—>ﬂc1:0)/\(y<O<—>(x1 <O<x2\/x2<0<x1))
> Relational: eg., y =0+ x; =0
> as opposed to simple types like: Real x Real — Real
> Non-deterministic: e.g., if x1 = x5 = 1, output can be any y > 0

» very useful for abstraction
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Looking more closely at our contracts

Div = ({z1,22},{y}, opw)
¢piv = D27 0N Psign
bsign = (Y=021=0A(y<0¢ (r1 <0<z3Va<0<a1))
> Relational: eg., y =0+ x; =0
> as opposed to simple types like: Real x Real — Real
> Non-deterministic: e.g., if x1 = x5 = 1, output can be any y > 0
» very useful for abstraction
> Non-input-complete: z2 # 0 A ¢gign

> as opposed to:  x2 # 0 = dgign
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Looking more closely at our contracts

Div = ({z1,22},{y}, opw)
¢piv = D27 0N Psign
bsign = (Y=021=0A(y<0¢ (r1 <0<z3Va<0<a1))
> Relational: eg., y =0+ x; =0
> as opposed to simple types like: Real x Real — Real
> Non-deterministic: e.g., if x1 = x5 = 1, output can be any y > 0
» very useful for abstraction
> Non-input-complete: z2 # 0 A ¢gign

> as opposed to:  x2 # 0 = dgign
» this will make things a bit complicated ...
> do we really need it?
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Why non-input-complete contracts are useful

Consider the alternative contract

Ty #0— ¢sign

» This allows y to take any value when x5 = 0.

» But it also assumes that y will take some value!
» What if the component “breaks” when fed with illegal inputs?

> e.g., algorithm may not terminate when inputs are illegal
» hardware may “burn up” when input voltage is too high.
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Why non-input-complete contracts are useful (continued)

Catching incompatible compositions early:

.’BQZO

T1

L2

Dy ——

If the contract of Div is zo ZO0A - --

false, indicating incompatibility.
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Why non-input-complete contracts are useful (continued)

Catching incompatible compositions early:

T1

r2=0| 5, | Div ——

If the contract of Div is x2 # O A - - - then the composite contract is
false, indicating incompatibility.

If the contract of Div is xo # 0 — - -- then the composite contract
(after hiding z3) is true. How to interpret this?
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Why non-input-complete contracts are useful (continued)

Catching incompatible compositions early:

T1

r2=0| 5, | Div ——

If the contract of Div is x2 # O A - - - then the composite contract is
false, indicating incompatibility.

If the contract of Div is xo # 0 — - -- then the composite contract
(after hiding z3) is true. How to interpret this?

» We cannot interpret it as “incompatible”: true may simply mean
“nothing is known about this component”.
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Why non-input-complete contracts are useful (continued)

Catching incompatible compositions early:

T1

r2=0| 5, | Div ——

If the contract of Div is x2 # O A - - - then the composite contract is
false, indicating incompatibility.

If the contract of Div is xo # 0 — - -- then the composite contract
(after hiding z3) is true. How to interpret this?

» We cannot interpret it as “incompatible”: true may simply mean
“nothing is known about this component”.

> We could try to verify the composition against a specific property,
eg.,y€[LU].
> Not easy to come up with such properties.
» May not want to do “full” verification.
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Why non-input-complete contracts are useful (continued)

Catching incompatible compositions early:

T1

r2=0| 5, | Div ——

If the contract of Div is x2 # O A - - - then the composite contract is
false, indicating incompatibility.

If the contract of Div is xo # 0 — - -- then the composite contract
(after hiding z3) is true. How to interpret this?

» We cannot interpret it as “incompatible”: true may simply mean
“nothing is known about this component”.
> We could try to verify the composition against a specific property,
eg.,y€[LU].
> Not easy to come up with such properties.

» May not want to do “full” verification.
> Instead: “light-weight” type-checking.
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So ...

» relational + non-deterministic + non-input-complete

contracts are good.
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So ...

» relational + non-deterministic + non-input-complete

contracts are good.

» Next: from such contracts, (non-standard) definitions of
composition and refinement appear to follow inevitably.
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Serial composition

true

T

Z2

Diy —

How should we define the composite contract?
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Serial composition

T

true | g, | Div ——

How should we define the composite contract?
» Standard definition: composition = conjunction

true ANxo QA - --

» this does not seem to indicate any incompatibility ...
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Serial composition: problem with standard definition

What if we replace true with zo =0 7

N /o1 1
tXe — ; Y
2 z2 =0 o Dy ——
/ N

» Standard definition: composition = conjunction
To=0Ax2 #ZOAN--- = false

> this indicates incompatibility ...
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Serial composition: problem with standard definition

What if we replace true with zo =0 7

N /o1 1
tXe — ; Y
2 z2 =0 o Dy ——
/ N

» Standard definition: composition = conjunction

To=0Ax2 #ZOAN--- = false

> this indicates incompatibility ...

> Yet z5 = 0 seems a valid substitute for true: it more deterministic,
i.e., “more defined”. It should be a valid refinement of true.
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Serial composition: problem with standard definition

What if we replace true with zo =0 7

N /Il T
Yy
>< T2 z2 =0 o Div ——

/ N

» Standard definition: composition = conjunction
To=0Ax2 #ZOAN--- = false
> this indicates incompatibility ...
> Yet z5 = 0 seems a valid substitute for true: it more deterministic,
i.e., “more defined”. It should be a valid refinement of true.

> Conclusion: The standard definition violates preservation of

refinement by composition ... ®
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Serial composition: alternative definition

T

true | g, | Div ——

Instead, we define the composite contract as follows:

» “Demonic’ non-determinism: #Q

true Axg #ON -+ A (Vg @ true — x5 # 0)

this is the additional constraint
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Serial composition: alternative definition

T

true | g, | Div ——

Instead, we define the composite contract as follows:

» “Demonic’ non-determinism: #Q

true Axg #ON -+ A (Vg @ true — x5 # 0)

this is the additional constraint

Vg :true — 290 #0 = Veg:a9#0 = false
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Serial composition: alternative definition

T

true | g, | Div ——

Instead, we define the composite contract as follows:

» “Demonic’ non-determinism: #Q

true Axg #ON -+ A (Vg @ true — x5 # 0)

this is the additional constraint

Vg :true — 290 #0 = Veg:a9#0 = false

> Incompatibility detected!
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Serial composition: general case

¢serial

» Composite contract:

Pserial = d1 N\ P A (Vy = ¢2)
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Serial composition: general case

¢serial

» Composite contract:

¢serial = ¢1 A ¢2 A (Vy : ¢1 — Jz: ¢2)

> Let in(¢2) = Jz: ¢g. Then

¢serial = ¢1 A ¢2 A (V?J : ()bl — |n(¢2))
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Serial composition: general case

d)serial

» Composite contract:

¢serial = ¢1 A ¢2 A (Vy : ¢1 — Jz: ¢2)

> Let in(¢2) = Jz: ¢g. Then

¢serial = ¢1 A ¢2 A (V?J : ¢1 — |n(¢2))

> Note: if ¢ is input-complete or ¢ is deterministic, then

(bserial = ¢1 A ¢2-

Stavros Tripakis: EECS 144 /244 — Discrete Systems Contracts, Asynchronous Composition, Fairness

21/50



Refinement

®2 C o1

When can we say that ¢ is a valid refinement of ¢,7
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Refinement

®2 C o1

When can we say that ¢ is a valid refinement of ¢,7

» Standard view: refinement = implication

P2 C o1 = P2 — 1
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Refinement

®2 L o1

When can we say that ¢ is a valid refinement of ¢,7

» Standard view: refinement = implication

P2Ed1 = P2 — Py

> Does not work (refinement does not preserve compatibility):

3
r=0 compatible
T
incompatible, even though = # 0 — true
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Refinement

®2 L o1

When can we say that ¢ is a valid refinement of ¢,7

» Standard view: refinement = implication

P2Ed1 = P2 — Py

> Does not work (refinement does not preserve compatibility):

3
r=0 compatible
T
incompatible, even though = # 0 — true

Need to treat inputs and outputs differently.
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Alternating Refinement

x Yy x Yy
®2 o1

"1

> Alternating refinement:

92061 = (in(¢1) = in(@2)) A ((in(61) A 62) = 61)
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Alternating Refinement

x Yy x Yy
®2 o1

"1

> Alternating refinement:
92061 = (in(¢1) = in(@2)) A ((in(61) A 62) = 61)

If 1, P2 are input-complete, then (¢2 C ¢1) = (P2 — ¢1).
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Alternating Refinement

x Yy x Yy
®2 o1

"1

> Alternating refinement:
92061 = (in(¢1) = in(@2)) A ((in(61) A 62) = 61)
If 1, P2 are input-complete, then (¢2 C ¢1) = (P2 — ¢1).

Main result [Tripakis et al., 2011]:

> Refinement is equivalent to substitutability (fully abstract):
¢2 T @1 iff ¢po can replace ¢ in any context.
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Alternating Refinement

x Yy x Yy
®2 o1

"1

> Alternating refinement:
G260 = (in(61) > in(2)) A ((in(61) A 62) > 61)
If 1, P2 are input-complete, then (¢2 C ¢1) = (P2 — ¢1).

Main result [Tripakis et al., 2011]:

> Refinement is equivalent to substitutability (fully abstract):
¢2 T @1 iff ¢po can replace ¢ in any context.

> Note that other definitions are sufficient but not necessary for
substitutability, e.g.:
(in(¢1) = in(¢2)) A (2 — ¢1)
C.f. Liskov-Wing's behavioral subtyping [Liskov and Wing, 1994].
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Contracts in the Automata World

Interface Automata [de Alfaro and Henzinger, 2001].

A —( % a!cl\b!@c!
NN
) b? b )
i C7U

The composition of A; and A, is invalid: A; offers a as output,
but A, is not able to accept it as input.

Stavros Tripakis: EECS 144/244 — Discrete Systems Contracts, Asynchronous Composition, Fairness

24/50



ASYNCHRONOUS COMPOSITION
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Recall: Synchronous Composition of Kripke Structures

Given two KS K7 and K5 with
K; = (P;, Si, S§, Li, R;)
the synchronous composition of K7 and K> is a new KS
Ky x Ky = (PLUP,,S; x S5,83 x S¢,L,R)

where

> L((Sl, 82)) = Ll(Sl) U LQ(SQ)
> ((s1,82), (s1,55)) € Riff (s1,}) € Ry and (sg, s5) € Ry
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Asynchronous Composition of Kripke Structures

Given two KS K7 and K5 with
K; = (B;, Si, S§, Li, R;)
the asynchronous composition of K7 and K> is a new KS
Ki||Ky = (PLUP,, Sy x 82,58 x S2,L,R)

where
> L((Sl, 82)) = L1(81> U LQ(SQ)

> ((81,32), (8/1,8/2)) € R iff (s1,5]) € Ry and s}, = s5 or
(s2,85) € Ry and s = s1
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Recall: Symbolic Synchronous Composition of Kripke
Structures

Given two KS K7 and K5, each represented symbolically as
K; = (Init;, Trans;)

their synchronous composition K; x K5 can be represented
symbolically as

K; x Ko = (Inity A Inity, Trans; A Transsg)
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Recall: Symbolic Synchronous Composition of Kripke
Structures

Given two KS K7 and K5, each represented symbolically as
K; = (Init;, Trans;)

their synchronous composition K; x K5 can be represented
symbolically as

K; x Ko = (Inity A Inity, Trans; A Transsg)

How can the asynchronous composition K ||K2 be represented
symbolically?
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Recall: Symbolic Synchronous Composition of Kripke
Structures

Given two KS K7 and K5, each represented symbolically as
K; = (Init;, Trans;)

their synchronous composition K; x K5 can be represented
symbolically as

K; x Ko = (Inity A Inity, Trans; A Transsg)

How can the asynchronous composition K ||K2 be represented
symbolically?

Ki||[Ke = (Inity A Inite, Transy V Transsg)

is this correct?
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Symbolic Asynchronous Composition of Kripke Structures

Given two KS K; and K, each represented symbolically as
K; = (Init;, Trans;)

their asynchronous composition K ||K2 can be represented
symbolically as

Ki||Ky = (Initl A Inite, (Transy A T = To) V (Transg A T} = 3_3'1))

where z; are the variables of Kj;.
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Symbolic Asynchronous Composition of Kripke Structures

Given two KS K; and K, each represented symbolically as
K; = (Init;, Trans;)

their asynchronous composition K ||K2 can be represented
symbolically as

Ki||Ky = (Inity A Inita, (Transy A @5 = To) V (Transs A T = 7))
where z; are the variables of Kj;.

Is it correct now?
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Symbolic Asynchronous Composition of Kripke Structures

Consider two asynchronous processes writing to a shared variable x:

T++ r++
||
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Symbolic Asynchronous Composition of Kripke Structures

Consider two asynchronous processes writing to a shared variable x:

T++ r++
||

Composite transition relation:

d=z+1Ad =zvr=x+1A2d ==z

from process 1 from process 2
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Symbolic Asynchronous Composition of Kripke Structures

Consider two asynchronous processes writing to a shared variable x:

T++ r++
||

Composite transition relation:

=z+1Ax' =zvz'=z+1A2 =z = false

from process 1 from process 2
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Symbolic Asynchronous Composition of Kripke Structures

Consider two asynchronous processes writing to a shared variable x:

T++ r++
||

Composite transition relation:

=z+1Ax' =zvz'=z+1A2 =z = false

from process 1 from process 2

Need to talk explicitly about shared variables.
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Symbolic Asynchronous Composition of Kripke Structures

Given two KS K; and Kj, each represented symbolically as
K; = (Init;, Trans;)

their asynchronous composition K ||K2 can be represented
symbolically as

Ki||Ky = (Initl A Inite, (Transy A T = To) V (Transg A T} = fl))

where:

» 1; are the variables owned by K;: they are written only by K;
(they can be read by K, j # 1).

» Trans; may refer also to shared variables ¥, which are written
by both K; and K».
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Symbolic Asynchronous Composition of Kripke Structures

Consider two asynchronous processes writing to a shared variable x:

T++ r++
||

Composite transition relation:

=zx+1vi=x+1

from process 1  from process 2

Only one variable, x, shared.
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Asynchronous Process Communication

Two prominent paradigms:
» Shared memory

» A common pool of shared (global) variables
» Common problems: avoid corrupt values, races, deadlocks
(e.g., when semaphores are used), ...

> Message passing

» Generally “cleaner” (but perhaps more difficult to implement)
» Can even ensure determinism in some cases! (see Kahn
Process Networks later in this course)

Spin / Promela offers both [Holzmann, 2003].

NuSMV offers synchronous composition (asynchronous is
deprecated).
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DIGRESSION:
FORMALISMS, LANGUAGES and TOOLS
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Languages vs. Formalisms

Formalisms: abstract, mathematical objects.

Languages implement formalisms: they have concrete syntax.
They usually come together with tools.

Example:
» Formalism: FSM.
» Language: the language of NuSMV.
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Languages vs. Formalisms

Formalisms: abstract, mathematical objects.

Languages implement formalisms: they have concrete syntax.
They usually come together with tools.

Example:
» Formalism: FSM.
» Language: the language of NuSMV.

A language can implement many formalisms.

Quiz: Which formalisms from those we have seen (DFA, FSMs,
transition systems, ...) does NuSMV implement? What about
Spin?
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Designer’s dilemmas (some of many)

Which formalism do | need?
Which language and tool should | choose?

Viewpoints Formalisms Languages and Tools

Timed and

Model Checkers I
Hybrid Automata

Examples: Spin, NuSMV, and UPPAAL

Block Diagram Languages
~ Examples: Simulink and Scicos
-

Control
Robustness
Design

Differential
Equations

Control
Performance
Design

Machines

Dataflow

Discrete
Event

Reactive languages
Examples: SCADE/Lustre and Giotto

Software
Design

. A
NV
AN

2o
)
N

\

’
/
/
’

9 Hardware Description Languages
Examples: VHDL, Verilog, and AMS extensions

\
;\\ Multi-Formalism Languages and Tools
Examples: Ptolemy II, AToM>, and Modelyze

For a discussion, see [Broman et al., 2012].
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FAIRNESS
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Fairness: Motivation

x++
OO

Will the rightmost process ever get to move to p;?
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Fairness: Motivation

x++

OO

Will the rightmost process ever get to move to p;?

Asynchronous composition transition relation:

r=x+1Ap =pV@E@>4—=p =p)A(z<4—p =p) A2 =x

from process 1 from process 2

Stavros Tripakis: EECS 144 /244 — Discrete Systems Contracts, Asynchronous Composition, Fairness 38/50



Fairness: Motivation

x++

OO

Will the rightmost process ever get to move to p;?

Asynchronous composition transition relation:

r=x+1Ap =pV@E@>4—=p =p)A(z<4—p =p) A2 =x

from process 1 from process 2

How to ensure that no process gets neglected forever?
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Weak Fairness

If a transition is always enabled after some point on, it
will eventually be taken.
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Weak Fairness

If a transition is always enabled after some point on, it
will eventually be taken.

or better:
A trace sg, S1, S2, ... is weakly unfair if there exists a
transition which is enabled at all states s; for some
1 > K for some K, but never taken.
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Weak Fairness

Weak fairness solves this problem:

T++

OO

The trace where the transition from py to p; never happens is
weakly unfair.
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Weak Fairness is Sometimes too Weak

T++

ONNO==20

Here, the trace where the transition from pg to p; never happens is
not weakly unfair, because the transition is not continually enabled.
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Weak Fairness is Sometimes too Weak

More realistic application:

How to ensure that both processes eventually enter their critical
section?
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Strong Fairness

If a transition is infinitely-often enabled after some point
on, it will eventually be taken.

or better:
A trace sg, s1, 82, ... is strongly unfair if there exists a
transition which is enabled infinitely often in the trace
but never taken.
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Model-checking in the presence of fairness

Suppose we want to check M = ¢ but it fails because some traces
of M violate ¢.

Suppose all these traces are unfair.

How to exclude them from consideration?
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Model-checking in the presence of fairness

Suppose we want to check M = ¢ but it fails because some traces
of M violate ¢.

Suppose all these traces are unfair.
How to exclude them from consideration?

Check a different formula:

M ): Cz)fair—> ¢

where ¢r,i, characterizes the fair traces.

Stavros Tripakis: EECS 144 /244 — Discrete Systems Contracts, Asynchronous Composition, Fairness 44 /50



Model-checking in the presence of fairness

Homework: Let M be the system formed by the asynchronous
composition of the two processes shown below. M does not satisfy
the LTL formula Fp;. Why?

x++

ONNO==20

M satisfies F'p; if we assume strong fairness. What would ¢s,;, be
so that

M = ¢pir = Fpr?
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Fairness not limited to asynchronous composition

Example:

MODULE inverter (input)

VAR
output : boolean;
INIT
output = FALSE
TRANS
next (output) = !input | next(output) = output

This models a non-deterministic transition system.
Possible fairness requirement: if input changes, output must eventually
also change.
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Fairness not limited to asynchronous composition

Example:

MODULE inverter (input)

VAR
output : boolean;
INIT
output = FALSE
TRANS
next (output) = !input | next(output) = output

This models a non-deterministic transition system.
Possible fairness requirement: if input changes, output must eventually
also change.

Another example: a communication channel cannot keep on losing a
message forever.
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SUMMARY: DISCRETE SYSTEMS
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Discrete Systems

» Modeling formalisms:

» automata, state machines
> transition systems
» temporal logics.

» Application domain: circuits.

» Analysis and optimization algorithms:

» state-space exploration (enumerative, symbolic)
bounded model-checking

SAT solving

timing analysis and retiming for circuits (today).

v Vvyy

» Composition:

synchronous, asynchronous composition
synchronous feedback

contracts

fairness.

» Tools: Spin and NuSMV.

vV vy VvYyy
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Next week: Dataflow

Please install:

Ptolemy Il: http://ptolemy.eecs.berkeley.edu/ptolemyII/
ptII8.0/index.htm

SDF3: http://wuw.es.ele.tue.nl/sdf3/
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