Probabilistic Models

<table>
<thead>
<tr>
<th></th>
<th>Fully Probabilistic</th>
<th>Nondeterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete Time</td>
<td>Discrete-Time Markov Chains (DTMCs)</td>
<td>Markov Decision Processes (MDPs)</td>
</tr>
<tr>
<td>Continuous Time</td>
<td>Continuous-Time Markov Chains (DTMCs)</td>
<td>CTMDPs, Probabilistic Timed Automaton (PTAs)</td>
</tr>
</tbody>
</table>
Probabilistic Models

<table>
<thead>
<tr>
<th></th>
<th>Fully Probabilistic</th>
<th>Nondeterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete Time</td>
<td>Discrete-Time Markov Chains (DTMCs)</td>
<td>Markov Decision Processes (MDPs)</td>
</tr>
<tr>
<td>Continuous Time</td>
<td>Continuous-Time Markov Chains (DTMCs)</td>
<td>CTMDPs, Probabilistic Timed Automaton (PTAs)</td>
</tr>
</tbody>
</table>
From DTMC to CTMCs

Time in a DTMC proceeds in discrete steps

- accurate model of (discrete) time units (e.g. clock ticks)
- or, no information assumed about the time transitions take

Continuous-time Markov chains (CTMCs): dense model of time

- transitions can occur at any (real-valued) time instant
- modelled using exponential distributions
- suits modelling of: performance/reliability (e.g. of computer networks, manufacturing systems, queueing networks), biological pathways, chemical reactions, ...
1 Exponential Distribution

2 Continuous Time Markov Chains

3 Specifying Probabilistic Properties
1 Exponential Distribution

2 Continuous Time Markov Chains

3 Specifying Probabilistic Properties
Continuous Probability Distribution
Defined by

- a cumulative distribution function: \(F(t) = Pr(X \leq t) = \int_{-\infty}^{t} f(x)dx \)

Example: uniform distribution
\(f(t) = \begin{cases}
1/\left(b-a\right) & \text{if } a \leq t \leq b, \\
0 & \text{otherwise}.
\end{cases} \)

\(F(t) = \begin{cases}
0 & \text{if } t \leq a, \\
\frac{t-a}{b-a} & \text{if } a \leq t \leq b, \\
1 & \text{if } t > b.
\end{cases} \)
Continuous Probability Distribution

Defined by

- a cumulative distribution function: \[F(t) = Pr(X \leq t) = \int_{-\infty}^{t} f(x)dx \]

- where \(f \) is the probability density function
Continuous Probability Distribution

Defined by

- a cumulative distribution function:
 \[F(t) = Pr(X \leq t) = \int_{-\infty}^{t} f(x)dx \]
- where \(f \) is the probability density function
- Note: for all \(t \), \(Pr(X = t) = ? \)
Continuous Probability Distribution

Defined by

- a cumulative distribution function: \(F(t) = Pr(X \leq t) = \int_{-\infty}^{t} f(x)dx \)
- where \(f \) is the probability density function
- Note: for all \(t \), \(Pr(X = t) = 0 \)
Continuous Probability Distribution

Defined by

- a cumulative distribution function:
 \[F(t) = Pr(X \leq t) = \int_{-\infty}^{t} f(x) \, dx \]
- where \(f \) is the probability density function
- Note: for all \(t \), \(Pr(X = t) = 0 \)

Example: uniform distribution

\[
f(t) = \begin{cases}
\frac{1}{b-a} & \text{if } a \leq t \leq b, \\
0 & \text{otherwise}.
\end{cases}
\]
Continuous Probability Distribution

Defined by

- a cumulative distribution function: \(F(t) = Pr(X \leq t) = \int_{-\infty}^{t} f(x)dx \)
- where \(f \) is the probability density function
- Note: for all \(t \), \(Pr(X = t) = 0 \)

Example: uniform distribution

\[
f(t) = \begin{cases}
\frac{1}{b-a} & \text{if } a \leq t \leq b, \\
0 & \text{otherwise.}
\end{cases}
\]

\[
F(t) = \begin{cases}
0 & \text{if } t \leq a, \\
\frac{t-a}{b-a} & \text{if } a \leq t \leq b, \\
1 & \text{if } t > b.
\end{cases}
\]
Exponential Distribution

A continuous random variable X is exponential with parameter λ if its density function is

$$f(t) = \begin{cases} \lambda \cdot e^{-\lambda t} & \text{if } t > 0, \\ 0 & \text{otherwise.} \end{cases}$$
Exponential Distribution

A continuous random variable X is exponential with parameter λ if its density function is

$$f(t) = \begin{cases}
\lambda \cdot e^{-\lambda t} & \text{if } t > 0, \\
0 & \text{otherwise}
\end{cases}$$

$\lambda = \text{“rate“}$
Exponential Distribution

A continuous random variable X is exponential with parameter λ if its density functions is

$$f(t) = \begin{cases} \lambda \cdot e^{-\lambda t} & \text{if } t > 0, \\ 0 & \text{otherwise}. \end{cases}$$

λ = “rate”

Cumulative distribution function

$$F(t) = Pr(X \leq t) = \int_0^t \lambda \cdot e^{-\lambda x} dx = 1 - e^{-\lambda t}$$
Exponential Distribution

A continuous random variable \(X \) is exponential with parameter \(\lambda \) if its density functions is

\[
f(t) = \begin{cases}
\lambda \cdot e^{-\lambda t} & \text{if } t > 0, \\
0 & \text{otherwise}.
\end{cases}
\]

\(\lambda = \text{“rate”} \)

Cumulative distribution function

\[
F(t) = Pr(X \leq t) = \int_{0}^{t} \lambda \cdot e^{-\lambda x} \, dx = 1 - e^{-\lambda t}
\]

Other properties

- negation: \(Pr(X > t) = e^{-\lambda t} \)
- mean: \(E[X] = \int_{0}^{\infty} x \cdot \lambda \cdot e^{-\lambda x} \, dx = \frac{1}{\lambda} \)
- variance: \(Var(X) = \frac{1}{\lambda^2} \)
The more λ increases, the faster the c.d.f. approaches 1
Exponential distribution

Adequate for modelling many real-life phenomena

- failures
 - e.g. time before machine component fails
- inter-arrival times
 - e.g. time before next call arrives to a call center
- biological systems
 - e.g. times for reactions between proteins to occur
Useful Properties

The exponential distribution is memoryless

- \(Pr(X > t_1 + t_2 | X > t_1) = Pr(X > t_2) \)
- It is the only memoryless continuous distribution
Useful Properties

The exponential distribution is memoryless

- \(Pr(X > t_1 + t_2 | X > t_1) = Pr(X > t_2) \)
- it is the only memoryless continuous distribution
- the discrete time equivalent is the geometric distribution:

\[
P(X = k) = (1 - p)^k p
\]
Useful Properties

The minimum of two exponential distributions is an exponential distribution

- $X_1 \sim Exp(\lambda_1), \ X_2 \sim Exp(\lambda_2)$
- $Y = \min(X_1, X_2) \sim Exp(\lambda_1 + \lambda_2)$
- generalises to minimum of n distributions

Comparison of two exponential distributions

The probability of $X_1 < X_2$ is given by

$$Pr(X_1 < X_2) = \frac{\lambda_1}{\lambda_1 + \lambda_2}$$
1 Exponential Distribution

2 Continuous Time Markov Chains

3 Specifying Probabilistic Properties
Continuous-time Markov Chains

Informally

- labelled transition systems, augmented with rates
- continuous time delays, exponentially distributed

Definition

A CTMC is a tuple \((S, s_0, R, L)\) where

- \(S\) is a set of states
- \(s_0 \in S\) is the initial state
- \(R : S \times S \rightarrow \mathbb{R}^+\) is the transition rate matrix
- \(L : S \rightarrow 2^{AP}\) is a labelling with atomic propositions in \(AP\)
CTMCs Semantics

The transition rate matrix assigns rates to each pair of states

- used as a parameter to an exponential distribution
- transition between s and s' when $R(s, s') > 0$
- probability triggered before t time units: $1 - e^{-R(s, s')t}$

Race condition
If there exists multiple s' with $R(s, s') > 0$, the first transition to trigger determines the next state.
Example - Modeling a queue of jobs

- Initially the queue is empty
- Jobs arrive with rate $3/2$ (i.e. mean inter-arrival time is $2/3$)
- Jobs are served with rate 3 (i.e. mean service time is $1/3$)
- Maximum size of the queue is 3
- State-space: $S : \{s_i\}_{i=0}^{3}$ where s_i indicates i jobs in the queue

![Diagram of state transitions](image)
Interesting Questions for CTMCs

How long is spent in s before a transition occurs?
Interesting Questions for CTMCs

How long is spent in s before a transition occurs?

- minimum of exponential distributions of outgoing transitions
- i.e. exponential distribution with sum of outgoing rates

Exit rate $E(s) = \sum_{s' \in S} R(s, s')$
Interesting Questions for CTMCs

How long is spent in s before a transition occurs?

- minimum of exponential distributions of outgoing transitions
- i.e. exponential distribution with sum of outgoing rates

Exit rate $E(s) = \sum_{s' \in S} R(s, s')$

Note:

- the probability of leaving a state s within $[0, s]$ is $1 - e^{-E(s)t}$
- s is called absorbing if $E(s) = 0$ (no outgoing transitions)
Interesting Questions for CTMCs

Which transition is eventually taken from state s?

- Recall that $Pr(X_1 < X_2) = \frac{\lambda_1}{\lambda_1 + \lambda_2}$
- This can generalized to $Pr(X_1 = \min_{i=1\ldots n} X_i) = \frac{\lambda_1}{\sum \lambda_i}$
- Thus the probability that next state from s is s' is given by

$$P_R(s, s') = \begin{cases} \frac{R(s, s')}{E(s)} & \text{if } E(s) > 0, \\ 1 & \text{if } E(s) = 0 \text{ and } s = s', \\ 0 & \text{if } E(s) = 0 \text{ and } s \neq s'. \end{cases}$$
Embedded DTMC

The transition target state is independent from the time the transition occurs.

I.e. we can define a DTMC that abstracts a CTMC by describing only states transitions without time information.
Embedded DTMC

The transition target state is independent from the time the transition occurs.

I.e. we can define a DTMC that abstracts a CTMC by describing only states transitions without time information

Definition
The embedded DTMC of a CTMC \((S, s_0, R, L)\) is the DMTC \((S, s_0, P_R, L)\)
Embedded DTMC - Example

What is the embedded DTMC of

\[
\begin{align*}
\text{start} & \rightarrow s_0 & \{\text{empty}\} & \xrightarrow{3/2} s_1 & \xrightarrow{3/2} s_2 & \xrightarrow{3/2} \{\text{full}\} \\
& & & & & \\
& & 3 & & 3 & & 3 \\
\end{align*}
\]

?
Embedded DTMC - Example

What is the embedded DTMC of

?
Embedded DTMC - Example

What is the embedded DTMC of

\[
\begin{align*}
\{\text{empty}\} & \quad \frac{3}{2} & & \frac{3}{2} & & \frac{3}{2} & & \{\text{full}\} \\
\text{start} & \quad \rightarrow & s_0 & \rightarrow & s_1 & \rightarrow & s_2 & \rightarrow & s_3 \\
& & \frac{3}{2} & & \frac{3}{2} & & \frac{3}{2} & \\
\end{align*}
\]

?

\[
\begin{align*}
\{\text{empty}\} & \quad 1 & & \frac{3/2}{3/2+3} & & \{\text{full}\} \\
\text{start} & \quad \rightarrow & s_0 & \rightarrow & s_1 & \rightarrow & s_2 & \rightarrow & s_3 \\
& & & & & \frac{3/2}{3/2+3} & & \\
\end{align*}
\]
Embedded DTMC - Example

What is the embedded DTMC of

\[
\begin{array}{cccc}
\text{start} & s_0 & s_1 & s_2 & s_3 \\
\{\text{empty}\} & 3/2 & 3/2 & 3/2 & \{\text{full}\} \\
3 & 3 & 3 & & \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{start} & s_0 & s_1 & s_2 & s_3 \\
\{\text{empty}\} & 1 & 1/3 & & \{\text{full}\} \\
& & & & \\
\end{array}
\]
Embedded DTMC - Example

What is the embedded DTMC of

\[\text{start} \rightarrow \quad \{\text{empty}\} \quad \frac{3}{2} \quad \frac{3}{2} \quad \frac{3}{2} \quad \{\text{full}\} \]

?

\[\text{start} \rightarrow \quad \{\text{empty}\} \quad 1 \quad \frac{1}{3} \quad \frac{1}{3} \quad \{\text{full}\} \]
Interesting Question

What is the probability of being in state s_j at time t starting in s_i?

Define

$$P(t) = \begin{pmatrix} P_{11}(t) & \cdots & P_{1n}(t) \\ & \ddots & \\ P_{n1}(t) & \cdots & P_{nn}(t) \end{pmatrix}$$

with $P_{ij}(t) = Pr(s(t) = s_j | s(t = 0) = s_i)$
Interesting Question

What is the probability of being in state s_j at time t starting in s_i?

Define

$$P(t) = \begin{pmatrix} P_{11}(t) & \cdots & P_{1n}(t) \\ \vdots & \ddots & \vdots \\ P_{n1}(t) & \cdots & P_{nn}(t) \end{pmatrix}$$

with $P_{ij}(t) = \Pr(s(t) = s_j | s(t=0) = s_i)$

and the infinitesimal generator matrix Q

$$Q(t) = \begin{pmatrix} Q_{11}(t) & \cdots & Q_{1n}(t) \\ \vdots & \ddots & \vdots \\ Q_{n1}(t) & \cdots & Q_{nn}(t) \end{pmatrix}$$

with $Q_{ij} = \begin{cases} R(s_i, s_j) & \text{if } i \neq j, \\ -\sum_{k \neq i} R(s_i, s_k) & \text{if } i = j. \end{cases}$
Interesting Question

What is the probability of being in state \(s_j \) at time \(t \) starting in \(s_i \)?

Define

\[
P(t) = \begin{pmatrix} P_{11}(t) & \ldots & P_{1n}(t) \\ \vdots & \ddots & \vdots \\ P_{n1}(t) & \ldots & P_{nn}(t) \end{pmatrix}
\]

with \(P_{ij}(t) = Pr(s(t) = s_j | s(t=0) = s_i) \)

and the infinitesimal generator matrix \(Q \)

\[
Q(t) = \begin{pmatrix} Q_{11}(t) & \ldots & Q_{1n}(t) \\ \vdots & \ddots & \vdots \\ Q_{n1}(t) & \ldots & Q_{nn}(t) \end{pmatrix}
\]

with \(Q_{ij} = \begin{cases} R(s_i, s_j) & \text{if } i \neq j, \\ -\sum_{k \neq i} R(s_i, s_k) & \text{if } i = j. \end{cases} \)

Then one can show that \(P(t) \) satisfies the linear ODE:

\[
\dot{P}(t) = P(t)'Q, \quad P(0) = I
\]
Simple Example

\[C = (S, s_{\text{init}}, R, L) \]
\[S = \{s_0, s_1, s_2, s_3\} \]
\[s_{\text{init}} = s_0 \]

\[AP = \{\text{empty, full}\} \]
\[L(s_0) = \{\text{empty}\}, \ L(s_1) = L(s_2) = \emptyset \text{ and } L(s_3) = \{\text{full}\} \]

\[R = \begin{bmatrix} 0 & 3/2 & 0 & 0 \\ 3 & 0 & 3/2 & 0 \\ 0 & 3 & 0 & 3/2 \\ 0 & 0 & 3 & 0 \end{bmatrix} \]

\[p_{\text{emb}}(C) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 2/3 & 0 & 1/3 & 0 \\ 0 & 2/3 & 0 & 1/3 \\ 0 & 0 & 1 & 0 \end{bmatrix} \]

\[Q = \begin{bmatrix} -3/2 & 3/2 & 0 & 0 \\ 3 & -9/2 & 3/2 & 0 \\ 0 & 3 & -9/2 & 3/2 \\ 0 & 0 & 3 & -3 \end{bmatrix} \]
A path ω is a sequence $s_0t_0s_1t_1s_2t_2...$ such that

- $\forall i, R(s_i, s_{i+1}) \in \mathbb{R}_{>0}$ and $t_i \in \mathbb{R}_{>0}$
- t_i is the time spent in s_i

The path ω is finite if for some k, the state s_k is absorbing (i.e. $R(s, s') =$)

Path(s) denotes all paths starting in s.
Simulation Algorithm

Main Idea
As the next state probability is independent from the time when the transition takes place, use **two independent stochastic processes for** s_i and t_i.

1. **Init** $i = 0, s_i = s_0$
2. **loop**
3. Pick $t_i \in \mathbb{R}_{>0}$ using exponential distribution with rate $E(s)$
4. Pick s_{i+1} using discrete distribution $P_R(s_i, s')$ of embedded DTMCs
5. $i = i + 1$
6. **end loop**

Sometimes referred as Gillespie’s algorithm, and used by its author for stochastic simulation of chemical reactions
Example: A Chemical Reaction

- Three species: A, B and AB, three reactions:
 - A and B collide and produce AB: $A + B \xrightarrow{k_1} AB$
 - AB breaks into A and B: $AB \xrightarrow{k_2} A + B$
 - Degradation of A: $A \xrightarrow{k_3} \emptyset$
Example: A Chemical Reaction

- Three species: A, B and AB, three reactions:
 - A and B collide and produce AB: $A + B \xrightarrow{k_1} AB$
 - AB breaks into A and B: $AB \xrightarrow{k_2} A + B$
 - Degradation of A: $A \xrightarrow{k_3} \emptyset$

- CTMC with state-space $(\#A, \#B, \#AB)$

```
2,2,0 1,1,1 0,0,2
- 2k_1 2k_2 2k_3

1,2,0 0,1,1 0,2,0
- k_2 k_3 k_3
```
Example: A Chemical Reaction

- Three species: A, B and AB, three reactions:
 - A and B collide and produce AB \(A + B \xrightleftharpoons[k_1]{k_2} AB \)
 - AB breaks into A and B \(AB \xrightarrow[k_3]{k_2} A + B \)
 - degradation of A \(A \xrightarrow[k_3]{k_3} \emptyset \)

- CTMC with state-space \((\#A, \#B, \#AB)\)

- A and B collide at rate $k_1 \#A \#B$
Example: A Chemical Reaction

- Three species: A, B and AB, three reactions:
 - A and B collide and produce AB
 - AB breaks into A and B
 - degradation of A

- CTMC with state-space ($\#A, \#B, \#AB$)
 - A and B collide at rate $k_1\#A\#B$
 - AB breaks at rate $k_2\#AB$
Example: A Chemical Reaction

- Three species: A, B and AB, three reactions:
 - A and B collide and produce AB
 - AB breaks into A and B
 - degradation of A

- CTMC with state-space $(\#A, \#B, \#AB)$

- A and B collide at rate $k_1 \#A \#B$
- AB breaks at rate $k_2 \#AB$
- A degrades at rate $k_3 \#A$
How many states does a CTMC of a chemical reaction have?
CTMCs for Chemical Reactions

How many states does a CTMC of a chemical reaction have?

It depends on:

- The number of reactions
- The number species types
- The initial number of each specie
CTMCs for Chemical Reactions

How many states does a CTMC of a chemical reaction has?
It depends on
- The number of reactions
- The number species types
- The initial number of each specie

If there is a production reaction, e.g., $\emptyset \rightarrow A$, the number can be infinite
Stochastic versus deterministic models of chemical reactions

Recall that we can formulate ODE to describe a deterministic evolution of the number of molecules (using mass-action laws)
Stochastic versus deterministic models of chemical reactions

Recall that we can formulate ODE to describe a deterministic evolution of the number of molecules (using mass-action laws)

The stochastic (CTMC) model is believed to be more realistic, but can be quickly intractable.
Stochastic versus deterministic models of chemical reactions

Recall that we can formulate ODE to describe a deterministic evolution of the number of molecules (using mass-action laws).

The stochastic (CTMC) model is believed to be more realistic, but can be quickly intractable. In general,

- For large populations of molecules the deterministic model is used.
- For small populations use the stochastic model.
1. Exponential Distribution

2. Continuous Time Markov Chains

3. Specifying Probabilistic Properties
Temporal logic for describing properties of CTMCs
 - CSL = Continuous Stochastic Logic [ASSB00,BHHK03]
 - extension of (non-probabilistic) temporal logic CTL
 - transient, steady-state and path-based properties

Key additions:
 - probabilistic operator P (like PCTL)
 - steady state operator S

Example: down $\rightarrow P_{>0.75} \ [\neg \text{fail } U^{[1,2.5]} \text{ up}]$
 - when a shutdown occurs, the probability of a system recovery
 being completed between 1 and 2.5 hours without further
 failure is greater than 0.75

Example: $S_{<0.1} [\text{insufficient_routers}]$
 - in the long run, the chance that an inadequate number of
 routers are operational is less than 0.1
CSL Syntax (slides: David Parker)

- **CSL syntax:**

 - $\phi ::= \text{true} \mid a \mid \phi \land \phi \mid \neg \phi \mid P_{=\sim p}[\psi] \mid S_{=\sim p}[\phi]$ (state formulae)

 - $\psi ::= X \phi \mid \phi \mathbf{U} \phi$ (path formulae)

 - where a is an atomic proposition, I interval of $\mathbb{R}_{\geq 0}$, $p \in [0, 1]$, and $\sim \in \{<, >, \leq, \geq\}$

 - unbounded until U is a special case: $\phi_1 U \phi_2 \equiv \phi_1 U^{[0, \infty)} \phi_2$

- **Quantitative properties:** $P_{=\sim}[\psi]$ and $S_{=\sim}[\phi]$

 - where P/S is the outermost operator
CSL Semantics (slides: David Parker)

- **CSL formulae interpreted over states of a CTMC**
 - \(s \models \phi \) denotes \(\phi \) is “true in state \(s \)” or “satisfied in state \(s \)”

- **Semantics of state formulae:**
 - for a state \(s \) of the CTMC \((S, s_{init}, R, L)\):

 - \(s \models a \) \(\iff \) \(a \in L(s) \)
 - \(s \models \phi_1 \land \phi_2 \) \(\iff \) \(s \models \phi_1 \) and \(s \models \phi_2 \)
 - \(s \models \neg \phi \) \(\iff \) \(s \models \phi \) is false
 - \(s \models P_{\sim p} [\psi] \) \(\iff \) \(\text{Prob}(s, \psi) \sim p \)
 - \(s \models S_{\sim p} [\phi] \) \(\iff \) \(\sum_{s'} \models \phi \ \pi_s(s') \sim p \)

Probability of, starting in state \(s \), satisfying the path formula \(\psi \)

Probability of, starting in state \(s \), being in state \(s' \) in the long run
CSL Semantics (slides: David Parker)

- Prob(s, ψ) is the probability, starting in state s, of satisfying the path formula ψ
 - Prob(s, ψ) = Pr_s {ω ∈ Path_s | ω ⊨ ψ }

- Semantics of path formulae:
 - for a path ω of the CTMC:
 - ω ⊨ X ϕ ⇔ ω(1) is defined and ω(1) ⊨ ϕ
 - ω ⊨ ϕ_1 U^l ϕ_2 ⇔ ∃t ∈ I. (ω@t ⊨ ϕ_2 ∧ ∀t’<t. ω@t’ ⊨ ϕ_1)

 there exists a time instant in the interval I where ϕ_2 is true and ϕ_1 is true at all preceding time instants

if ω(0) is absorbing, ω(1) not defined
 CSL Example (slides: David Parker)

- **Case study:** Cluster of workstations [HHK00]
 - two sub-clusters (N workstations in each cluster)
 - star topology with a central switch
 - components can break down, single repair unit

 ![Diagram of a clustered workstations with a central switch and sub-clusters]

 - **minimum QoS:** at least $\frac{3}{4}$ of the workstations operational and connected via switches
 - **premium QoS:** all workstations operational and connected via switches
CSL Example (slides: David Parker)

- $S \Rightarrow \mathsf{minimum}$
 - the probability in the long run of having minimum QoS

- $P \Rightarrow F[t,t] \mathsf{minimum}$
 - the (transient) probability at time instant t of minimum QoS

- $P_{<0.05} \left[F[0,10] \neg \mathsf{minimum} \right]$
 - the probability that the QoS drops below minimum within 10 hours is less than 0.05

- $\neg \mathsf{minimum} \rightarrow P_{<0.1} \left[F[0,2] \neg \mathsf{minimum} \right]$
 - when facing insufficient QoS, the chance of facing the same problem after 2 hours is less than 0.1
CSL Example (slides: David Parker)

- \(\text{minimum} \rightarrow P_{>0.8} [\text{minimum } U^{[0,t]} \text{ premium }] \)
 - the probability of going from minimum to premium QoS within \(t \) hours without violating minimum QoS is at least 0.8

- \(P_{=?} [\neg \text{minimum } U^{[t,\infty)} \text{ minimum }] \)
 - the chance it takes more than \(t \) time units to recover from insufficient QoS

- \(\neg r_\text{switch}_up \rightarrow P_{<0.1} [\neg r_\text{switch}_up U \neg l_\text{switch}_up] \)
 - if the right switch has failed, the probability of the left switch failing before it is repaired is less than 0.1

- \(P_{=?} [F^{[2,\infty)} S_{>0.9} [\text{minimum }]] \)
 - the probability of it taking more than 2 hours to get to a state from which the long-run probability of minimum QoS is >0.9
CSL Model Checking

(See PRISM literature for more details...)

- For untimed operators, equivalent to PCTL on embedded DTMCs
- For timed operators, can be reduced to computation of transient probabilities (such as matrix $P(t)$) - complex
- An alternative is using Statistical Model Checking, approximate but more scalable
Statistical Model Checking

Assume we can decide $\omega \models \phi$. Based on simulations, decide hypothesis $H_1 : Pr_{\geq \theta}(\omega \models \phi)$ against $H_0 : Pr_{< \theta}(\omega \models \phi)$

Bounds on the error of choosing H_1 instead of H_0, depending on the number of positive runs