EECS 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization

Probabilistic Systems

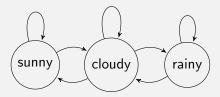
Lecture: Markov Chains and Markov Decision Processes

Stavros Tripakis

University of California, Berkeley

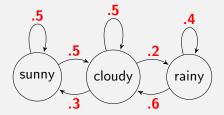
Probabilistic systems

From non-deterministic systems:

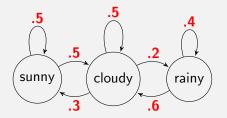


Probabilistic systems

To probabilistic systems:

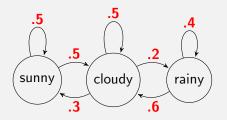


A finite Markov chain:



```
P({\sf next\ state\ is\ "sunny"}\ |\ {\sf current\ state\ is\ "sunny"}) \quad = \quad 0.5
P(\text{next state is "sunny"} \mid \text{current state is "cloudy"}) = 0.3
P(\text{next state is "sunny"} \mid \text{current state is "rainy"}) = 0
```

A finite Markov chain:

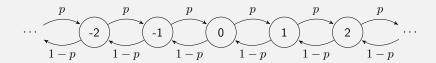


$$\begin{array}{lll} P(\mbox{next state is "sunny"} \mid \mbox{current state is "sunny"}) &=& 0.5 \\ P(\mbox{next state is "sunny"} \mid \mbox{current state is "cloudy"}) &=& 0.3 \\ P(\mbox{next state is "sunny"} \mid \mbox{current state is "rainy"}) &=& 0 \\ \dots \end{array}$$

The Markov property: only current state matters:

$$P(s_{k+1} = v_{k+1} \mid s_k = v_k, s_{k-1} = v_{k-1}, ..., s_0 = v_0) = P(s_{k+1} = v_{k+1} \mid s_k = v_k)$$

An infinite Markov chain:



A finite Markov chain with n states can be represented by a square $n \times n$ probability matrix \mathbf{P} :

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix}$$

where

$$p_{ij} = P(\text{next state is } j \mid \text{current state is } i)$$

A finite Markov chain with n states can be represented by a square $n \times n$ probability matrix \mathbf{P} :

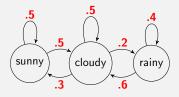
$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix}$$

where

$$p_{ij} = P(\text{next state is } j \mid \text{current state is } i)$$

To be a valid probability matrix, \mathbf{P} must satisfy:

$$\forall i, j : p_{ij} \ge 0$$
 and $\forall i : \sum_{j=1}^{n} p_{ij} = 1$



$$\mathbf{P} = \left[\begin{array}{ccc} 0.5 & 0.5 & 0 \\ 0.3 & 0.5 & 0.2 \\ 0 & 0.6 & 0.4 \end{array} \right]$$

Transforming a process into a Markov chain

Homework:

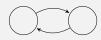
Suppose that whether or not it rains today depends on the previous weather conditions during the last two days. Specifically:

- ▶ If it has rained for the past two days, then it will rain tomorrow with probability 0.7.
- ▶ If it rained today but not yesterday, then it will rain tomorrow with probability 0.5.
- ▶ If it rained yesterday but not today, then it will rain tomorrow with probability 0.4.
- ▶ If it has not rained in the past two days, then it will rain tomorrow with probability 0.2.

Is this process Markovian? If so build a Markov chain that models the process.

Discrete systems vs. Markov chains

Some discrete systems are Markov chains ...

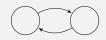


$$\mathbf{P} = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

$$\mathbf{P} = \left[\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right]$$

Discrete systems vs. Markov chains

Some discrete systems are Markov chains ...



$$\mathbf{P} = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

$$\mathbf{P} = \left[\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right]$$

... but not all:

$$\mathbf{P} = \left[\begin{array}{cc} ? & ? \\ 1 & 0 \end{array} \right]$$

$$\mathbf{P} = \left[\begin{array}{cc} 0 & 1 \\ \mathbf{0} & \mathbf{0} \end{array} \right]$$

Discrete systems vs. Markov chains

In the other direction, Markov chains are extensions of discrete systems:

MCs contain more information (next-state probabilities).

ANALYSIS OF MARKOV CHAINS

Interesting questions:

- ► After *k* steps, what is the likelihood that the system is at state *i*?
- ▶ In the long run, how much time does the system spend at state *i*? (i.e., how often is *i* visited?)
- ► What is the probability that the system will ever reach a given state (or group of states)?
- ► What is the expected time until the system reaches a given state (or group of states)?

Let
$$\mathbf{x} = [p_1 \; p_2 \; \cdots \; p_n]$$
 be a state probability vector, where
$$p_i = P(\text{current state is } i)$$

Of course we must have: $\sum_{i=1}^{n} p_i = 1$.

Let $\mathbf{x} = [p_1 \ p_2 \ \cdots \ p_n]$ be a state probability vector, where $p_i = P(\text{current state is } i)$

Of course we must have: $\sum_{i=1}^{n} p_i = 1$.

Let $\mathbf{x}' = [p_1' \ p_2' \ \cdots \ p_n']$ be the **next state** probability vector. Then, for i = 1, ..., n:

$$p_i' = p_1 \cdot p_{1i} + p_2 \cdot p_{2i} + \dots + p_n \cdot p_{ni}$$

Let $\mathbf{x} = [p_1 \ p_2 \ \cdots \ p_n]$ be a *state probability vector*, where

$$p_i = P(\text{current state is } i)$$

Of course we must have: $\sum_{i=1}^{n} p_i = 1$.

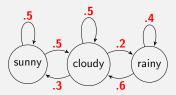
Let $\mathbf{x}' = [p_1' \ p_2' \ \cdots \ p_n']$ be the **next state** probability vector. Then, for i = 1, ..., n:

$$p_i' = p_1 \cdot p_{1i} + p_2 \cdot p_{2i} + \dots + p_n \cdot p_{ni}$$

So:

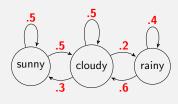
$$\mathbf{x}' = \mathbf{x} \cdot \mathbf{P}$$

Example:



$$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.3 & 0.5 & 0.2 \\ 0 & 0.6 & 0.4 \end{bmatrix} = \begin{bmatrix} 0.5 & 0.5 & 0 \end{bmatrix}$$

Example:



$$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.3 & 0.5 & 0.2 \\ 0 & 0.6 & 0.4 \end{bmatrix} = \begin{bmatrix} 0.5 & 0.5 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0.5 & 0.5 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.3 & 0.5 & 0.2 \\ 0 & 0.6 & 0.4 \end{bmatrix} = \begin{bmatrix} 0.4 & 0.5 & 0.1 \end{bmatrix}$$

The probabilities for the next state are given by

$$\mathbf{x}' = \mathbf{x} \cdot \mathbf{P}$$

In general:

$$\begin{array}{rcl} \mathbf{x}_{k+1} & = & \mathbf{x}_k \cdot \mathbf{P} = & (\mathbf{x}_{k-1} \cdot \mathbf{P}) \cdot \mathbf{P} = & \cdots = & \mathbf{x}_0 \cdot \underbrace{\mathbf{P} \cdot \mathbf{P} \cdot \cdots \mathbf{P}}_{k+1 \text{ times}} \\ \\ \mathbf{x}_{k+1} & = & \mathbf{x}_0 \cdot \mathbf{P}^{k+1} \end{array}$$

Stavros Tripakis: EECS 144/244 - Probabilistic Systems

Interesting questions:

- ► After *k* steps, what is the likelihood that the system is at state *i*?
- ▶ In the long run, how much time does the system spend at state *i*? (i.e., how often is *i* visited?)
- What is the probability that the system will ever reach a given state (or group of states)?
- ▶ What is the expected time until the system reaches a given state (or group of states)?

Which of these questions do we have an answer to already?

► After *k* steps, what is the likelihood that the system is at state *i*?

$$\mathbf{x}_k = \mathbf{x}_0 \cdot \mathbf{P}^k$$

Interesting questions:

- \checkmark After k steps, what is the likelihood that the system is at state i?
- ▶ In the long run, how much time does the system spend at state *i*? (i.e., how often is *i* visited?)
- What is the probability that the system will ever reach a given state (or group of states)?
- ▶ What is the expected time until the system reaches a given state (or group of states)?

Let's see how to answer the rest.

Markov chains and graphs

A Markov chain has a graph structure.

We can partly answer the questions simply by studying this structure, **completely ignoring the probability numbers**.

n-step transition probabilities

Let \mathbf{P}_{ij}^n be the (i,j) element of \mathbf{P}^n .

What does \mathbf{P}_{ij}^n represent?

n-step transition probabilities

Let \mathbf{P}_{ij}^n be the (i,j) element of \mathbf{P}^n .

What does \mathbf{P}_{ij}^n represent?

 $\mathbf{P}_{ij}^n = P(s_{k+n} = j \mid s_k = i)$: probability that, starting from state i, after n steps the state will be j.

State i is absorbing if $P_{ii} = 1$. This implies $P_{ij} = 0$ for all $j \neq i$.

State i is absorbing if $\mathbf{P}_{ii} = 1$. This implies $\mathbf{P}_{ij} = 0$ for all $j \neq i$. This says that i only has a self-loop transition.

State i is absorbing if $\mathbf{P}_{ii} = 1$. This implies $\mathbf{P}_{ij} = 0$ for all $j \neq i$. This says that i only has a self-loop transition.

State j is accessible from state i if $\mathbf{P}_{ij}^n > 0$ for some n.

State i is absorbing if $\mathbf{P}_{ii} = 1$. This implies $\mathbf{P}_{ij} = 0$ for all $j \neq i$. This says that i only has a self-loop transition.

State j is accessible from state i if $\mathbf{P}_{ij}^n > 0$ for some n. This says that j is reachable from i.

State i is absorbing if $\mathbf{P}_{ii}=1$. This implies $\mathbf{P}_{ij}=0$ for all $j\neq i$. This says that i only has a self-loop transition.

State j is accessible from state i if $\mathbf{P}_{ij}^n > 0$ for some n. This says that j is reachable from i.

Two states i and j communicate, written $i \leftrightarrow j$, if i is accessible from j and vice-versa.

A set of states that communicate is called a class.

State i is absorbing if $\mathbf{P}_{ii} = 1$. This implies $\mathbf{P}_{ij} = 0$ for all $j \neq i$. This says that i only has a self-loop transition.

State j is accessible from state i if $\mathbf{P}_{ij}^n>0$ for some n. This says that j is reachable from i.

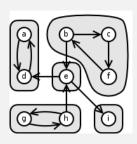
Two states i and j communicate, written $i \leftrightarrow j$, if i is accessible from j and vice-versa.

A set of states that communicate is called a *class*. A class is a strongly-connected component.

Strongly-connected components

In a directed graph $G=(V,\to)$, a strongly-connected component (SCC) is a subset of nodes $C\subseteq V$, such that every node in C is reachable from every other node in C.

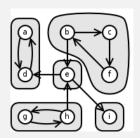
C is called *maximal* if we cannot add more nodes to C and still preserve its SCC property, i.e., $\not\exists C' \supset C$ s.t. C' is also a SCC.



The acyclic graph of maximal SCCs

The set of all maximal SCCs of a graph defines a new graph, where nodes are maximal SCCs, $C_1, C_2, ..., C_m$.

An edge $C_i \sim C_j$ exists iff $C_i \neq C_j$ and there is a node in C_i that has a successor node in C_j .



This graph of SCCs is by definition acyclic: why?

Irreducible Markov chains

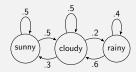
The Markov chain is *irreducible* if it has only one class, i.e., all states communicate with each other.

Irreducible Markov chains

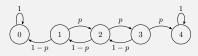
The Markov chain is *irreducible* if it has only one class, i.e., all states communicate with each other.

This says that the whole Markov chain is a SCC.

Weather model (irreducible):

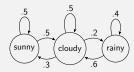


Gambling model (reducible):

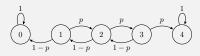


Learning model (reducible):

Weather model (irreducible):



Gambling model (reducible):



Learning model (reducible):

States 0, 4, and L are absorbing states.

Recurrent and transient states

Let i, j be two states. Define:

 $f_{ij}^n =$ probability that, starting in i, the first transition into j happens after n steps

$$f_{ij} = \sum_{n=1}^{\infty} f_{ij}^n = \text{probability of reaching } j \text{ from } i \text{ in any } \# \text{ steps}$$

Recurrent and transient states

Let i, j be two states. Define:

 $f_{ij}^n =$ probability that, starting in i, the first transition into j happens after n steps

$$f_{ij} = \sum_{n=1}^{\infty} f_{ij}^n = \text{probability of reaching } j \text{ from } i \text{ in any } \# \text{ steps}$$

State i is:

- Recurrent if $f_{ii} = 1$.
- ▶ Transient if $f_{ii} < 1$.

Recurrent and transient states

Let i, j be two states. Define:

 $f_{ij}^n =$ probability that, starting in i, the first transition into j happens after n steps

$$f_{ij} = \sum_{n=1}^{\infty} f_{ij}^n = \text{probability of reaching } j \text{ from } i \text{ in any } \# \text{ steps}$$

State i is:

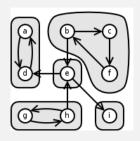
- Recurrent if $f_{ii} = 1$.
- ▶ Transient if $f_{ii} < 1$.

It follows that:

- ▶ If i is recurrent then system visits i infinitely often (with probability 1).
- ► If i is transient then system visits i only finitely many times (with probability 1).

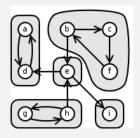
A SCC C is called *terminal* if there is no C' such that $C \leadsto C'$.

Otherwise C is called *transient*.



A SCC C is called *terminal* if there is no C' such that $C \leadsto C'$.

Otherwise C is called *transient*.

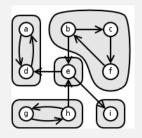


Terminal SCCs: $\{a, d\}$ and $\{i\}$.

Transient SCCs: $\{b, c, f\}$, $\{e\}$, and $\{g, h\}$.

A SCC C is called *terminal* if there is no C' such that $C \leadsto C'$.

Otherwise C is called *transient*.



Terminal SCCs: $\{a, d\}$ and $\{i\}$.

Transient SCCs: $\{b,c,f\}$, $\{e\}$, and $\{g,h\}$.

- ▶ Recurrent states = states belonging to terminal SCCs.
- ► Transient states = states belonging to transient SCCs.

If i is recurrent and $i \leftrightarrow j$ then j is also recurrent.

If i is recurrent and $i \leftrightarrow j$ then j is also recurrent.

In a finite Markov chain M, some states will be recurrent. Why?

If i is recurrent and $i \leftrightarrow j$ then j is also recurrent.

In a finite Markov chain M, some states will be recurrent. Why? Because M is finite and deadlock-free.

If i is recurrent and $i \leftrightarrow j$ then j is also recurrent.

In a finite Markov chain M, some states will be recurrent. Why? Because M is finite and deadlock-free.

Does this hold also for infinite Markov chains?

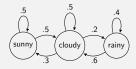
Viewed as a graph, every finite Markov chain M has at least one terminal maximal SCC.

Theorem

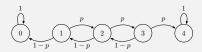
In the long run the amount of time that M spends in transient SCCs is 0.

Therefore, the probability that after some time M will reach a terminal SCC and remain forever there is 1.

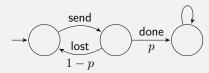
Weather model: all states visited infinitely often.



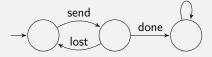
Gambling model: eventually system enters either 0 or 4 and then stays there forever.



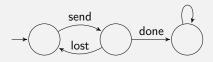
In a probabilistic system, the behavior where the message keeps getting lost after being sent has probability 0, **independently of the value of** p (provided p > 0):



In a non-deterministic system, it is possible that the message always gets lost:



In a non-deterministic system, it is possible that the message always gets lost:



However, we can add fairness constraints to ensure that it does not, e.g.,:

$$\underbrace{\left((\Box \diamondsuit \mathsf{send}) \to (\diamondsuit \mathsf{done})\right)}_{\mathsf{fairness constraint}} \to (\mathsf{what we want})$$

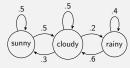
In a non-deterministic system, it is possible that the message always gets lost:

However, we can add fairness constraints to ensure that it does not, e.g.,:

$$\underbrace{\left(\left(\Box \diamondsuit \mathsf{send}\right) \to \left(\diamondsuit \mathsf{done}\right)\right)}_{\mathsf{fairness constraint}} \to \left(\mathsf{what we want}\right)$$

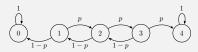
If this is all we need, probabilities are an overkill.

Weather model: all states visited infinitely often.

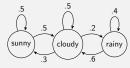


How much time does it rain on the average?

Gambling model: eventually system enters either 0 or 4 and then stays there forever.

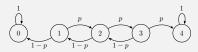


Weather model: all states visited infinitely often.

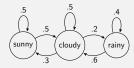


How much time does it rain on the average?

Gambling model: eventually system enters either 0 or 4 and then stays there forever.

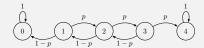


Weather model: all states visited infinitely often.



How much time does it rain on the average?

Gambling model: eventually system enters either 0 or 4 and then stays there forever.



When does the gambler go bankrupt?

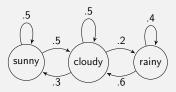
State i has period $d \in \mathbb{N}$ if $\mathbf{P}_{ii}^n = 0$ whenever n is not divisible by d, and d is the largest such number.

If d=1 (i.e., $\mathbf{P}_{ii}^n>0$ for all n) then state i is called *aperiodic*.

State i has period $d \in \mathbb{N}$ if $\mathbf{P}_{ii}^n = 0$ whenever n is not divisible by d, and d is the largest such number.

If d=1 (i.e., $\mathbf{P}_{ii}^n>0$ for all n) then state i is called *aperiodic*.

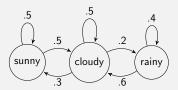
Examples:



State i has period $d \in \mathbb{N}$ if $\mathbf{P}^n_{ii} = 0$ whenever n is not divisible by d, and d is the largest such number.

If d=1 (i.e., $\mathbf{P}_{ii}^n>0$ for all n) then state i is called *aperiodic*.

Examples:

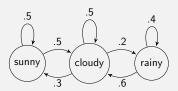


All states are aperiodic.

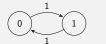
State i has period $d \in \mathbb{N}$ if $\mathbf{P}_{ii}^n = 0$ whenever n is not divisible by d, and d is the largest such number.

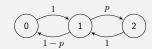
If d=1 (i.e., $\mathbf{P}_{ii}^n>0$ for all n) then state i is called aperiodic.

Examples:



All states are aperiodic.

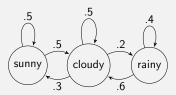




Both states have period 2. All states have period 2.

Ergodic states

An aperiodic recurrent state is called ergodic.



All states are ergodic.

Stationary distribution

Theorem

Let M be a finite, irreducible Markov chain where all states of M are ergodic. Then the limit

$$\lim_{k\to\infty}\mathbf{P}^k_{ij}$$

exists and is independent of i (i.e., $\forall i, i' : \lim_{k \to \infty} \mathbf{P}_{ij}^k = \lim_{k \to \infty} \mathbf{P}_{i'j}^k$).

Stationary distribution

Theorem

Let M be a finite, irreducible Markov chain where all states of M are ergodic. Then the limit

$$\lim_{k\to\infty}\mathbf{P}^k_{ij}$$

exists and is independent of i (i.e., $\forall i, i': \lim_{k \to \infty} \mathbf{P}^k_{ij} = \lim_{k \to \infty} \mathbf{P}^k_{i'j}$).

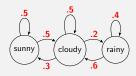
Furthermore, letting

$$\pi_j = \lim_{k \to \infty} \mathbf{P}_{ij}^k$$

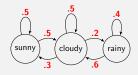
then $\pi = [\pi_1 \ \pi_2 \ \cdots \ \pi_n]$ is the unique non-negative solution of

$$\pi = \pi \cdot \mathbf{P}$$

 π is called the *stationary distribution*.



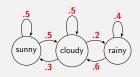
$$\mathbf{P} = \left[\begin{array}{ccc} 0.5 & 0.5 & 0 \\ 0.3 & 0.5 & 0.2 \\ 0 & 0.6 & 0.4 \end{array} \right]$$



$$\mathbf{P} = \begin{bmatrix} 0.5 & 0.5 & 0\\ 0.3 & 0.5 & 0.2\\ 0 & 0.6 & 0.4 \end{bmatrix}$$

$$\mathbf{P} = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.3 & 0.5 & 0.2 \\ 0 & 0.6 & 0.4 \end{bmatrix} \qquad \forall k > 15 : \mathbf{P}^k = \begin{bmatrix} 0.3103 & 0.5172 & 0.1724 \\ 0.3103 & 0.5172 & 0.1724 \\ 0.3103 & 0.5172 & 0.1724 \end{bmatrix}$$

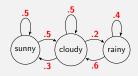
What does this imply?



$$\mathbf{P} = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.3 & 0.5 & 0.2 \\ 0 & 0.6 & 0.4 \end{bmatrix} \qquad \forall k > 15 : \mathbf{P}^k = \begin{bmatrix} 0.3103 & 0.5172 & 0.1724 \\ 0.3103 & 0.5172 & 0.1724 \\ 0.3103 & 0.5172 & 0.1724 \end{bmatrix}$$

What does this imply?

for any probability vector $\mathbf{x}_0, \forall k > 15: \mathbf{x}_0 \cdot \mathbf{P}^k = \pi = [0.3103 \ 0.5172 \ 0.1724]$

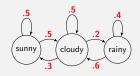


$$\mathbf{P} = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.3 & 0.5 & 0.2 \\ 0 & 0.6 & 0.4 \end{bmatrix} \qquad \forall k > 15 : \mathbf{P}^k = \begin{bmatrix} 0.3103 & 0.5172 & 0.1724 \\ 0.3103 & 0.5172 & 0.1724 \\ 0.3103 & 0.5172 & 0.1724 \end{bmatrix}$$

What does this imply?

for any probability vector $\mathbf{x}_0, \forall k > 15: \mathbf{x}_0 \cdot \mathbf{P}^k = \pi = [0.3103 \ 0.5172 \ 0.1724]$

i.e., stationary distribution π independent from the initial state distribution \mathbf{x}_0 .



$$\mathbf{P} = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.3 & 0.5 & 0.2 \\ 0 & 0.6 & 0.4 \end{bmatrix} \qquad \forall k > 15 : \mathbf{P}^k = \begin{bmatrix} 0.3103 & 0.5172 & 0.1724 \\ 0.3103 & 0.5172 & 0.1724 \\ 0.3103 & 0.5172 & 0.1724 \end{bmatrix}$$

What does this imply?

for any probability vector $\mathbf{x}_0, \forall k>15: \mathbf{x}_0\cdot\mathbf{P}^k=\pi=[0.3103\ 0.5172\ 0.1724]$

i.e., stationary distribution π independent from the initial state distribution \mathbf{x}_0 .

So how much time does it rain on the average?

Stationary distribution

If the chain is not ergodic, the limit may not exist, e.g.,

$$\mathbf{P} = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

Analysis of Markov chains

Interesting questions:

- ✓ After k steps, what is the likelihood that the system is at state i?
- ▶ In the long run, how much time does the system spend at state *i*? (i.e., how often is *i* visited?)
- What is the probability that the system will ever reach a given state (or group of states)?
- ▶ What is the expected time until the system reaches a given state (or group of states)?

Which of these questions do we have an answer to already?

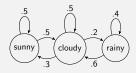
Analysis of Markov chains

Interesting questions:

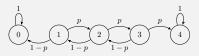
- ✓ After k steps, what is the likelihood that the system is at state i?
- ✓ In the long run, how much time does the system spend at state i? (i.e., how often is i visited?)
- What is the probability that the system will ever reach a given state (or group of states)?
- ▶ What is the expected time until the system reaches a given state (or group of states)?

Examples

Weather model:



Gambling model:



How much time does an average game last?

Learning model:

How long until we learn something?

Order the states of a Markov chain M so that $\{1,2,...,t\}$ is the set of transient states.

Let

$$\mathbf{P}_T = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1t} \\ p_{21} & p_{22} & \cdots & p_{2t} \\ \vdots & & \ddots & \vdots \\ p_{t1} & p_{t2} & \cdots & p_{tt} \end{bmatrix}$$

Observation: some rows of \mathbf{P}_T sum to < 1 (otherwise this would be a SCC).

Let

 $q_{ij}=$ mean time spent in j, given that the system starts in i

Then

$$q_{ij} = \delta_{ij} + \sum_{k} p_{ik} \cdot q_{kj}$$

where

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise.} \end{cases}$$

Let

 $q_{ij}=$ mean time spent in j, given that the system starts in i

Then

$$q_{ij} = \delta_{ij} + \sum_{k} p_{ik} \cdot q_{kj}$$
$$= \delta_{jk} + \sum_{k=1}^{t} p_{ik} \cdot q_{kj} \qquad why?$$

where

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise.} \end{cases}$$

Let

 $q_{ij}=% \frac{1}{2}\left(ij\right) =0$ mean time spent in j, given that the system starts in i

Then

$$q_{ij} = \delta_{ij} + \sum_{k} p_{ik} \cdot q_{kj}$$
$$= \delta_{jk} + \sum_{k=1}^{t} p_{ik} \cdot q_{kj} \qquad why?$$

Because $q_{kj} = 0$ when k is recurrent (cannot move from recurrent state to transient state).

where

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise.} \end{cases}$$

Let

$$\mathbf{Q} = \begin{bmatrix} q_{11} & q_{12} & \cdots & q_{1t} \\ q_{21} & q_{22} & \cdots & q_{2t} \\ \vdots & & \ddots & \vdots \\ q_{t1} & q_{t2} & \cdots & q_{tt} \end{bmatrix}$$

Then

$$\mathbf{Q} = \mathbf{I} + \mathbf{P}_T \cdot \mathbf{Q}$$

where ${f I}$ is the identity matrix of size t.

Let

$$\mathbf{Q} = \begin{bmatrix} q_{11} & q_{12} & \cdots & q_{1t} \\ q_{21} & q_{22} & \cdots & q_{2t} \\ \vdots & & \ddots & \vdots \\ q_{t1} & q_{t2} & \cdots & q_{tt} \end{bmatrix}$$

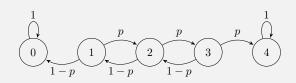
Then

$$\mathbf{Q} = \mathbf{I} + \mathbf{P}_T \cdot \mathbf{Q}$$

where I is the identity matrix of size t.

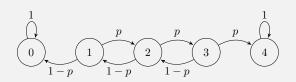
It can be shown that $I - P_T$ is invertible. Therefore:

$$\mathbf{Q} = (\mathbf{I} - \mathbf{P}_T)^{-1}$$



$$\mathbf{Q} = (\mathbf{I} - \mathbf{P}_T)^{-1} = \begin{bmatrix} 1 & -p & 0 \\ p - 1 & 1 & -p \\ 0 & p - 1 & 1 \end{bmatrix}^{-1} = \cdots$$

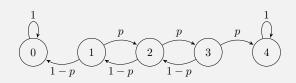
$$\mathbf{Q}_{p=0} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \quad \mathbf{Q}_{p=1} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{Q}_{p=\frac{1}{2}} = \begin{bmatrix} 1.5 & 1 & 0.5 \\ 1 & 2 & 1 \\ 0.5 & 1 & 1.5 \end{bmatrix}$$



$$\mathbf{Q} = (\mathbf{I} - \mathbf{P}_T)^{-1} = \begin{bmatrix} 1 & -p & 0 \\ p - 1 & 1 & -p \\ 0 & p - 1 & 1 \end{bmatrix}^{-1} = \cdots$$

$$\mathbf{Q}_{p=0} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{array} \right] \quad \mathbf{Q}_{p=1} = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right] \quad \mathbf{Q}_{p=\frac{1}{2}} = \left[\begin{array}{ccc} 1.5 & 1 & 0.5 \\ 1 & 2 & 1 \\ 0.5 & 1 & 1.5 \end{array} \right]$$

What is the average playing time with $p = \frac{1}{2}$?



$$\mathbf{Q} = (\mathbf{I} - \mathbf{P}_T)^{-1} = \begin{bmatrix} 1 & -p & 0 \\ p - 1 & 1 & -p \\ 0 & p - 1 & 1 \end{bmatrix}^{-1} = \cdots$$

$$\mathbf{Q}_{p=0} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{array} \right] \quad \mathbf{Q}_{p=1} = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right] \quad \mathbf{Q}_{p=\frac{1}{2}} = \left[\begin{array}{ccc} 1.5 & 1 & 0.5 \\ 1 & 2 & 1 \\ 0.5 & 1 & 1.5 \end{array} \right]$$

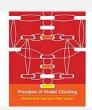
What is the average playing time with $p = \frac{1}{2}$? 3 if I start with \$1 or \$3. 4 if I start with \$2.

Analysis of Markov chains

Interesting questions:

- \checkmark After k steps, what is the likelihood that the system is at state i?
- ✓ In the long run, how much time does the system spend at state i? (i.e., how often is i visited?)
- ► What is the probability that the system will ever reach a given state (or group of states)?
- √ What is the expected time until the system reaches a given state (or group of states)?

REACHABILITY PROBABILITIES IN MARKOV CHAINS



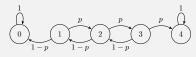
Material taken mainly from [BK08], Chapter 10.

Reachability question for Markov chains

Let M be a Markov chain and B a set of states of M.

Reachability question for Markov chains: what is the probability of reaching B?

Note: this is not a yes/no question, as in standard model-checking. Here, we want to compute a probability $p \in [0,1]$.



When does the gambler go bankrupt?

Model in PRISM:

```
dtmc // this model is a Markov chain

additional constants and chain

set = 0.7;

module M

s: [0..4] init 2;

g: [] s=0 -> (s'=0);

[] s=1 -> p: (s'=2) + (1-p): (s'=0);

[] s=2 -> p: (s'=3) + (1-p): (s'=1);

[] s=3 -> p: (s'=4) + (1-p): (s'=2);

[] s=4 -> (s'=4);

dtmc // this model is a Markov chain

additional constants and chain

additional constants and chain

dtmc // this model is a Markov chain

additional constants and chain

addit
```

PCTL formula in PRISM:

P=? [F s=4]

PRISM answers:

p	answer
0	0
0.5	$0.499999 \cdots$
0.7	$0.844827 \cdots$
1	1

Computing reachability probabilities

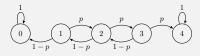
Let x_i be the probability that the target set B is reached starting from state i.

Then:

- ▶ If $i \in B$ then $x_i = 1$.
- ▶ If i cannot reach B in the graph sense, then $x_i = 0$.
- Otherwise

$$x_i = \sum_j p_{ij} \cdot x_j$$

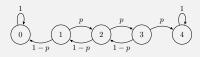
This forms a set of linear equations. For finite chains it is finite and is guaranteed to have a unique solution.



When does the gambler go bankrupt?

$$\begin{array}{rcl} x_0 & = & 0 \\ x_4 & = & 1 \\ x_1 & = & p \cdot x_2 + (1-p) \cdot x_0 = p \cdot x_2 \\ x_2 & = & p \cdot x_3 + (1-p) \cdot x_1 \\ x_3 & = & p \cdot x_4 + (1-p) \cdot x_2 = p + (1-p) \cdot x_2 \end{array}$$

For
$$p = \frac{1}{2}$$
, $x_2 = \frac{1}{2}$. For $p = 0.7$, $x_2 = 0.8448$.



When does the gambler go bankrupt?

$$x_0=0$$
 This is necessary for uniqueness of solution. Why?
$$x_4=1$$

$$x_1=p\cdot x_2+(1-p)\cdot x_0=p\cdot x_2$$

$$x_2=p\cdot x_3+(1-p)\cdot x_1$$

$$x_3=p\cdot x_4+(1-p)\cdot x_2=p+(1-p)\cdot x_2$$

For
$$p = \frac{1}{2}$$
, $x_2 = \frac{1}{2}$. For $p = 0.7$, $x_2 = 0.8448$.

and MARKOV DECISION PROCESSES

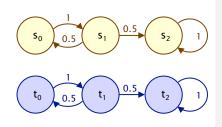
Composition of Markov chains

Suppose we want to compose the following two Markov chains:

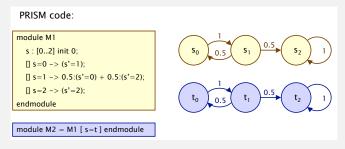
PRISM code:

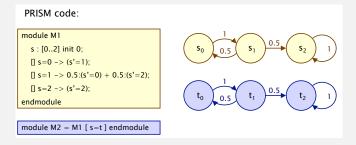
module M1
$$\begin{split} s: [0..2] & \text{ init } 0; \\ [] & s=0 \rightarrow (s'=1); \\ [] & s=1 \rightarrow 0.5: (s'=0) + 0.5: (s'=2); \\ [] & s=2 \rightarrow (s'=2); \\ endmodule \end{split}$$

module M2 = M1 [s=t] endmodule

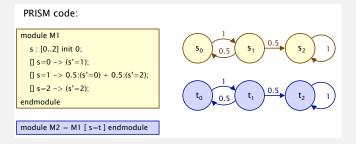


Several figures due to Dave Parker.

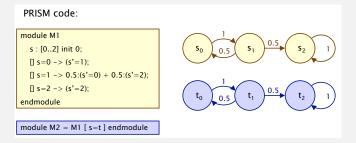




$$P((s_1, t_1) \mid (s_0, t_0)) =$$

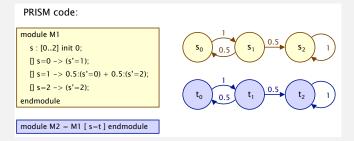


$$P((s_1, t_1) \mid (s_0, t_0)) = 1 \cdot 1 = 1$$



$$P((s_1, t_1) \mid (s_0, t_0)) = 1 \cdot 1 = 1$$

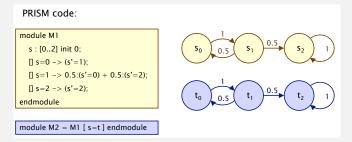
 $P((s_2, t_2) \mid (s_1, t_1)) =$



$$P((s_1, t_1) \mid (s_0, t_0)) = 1 \cdot 1 = 1$$

 $P((s_2, t_2) \mid (s_1, t_1)) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$

What does the synchronous composition of these processes look like?

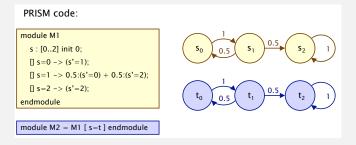


$$P((s_1, t_1) \mid (s_0, t_0)) = 1 \cdot 1 = 1$$

 $P((s_2, t_2) \mid (s_1, t_1)) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$

Stavros Tripakis: EECS 144/244 - Probabilistic Systems

What does the synchronous composition of these processes look like?

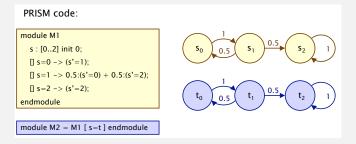


$$P((s_1, t_1) \mid (s_0, t_0)) = 1 \cdot 1 = 1$$

 $P((s_2, t_2) \mid (s_1, t_1)) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$

Is the synchronous composition of two Markov chains a Markov chain?

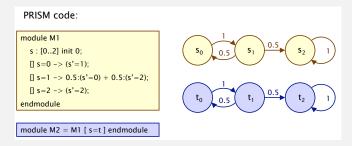
What does the synchronous composition of these processes look like?

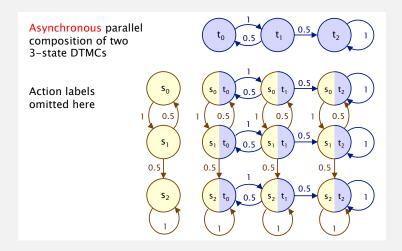


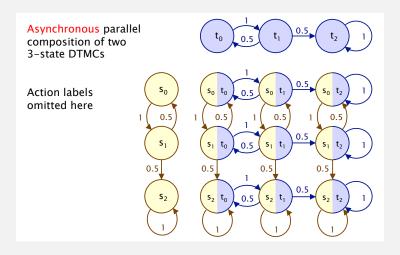
$$P((s_1, t_1) \mid (s_0, t_0)) = 1 \cdot 1 = 1$$

 $P((s_2, t_2) \mid (s_1, t_1)) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$

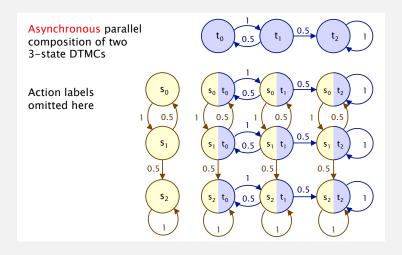
Is the synchronous composition of two Markov chains a Markov chain? Yes!







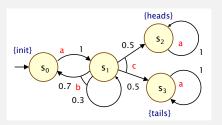
Is the asynchronous composition of two Markov chains a Markov chain?



Is the asynchronous composition of two Markov chains a Markov chain? No! It is a Markov Decision Process.

Markov Decision Processes (MDPs)

Combine non-deterministic and probabilistic choice.

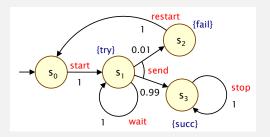


Intuitive semantics:

- First choose action non-deterministically among possible actions.
 - ▶ In state s_0 , only one possible action, a.
 - ▶ In state s_1 , two possible actions, b and c.
- ► Then, given chosen action, throw a dice a pick successor state w.r.t. the specified probability distribution for that action.

Markov Decision Processes (MDPs)

Non-determinism has multiple uses, as in discrete systems. E.g., useful to model abstraction:



At state s_1 , if channel is ready attempt to send, otherwise wait. Details of when channel is ready are not modeled.

Model-checking MDPs

Answers queries like:

- Byzantine agreement protocol
 - $P_{min=?}$ [F (agreement ∧ rounds ≤ 2)]
 - "what is the minimum probability that agreement is reached within two rounds?"
- · CSMA/CD communication protocol
 - P_{max=?} [F collisions=k]
 - "what is the maximum probability of k collisions?"
- Self-stabilisation protocols
 - $-P_{min=?}$ [$F^{\leq t}$ stable]
 - "what is the minimum probability of reaching a stable state within k steps?"

See PRISM web site and literature for details: http://www.prismmodelchecker.org/

Bibliography

C. Baier and J.-P. Katoen.

Principles of Model Checking.

MIT Press, 2008.

PRISM lecture material available online: http://www.prismmodelchecker.org/lectures/.

S. M. Ross.

Introduction to Probability Models.

Academic Press, 2006.