EECS 144/244: System Modeling, Analysis, and Optimization

Continuous Systems

Lecture: Linear Systems

Alexandre Donzé

University of California, Berkeley

April 30, 2013

2 Linear Systems

3 Controllability

Transfer Function

Autonomous Systems

So far we worked mostly on systems of the form

for which we studied existence, unicity, and numerical computation of solutions.

Question: is this system deterministic?

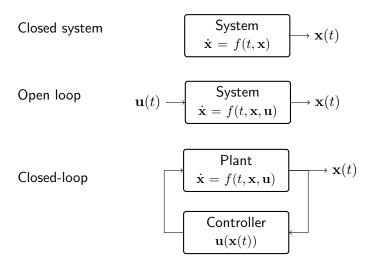
Autonomous Systems

So far we worked mostly on systems of the form

for which we studied existence, unicity, and numerical computation of solutions.

Question: is this system deterministic?

Given \mathbf{x}_0 , it produces a unique solution, called *flow* $\mathbf{x}(t,\mathbf{x}_0)$



Question

What about existence, unicity, computation of solutions in the presence of inputs ?

Question

What about existence, unicity, computation of solutions in the presence of inputs ?

Short answer

OK if $F(t, \mathbf{x}(t)) = f(t, \mathbf{x}(t), \mathbf{u}(t))$ satisfies the same conditions as before (continuous, (locally) Lipshitz)

Question

What about existence, unicity, computation of solutions in the presence of inputs ?

Short answer

OK if $F(t, \mathbf{x}(t)) = f(t, \mathbf{x}(t), \mathbf{u}(t))$ satisfies the same conditions as before (continuous, (locally) Lipshitz)

Although, the story is more complex

- ► Typically inputs are discontinuous (step functions)
- Complex feedback can create algebraic loops resulting in DAEs rather than ODEs (consult David)

$$\mathbf{u}(t) \longrightarrow \begin{array}{|c|c|} & \mathsf{System} \\ & \dot{\mathbf{x}} = f(t, \mathbf{x}, \mathbf{u}) \end{array} \longrightarrow \mathbf{x}(t)$$

Stability

For any "reasonable" input \mathbf{u} , \mathbf{x} does not "explode" in some sense.

Different notions:

- ▶ Bounded Input Bounded Output: $\forall t, \|\mathbf{u}(t)\| < C_u \Rightarrow \forall t, \|\mathbf{x}(t)\| \leq C_\mathbf{x}$
- ▶ Globally asymptotic: $\forall \mathbf{x}(0), \lim_{t\to\infty} \mathbf{x}(t) = 0$
- ▶ etc

$$\mathbf{u}(t) \longrightarrow \begin{array}{c} \mathsf{System} \\ \dot{\mathbf{x}} = f(t, \mathbf{x}, \mathbf{u}) \end{array} \longrightarrow \mathbf{x}(t)$$

Stability

For any "reasonable" input \mathbf{u} , \mathbf{x} does not "explode" in some sense.

Different notions:

- ▶ Bounded Input Bounded Output: $\forall t, \|\mathbf{u}(t)\| < C_u \Rightarrow \forall t, \|\mathbf{x}(t)\| \le C_\mathbf{x}$
- ▶ Globally asymptotic: $\forall \mathbf{x}(0), \lim_{t\to\infty} \mathbf{x}(t) = 0$
- etc

Controllability

Can we find an input ${\bf u}$ that drives the system to some goal state ?

$$\mathbf{u}(t) \longrightarrow \begin{array}{|c|c|} & \mathsf{Plant} & & \\ & \dot{\mathbf{x}} = f(t, \mathbf{x}, \mathbf{u}) & & & \mathbf{y} = g(t, \mathbf{x}, \mathbf{u}) \\ \end{array} \\ \rightarrow \mathbf{y}(t)$$

Stability

For any "reasonable" input \mathbf{u} , \mathbf{x} does not "explode" in some sense.

Different notions:

- ▶ Bounded Input Bounded Output: $\forall t, \|\mathbf{u}(t)\| < C_u \Rightarrow \forall t, \|\mathbf{x}(t)\| \le C_\mathbf{x}$
- ▶ Globally asymptotic: $\forall \mathbf{x}(0), \lim_{t\to\infty} \mathbf{x}(t) = 0$
- etc

Controllability

Can we find an input ${\bf u}$ that drives the system to some goal state ?

Observability

Given \mathbf{u} and \mathbf{y} , can we "reconstruct" the state \mathbf{x} ?

$$\mathbf{u}(t) \longrightarrow \begin{array}{c} \mathsf{Plant} \\ \dot{\mathbf{x}} = f(t, \mathbf{x}, \mathbf{u}) \end{array} \longrightarrow \begin{array}{c} \mathsf{Sensor} \\ \mathbf{y} = g(t, \mathbf{x}, \mathbf{u}) \end{array} \longrightarrow \mathbf{y}(t)$$

Stability

For any "reasonable" input \mathbf{u} , \mathbf{x} does not "explode" in some sense.

Different notions:

- ▶ Bounded Input Bounded Output: $\forall t, \|\mathbf{u}(t)\| < C_u \Rightarrow \forall t, \|\mathbf{x}(t)\| \le C_\mathbf{x}$
- ▶ Globally asymptotic: $\forall \mathbf{x}(0), \lim_{t\to\infty} \mathbf{x}(t) = 0$
- etc

Controllability

Can we find an input ${\bf u}$ that drives the system to some goal state ?

Observability

Given \mathbf{u} and \mathbf{y} , can we "reconstruct" the state \mathbf{x} ?

For linear systems, these questions are well understood

2 Linear Systems

3 Controllability

4 Transfer Function

A linear function is a mapping which satisfies :

- 1. Additivity: f(x+y) = f(x) + f(y)
- 2. Scaling: $f(\lambda x) = \lambda f(x)$

or equivalently,

$$\forall \alpha, \beta, f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

A linear function is a mapping which satisfies :

- 1. Additivity: f(x+y) = f(x) + f(y)
- 2. Scaling: $f(\lambda x) = \lambda f(x)$

or equivalently,

$$\forall \alpha, \beta, f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

What is f(0) ?

A linear function is a mapping which satisfies :

- 1. Additivity: f(x+y) = f(x) + f(y)
- 2. Scaling: $f(\lambda x) = \lambda f(x)$

or equivalently,

$$\forall \alpha, \beta, f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

What is
$$f(0)$$
 ? $f(0) = f(x - x) = f(x) - f(x) = 0$

A linear function is a mapping which satisfies :

- 1. Additivity: f(x+y) = f(x) + f(y)
- 2. Scaling: $f(\lambda x) = \lambda f(x)$

or equivalently,

$$\forall \alpha, \beta, f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

What is
$$f(0)$$
 ? $f(0) = f(x - x) = f(x) - f(x) = 0$

Linear functions from \mathbb{R} to \mathbb{R} ?

A linear function is a mapping which satisfies :

- 1. Additivity: f(x+y) = f(x) + f(y)
- 2. Scaling: $f(\lambda x) = \lambda f(x)$

or equivalently,

$$\forall \alpha, \beta, f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

What is
$$f(0)$$
 ? $f(0) = f(x - x) = f(x) - f(x) = 0$
Linear functions from \mathbb{R} to \mathbb{R} ? $f(x) = a \cdot x$

A linear function is a mapping which satisfies :

- 1. Additivity: f(x+y) = f(x) + f(y)
- 2. Scaling: $f(\lambda x) = \lambda f(x)$

or equivalently,

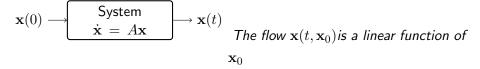
$$\forall \alpha, \beta, f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

What is
$$f(0)$$
 ? $f(0) = f(x - x) = f(x) - f(x) = 0$

Linear functions from \mathbb{R} to \mathbb{R} ? $f(x) = a \cdot x$

Linear functions from \mathbb{R}^n to \mathbb{R}^m ? $f(\mathbf{x}) = A\mathbf{x}$ where A is an $m \times n$ matrix.

Linear dynamical systems



Linear dynamical systems

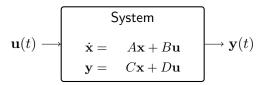
$$\alpha \mathbf{x}_1(0) + \beta \mathbf{x}_2(0) \longrightarrow \begin{bmatrix} \mathsf{System} \\ \dot{\mathbf{x}} = A\mathbf{x} \end{bmatrix} \longrightarrow \alpha \mathbf{x}_1(t) + \beta \mathbf{x}_2(t)$$

$$\mathbf{x}(t, \mathbf{x}_0) \text{ is a linear function of } \mathbf{x}_0$$
The flow

Linear dynamical systems

$$\alpha \mathbf{x}_1(0) + \beta \mathbf{x}_2(0) \longrightarrow \begin{bmatrix} \mathsf{System} \\ \dot{\mathbf{x}} = A\mathbf{x} \end{bmatrix} \longrightarrow \alpha \mathbf{x}_1(t) + \beta \mathbf{x}_2(t)$$
 The flow
$$\mathbf{x}(t, \mathbf{x}_0) \textit{is a linear function of } \mathbf{x}_0$$

Linear control systems



The output $\mathbf{y}(t, \mathbf{x}_0 = 0, \mathbf{u})$ is a linear function of \mathbf{u}

Linear dynamical systems

$$\alpha\mathbf{x}_1(0) + \beta\mathbf{x}_2(0) \longrightarrow \begin{array}{c} \text{System} \\ \dot{\mathbf{x}} = A\mathbf{x} \end{array} \longrightarrow \alpha\mathbf{x}_1(t) + \beta\mathbf{x}_2(t) \\ \mathbf{x}(t,\mathbf{x}_0) \text{ is a linear function of } \mathbf{x}_0 \end{array}$$
 The flow

Linear control systems

$$\alpha \mathbf{u}_1(t) + \beta \mathbf{u}_2(t) \longrightarrow \begin{bmatrix} & \mathsf{System} \\ & \dot{\mathbf{x}} = & A\mathbf{x} + B\mathbf{u} \\ & \mathbf{y} = & C\mathbf{x} + D\mathbf{u} \end{bmatrix} \longrightarrow \alpha \mathbf{y}_1(t) + \beta \mathbf{y}_2(t)$$

The output $\mathbf{y}(t, \mathbf{x}_0 = 0, \mathbf{u})$ is a linear function of \mathbf{u}

Principle of Superposition

$$\mathbf{u}(t) \longrightarrow \mathsf{Linear} \; \mathsf{System} \longrightarrow \mathbf{y}(t)$$

Principle of Superposition

$$\alpha \mathbf{u}_1(t) + \beta \mathbf{u}_2(t) \longrightarrow \overline{\text{Linear System}} \longrightarrow \alpha \mathbf{y}_1(t) + \beta \mathbf{y}_2(t)$$

Allows to characterize infer sets of behaviors from typical simple inputs

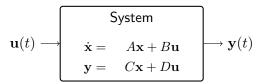
- Step signals u(t) = 1(t)
- ▶ Sinusoidal signals $u(t) = A \sin(\omega t)$

Principle of Superposition

Allows to characterize infer sets of behaviors from typical simple inputs

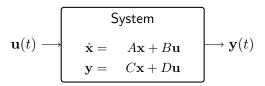
- ▶ Step signals u(t) = 1(t)
- ▶ Sinusoidal signals $u(t) = A \sin(\omega t)$

Remarks



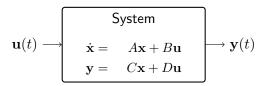
▶ This a Linear Time Invariant (LTI) system - in the general case, A, B, C, D can be function of t (possibly non-linear)

Remarks



- ▶ This a Linear Time Invariant (LTI) system in the general case, A, B, C, D can be function of t (possibly non-linear)
- ▶ If $x_0 \neq 0$, the system is not linear, strictly speaking. However, it is *affine*

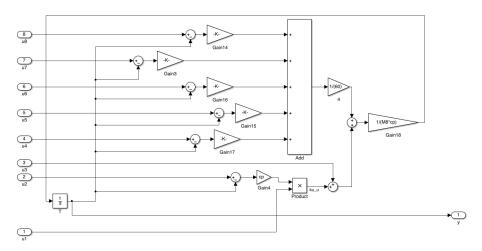
Remarks



- ▶ This a Linear Time Invariant (LTI) system in the general case, A, B, C, D can be function of t (possibly non-linear)
- ▶ If $x_0 \neq 0$, the system is not linear, strictly speaking. However, it is *affine*
- ► So is $f(\mathbf{x}, \mathbf{u}) = A\mathbf{x} + B\mathbf{u}$, by the way.

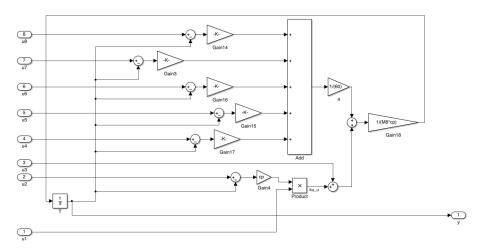
Example

Is this system linear?



Example

Is this system linear?



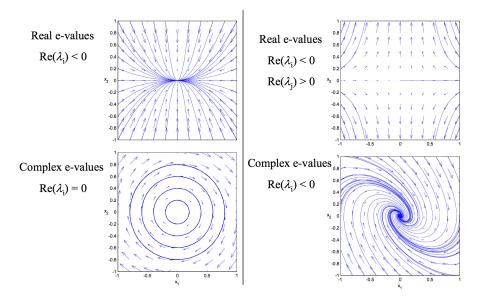
Solutions of Linear Systems

Recall that $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$, $\mathbf{x}(t=0) = \mathbf{x}_0$ admits the solution $\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}_0$ Where $e^{\mathbf{A}t}$ is matrix exponentiation

$$e^{t\mathbf{A}} = \mathbf{I}_n + \mathbf{A} + \frac{t^2}{2!}\mathbf{A}^2 + \frac{t^3}{3!}\mathbf{A}^3 + \dots$$

The stability depends on the Eigenvalues of A

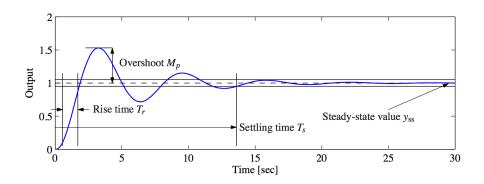
Eigenstructure of Linear Systems



Step response for LTI systems

$$u(t) = \begin{cases} O & t = 0\\ 1 & t > 0 \end{cases}$$

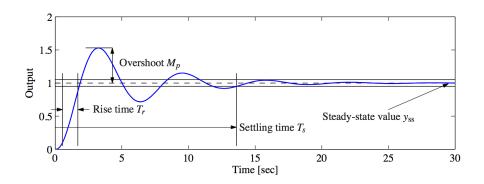
Equivalent to $\dot{\mathbf{z}} = A\mathbf{z}$ with $\mathbf{z} = \mathbf{x} + A^{-1}B$



Step response for LTI systems

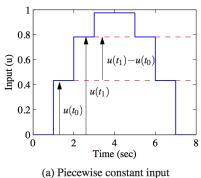
$$u(t) = \begin{cases} O & t = 0\\ 1 & t > 0 \end{cases}$$

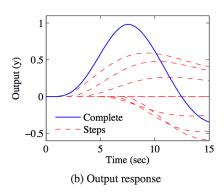
Equivalent to $\dot{\mathbf{z}} = A\mathbf{z}$ with $\mathbf{z} = \mathbf{x} + A^{-1}B$



Piecewise Constant Inputs

Superposition of step responses





LTI Systems Solution

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$

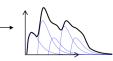
$$y(t) = \underbrace{Ce^{At}x(0)}_{\text{homogeneous}} + ???$$

Impulse response, $h(t) = Ce^{At}B$

- Response to input "impulse"
- Equivalent to "Green's function"

Linearity \Rightarrow compose response to arbitrary u(t) using convolution

- Decompose input into "sum" of shifted impulse functions
- Compute impulse response for each
- "Sum" impulse response to find y(t)

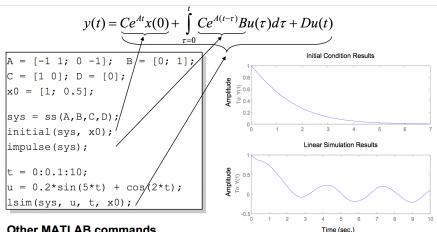


Complete solution: use integral instead of "sum"

$$y(t) = Ce^{At}x(0) + \int_{\tau=0}^{t} Ce^{A(t-\tau)}Bu(\tau)d\tau + Du(t)$$

- linear with respect to initial condition *and* input
- 2X input \Rightarrow 2X output when x(0) = 0

Matlab Tools for Linear Systems



Other MATLAB commands

- gensig, square, sawtooth produce signals of diff. types
- step, impulse, initial, Isim time domain analysis
- bode, fregresp, evalfr frequency domain analysis

Itiview - linear time invariant system plots

- Systems with Inputs
- 2 Linear Systems

4 Transfer Function

Consider the SISO LTI system:

$$\dot{\mathbf{x}} = A\mathbf{x} + Bu$$
 $\mathbf{x} \in \mathcal{R}^n, u \in \mathcal{R}$
 $y = C\mathbf{x} + Du$ $y \in \mathcal{R}$

is controllable if there exists u(t) such that $\mathbf{x}(0) = \mathbf{x}_0$ and $\mathbf{x}(T) = \mathbf{x}$.

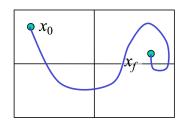
Note

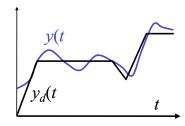
In

Feedback Systems

, controllability is referred to as reachability

► Controllability enables the more general problem of tracking





Consider the SISO LTI system:

$$\dot{\mathbf{x}} = A\mathbf{x} + Bu$$
 $\mathbf{x} \in \mathcal{R}^n, u \in \mathcal{R}$
 $y = C\mathbf{x} + Du$ $y \in \mathcal{R}$

is controllable if there exists u(t) such that $\mathbf{x}(0) = \mathbf{x}_0$ and $\mathbf{x}(T) = \mathbf{x}$.

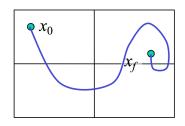
Note

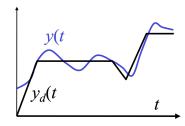
In

Feedback Systems

, controllability is referred to as reachability

► Controllability enables the more general problem of tracking





Controllability Matrix

The controllability matrix for a linear system is given by:

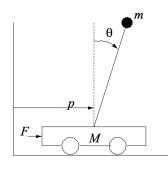
$$W_r = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}.$$

A linear system is controllable if and only if the controllability matrix is invertible

Note

- lacksquare In the general MIMO case, the condition becomes W_r has rank n
- ▶ Very simple test to do (e.g. in Matlab, concat matrices, run rank)

Example: Linearized pendulum on a cart



Question: can we locally control the position of the cart by proper choice of input?

Approach: look at the linearization around the upright position (good approximation to the full dynamics if θ remains small)

$$\begin{split} \frac{d}{dt} \begin{bmatrix} p \\ \theta \\ \dot{p} \\ \dot{\theta} \end{bmatrix} &= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{m^2 l^2 g}{M_t J_t - m^2 l^2} & \frac{-c J_t}{M_t J_t - m^2 l^2} & \frac{-\gamma J_t l m}{M_t J_t - m^2 l^2} \\ 0 & \frac{M_t m g l}{M_t J_t - m^2 l^2} & \frac{-c l m}{M_t J_t - m^2 l^2} & \frac{-\gamma M_t}{M_t J_t - m^2 l^2} \end{bmatrix} \begin{bmatrix} p \\ \theta \\ \dot{p} \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{J_t}{M_t J_t - m^2 l^2} \\ \frac{l m}{M_t J_t - m^2 l^2} \end{bmatrix} u \\ y &= \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} x, \end{split}$$

Note here u is F.

Example: Linearized pendulum on a cart (cont'd)

$$\frac{d}{dt} \begin{bmatrix} p \\ \theta \\ \dot{p} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{m^2 l^2 g}{\mu} & \frac{-c J_t}{\mu} & \frac{-\gamma J_t m}{\mu} \\ 0 & \frac{M_t m g l}{\mu} & \frac{-c l m}{\mu} & \frac{-\gamma M_t}{\mu} \end{bmatrix} \begin{bmatrix} p \\ \dot{\theta} \\ \dot{p} \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{J_t}{\mu} \\ \frac{l m}{\mu} \end{bmatrix} u$$

$$\mu = M_t J_t - m^2 l^2 \qquad \bullet \text{ Simplify by setting } c, \gamma = 0$$

Reachability matrix

$$W_r = \begin{bmatrix} 0 \\ 0 \\ \frac{J_t}{\mu} \\ 0 \\ \frac{J_t}{\mu} \\ 0 \\ \frac{lm}{\mu} \\ 0 \end{bmatrix} 0 \begin{bmatrix} \frac{gl^3m^3}{\mu^2} \\ \frac{gl^2m^2(m+M)}{\mu^2} \\ 0 \\ \frac{lm}{\mu} \\ 0 \end{bmatrix} 0 \begin{bmatrix} \frac{gl^3m^3}{\mu^2} \\ \frac{gl^2m^2(m+M)}{\mu^2} \\ 0 \\ 0 \\ 0 \end{bmatrix} 0$$
• Full rank as long as constants are such that columns 1 and 3 are not multiples of each other . • ⇒ reachable as long as
$$\det(W_r) = \frac{g^2l^4m^4}{\mu^4} \neq 0$$
• ⇒ can "steer" linearization between points by representations by the steer of the points of the points by the steer of the points by the points of the points by the

- · Full rank as long as
- - tion between points by proper choice of input

State Feedback

A state feedback law has the form $\mathbf{u} = -Kx + k_r r$ where r is the reference value for the output.

State Feedback

A state feedback law has the form $\mathbf{u} = -Kx + k_r r$ where r is the reference value for the output.

The closed loop dynamics for the system are given by

$$\dot{\mathbf{x}} = (A - BK)\mathbf{x} + Bk_r r.$$

State Feedback

A state feedback law has the form $\mathbf{u} = -Kx + k_r r$ where r is the reference value for the output.

The closed loop dynamics for the system are given by

$$\dot{\mathbf{x}} = (A - BK)\mathbf{x} + Bk_r r.$$

The stability of the system is determined by the stability of the matrix A-BK. The equilibrium point and steady state output are given by

$$\mathbf{x}_e = -(A - BK)^{-1}Bk_r r \qquad \mathbf{y}_e = C\mathbf{x}_e.$$

Choosing k_r as $k_r = -1/\left(C(A - BK)^{-1}B\right)$ gives $\mathbf{y}_e = r$.

If a system is controllable, then there exists a feedback law of the form

$$u = -Kx + k_r r$$

the gives a closed loop system with an arbitrary characteristic polynomial.

Hence the eigenvalues of a controllable linear system can be placed arbitrarily through the use of an appropriate feedback control law.

Limits of poles placement

Saturation of inputs, transient behaviors, etc.

Limits of poles placement

Saturation of inputs, transient behaviors, etc.

Popular state feedback control laws in practice:

PID controller

$$u(t) = k_p e(t) + k_i \int_0^t e(\tau) d\tau + k_d \frac{de}{dt},$$

where e(t) is the difference between y(t) and the reference value r(t).

Limits of poles placement

Saturation of inputs, transient behaviors, etc.

Popular state feedback control laws in practice:

PID controller

$$u(t) = k_p e(t) + k_i \int_0^t e(\tau) d\tau + k_d \frac{de}{dt},$$

where e(t) is the difference between y(t) and the reference value r(t).

Linear quadratic regulator

Minimizes

$$\tilde{J} = \int_0^\infty \left(\mathbf{x}^T Q_x \mathbf{x} + \mathbf{u}^T Q_u \mathbf{u} \right) dt.$$

for (user)-given matrices Q_x and Q_u .

Systems with Inputs

2 Linear Systems

3 Controllability

Transfer Function

Laplace Transform

The Laplace Transform of a function $f: \mathbb{R}^+ \to \mathbb{R}$ is the function $F = \mathcal{L}\{f\}: \mathbb{C} \to \mathbb{C}$ such that

$$\forall s \in \mathbb{C}, \ F(s) = \mathcal{L}\{f\}(s) = \int_0^\infty e^{-st} f(t) dt$$

Main properties:

- ▶ Linear: $\mathcal{L}{af + bg} = a\mathcal{L}{f} + b\mathcal{L}{g}$
- ▶ Derivative: $\mathcal{L}\{\frac{df}{dt}\}(s) = s \cdot \mathcal{L}\{f\} f(0)$

In particular, if f(0)=0, we get $\boxed{\mathcal{L}\{\frac{df}{dt}\}=sF(s)}$

Solving differential equations with Laplace Transform

$$\frac{d^n y}{dt^n} + a_1 \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_n y = b_0 \frac{d^m u}{dt^m} + b_1 \frac{d^{m-1} u}{dt^{m-1}} + \dots + b_m u$$

Solving differential equations with Laplace Transform

$$\frac{d^n y}{dt^n} + a_1 \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_n y = b_0 \frac{d^m u}{dt^m} + b_1 \frac{d^{m-1} u}{dt^{m-1}} + \dots + b_m u$$

Assuming that initial conditions are 0 and applying the Laplace transfom, we get:

$$(s^n + a_1 s^{n-1} + \dots + a_n)Y(s) = (b_0 s^m + b_1 s^{m-1} + \dots + b_m)U(s)$$

We note
$$d(s) = (s^n + a_1 s^{n-1} + \dots + a_n)$$
 and $n(s) = (b_0 s^m + b_1 s^{m-1} + \dots + b_m)$.

Solving differential equations with Laplace Transform

$$\frac{d^n y}{dt^n} + a_1 \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_n y = b_0 \frac{d^m u}{dt^m} + b_1 \frac{d^{m-1} u}{dt^{m-1}} + \dots + b_m u$$

Assuming that initial conditions are 0 and applying the Laplace transfom, we get:

$$(s^{n} + a_{1}s^{n-1} + \dots + a_{n})Y(s) = (b_{0}s^{m} + b_{1}s^{m-1} + \dots + b_{m})U(s)$$

We note $d(s) = (s^n + a_1 s^{n-1} + \dots + a_n)$ and $n(s) = (b_0 s^m + b_1 s^{m-1} + \dots + b_m)$.

$$Y(s) = \frac{n(s)}{d(s)}U(s) = H(s)U(s)$$

H(s) is called the transfer function of the system

Transfer Functions and State space representation

More generally, the transfer function for a linear system $(A,B,{\cal C},{\cal D})$ is given by

$$H(s) = \frac{n(s)}{d(s)} = C(sI - A)^{-1}B + D, \ s \in \mathbb{C}$$

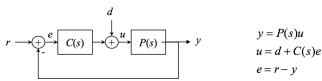
- lacktriangleright the roots of d(s) are called the poles of the system and correspond to the eigenvalues of the dynamics matrix A
- ▶ the roots of the polynomial b(s) are called the zeros of the system and correspond to exponential signals whose transmission is blocked by the system.

Transfer functions and block diagram Algebra

Туре	Diagram	Transfer function
Series	$\underbrace{\begin{array}{c} u_1 \\ H_{y_1u_1} \end{array}} \underbrace{\begin{array}{c} y_1 \\ u_2 \end{array}} \underbrace{\begin{array}{c} H_{y_2u_2} \end{array} \underbrace{\begin{array}{c} y_2 \\ \end{array}} $	$H_{y_2u_1} = H_{y_2u_2}H_{y_1u_1} = \frac{n_1n_2}{d_1d_2}$
Parallel	$u_1 \xrightarrow{H_{y_1u_1}} y_3$	$H_{y_3u_1} = H_{y_2u_1} + H_{y_1u_1} = \frac{n_1d_2 + n_2d_1}{d_1d_2}$
Feedback	$ \begin{array}{c c} r & \searrow u_1 & H_{y_1u_1} & y_1 \\ \hline & & & & \downarrow \\ & $	$H_{y_1 r} = \frac{H_{y_1 u_1}}{1 + H_{y_1 u_1} H_{y_2 u_2}} = \frac{n_1 d_2}{n_1 n_2 + d_1 d_2}$

Transfer functions and block diagram Algebra

Basic idea: treat transfer functions as multiplication, write down equations



Manipulate equations to compute desired signals

$$e = r - y$$

$$= r - P(s)u$$

$$= r - P(s)(d + C(s)e)$$

$$(1 + P(s)C(s))e = r - P(s)d$$

$$e = \frac{1}{1 + P(s)C(s)}r - \frac{P(s)}{1 + P(s)C(s)}d$$
Note: linearity gives superposition of terms

Usual Transfer Functions

Туре	ODE	Transfer Function
Integrator	$\dot{y} = u$	$\frac{1}{s}$
Differentiator	$y = \dot{u}$	S
First-order system	$\dot{y} + ay = u$	$\frac{1}{s+a}$
Double integrator	$\ddot{y} = u$	$\frac{1}{s^2}$
Damped oscillator	$\ddot{y} + 2\zeta \omega_0 \dot{y} + \omega_0^2 y = u$	$\frac{1}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$
PID controller	$y = k_p u + k_d \dot{u} + k_i \int u$	$k_p + k_d s + \frac{k_i}{s}$
Time delay	$y(t) = u(t - \tau)$	$e^{- au s}$

References

Feedback Systems: An introduction for scientists and engineers Karl J. Astrom and Richard M. Murray

http://www.cds.caltech.edu/~murray/amwiki/index.php/Main_Page