Warp Processors
(a.k.a. Self-Improving Configurable IC Platforms)

Frank Vahid

Department of Computer Science and Engineering
University of California, Riverside
Faculty member, Center for Embedded Computer Systems, UC Irvine

Ph.D. students: Roman Lysecky (grad. June 2004), Greg Stitt (grad. June 2005)
UCR collaborators: Prof. Walid Najjar, Prof. Sheldon Tan

UNIVERSITY OF CALIFORNIA

RIVERSIDE

Introduction
Warp Processors — Dynamic HW/SW Partitioning

Profile application to
determine critical

)

1 regions
application in ., © =
software only ‘E = o
= e s b Partition critical
= uP b regions to hardware
 of- e »os| B
Partitioned application & I =
executes faster with G - =
lower energy C WarE Config. Dynamic |
' ogic Part. Modul
consumption E Architecure [ar(tDP :Ic)lu e E -

aguoogaooguooguogogooguogogoooo

Program configurable
logic & update software
binary

f

Introduction

Previous Dynamic Optimizations -- Translation

= Dynamic Binary Translation

= Modern Pentium processors

= Dynamically translate instructions onto underlying RISC
architecture

= Transmeta Crusoe & Efficeon

= Dynamic code morphing

= Translate x86 instructions to underlying VLIW processor
= Just In Time (JIT) Compilation

= Interpreted languages

= Recompile code to native instructions

= Java, Python, etc.

Introduction

Previous Dynamic Optimization -- Recompiiation

= Dynamic optimizations are increasingly common
= Dynamically recompile binary during execution

= Dynamo /Bala, et al., 2000] - Dynamic software optimizations
= Identify frequently executed code segments (hotpaths)
= Recompile with higher optimization

= BOA [Gschwind, et al., 2000] - Dynamic optimizer for Power PC

= Advantages

= [ransparent optimizations
= No designer effort
= No tool restrictions

= Adapts to actual usage

= Speedups of up to 20%-30% -- 1.3X

Introduction

Hardware/Software Partitioning

Profiler | am | SV Critical = Benefits
| | —C = Speedups of 2X to 10X
— \ typical
\ 2 7 = Speedups of 800X possible
T’ e = Far more potential than
dynamic SW optimizations
— — (1.3X)
— | = Energy reductions of 25%
7 / to 95% typical
I:I'II'II'II'II'II'II'I:I I:I'II'II'II'II'II'II'I:I ! But Can hW/SW
g Processor B <— 5 ASIC/FPGA E e
5 = s = partitioning be done
gooooog gooooog .
Commonly one chip today dynamlca||Y?

| osw only

Ta

Time Energy

Introduction

Binary-Level Hardware/Software Partitioning

] = Can hw/sw partitioning be
done dynamically?
Tradtional Standard = Enabler — binary-/level partitioning
fono hore. Compiler . [Stitt & Vahid, ICCADD2]
= Partition starting from SW binary
@ = Can be desktop based

= Advantages

= Any compiler, any language, multiple
sources, assembly/object support,
legacy code support

Mﬁfiﬁif,dj Netlist| . Disadvantage

= Loses high-level information
= Quality loss?

Binary
Partitioner

OO0 n00n OO0Onnn
ASIC/FPGA

guoooood oo

Processor

(IRjEIN

aonnn
aonnn
auog

Introduction

Binary-Level Hardware/Software Partitioning

VD
>
25 %
1] .\@
S £ %
5 8)
Q = 0%
v o rv@
O O ,\$
\/Q >
2,
(04
y ,OO
llllll &s <
%
4y
IIIIII 7)
79
HEEEEER %
]
X%
HEEEEEEN %),
7
S
(2
2
7
D,
AN \ \ AN \ \ \ \ AN & %
) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 o\\
INTMANHONONOINT MA—HO ,V\m\
il &V\

Stitt/Vahid, submitted to DAC 04

Introduction

Binary Partitioning Enables Dynamic Partitioning

=N

Standard
Compiler

Binary

Oonooonoonn

CAD

Proc. || FPGA

duodoodouoggogad

= Dynamic HW/SW Partitioning
=« Embed partitioning CAD tools on-chip
= Feasible in era of billion-transistor chips

= Advantages
= No special desktop tools
= Completely transparent
= Avoid complexities of supporting different
FPGA types
= Complements other approaches

= Desktop CAD best from purely technical
perspective
= Dynamic opens additional market

segments (i.e., all software developers)
that otherwise might not use desktop CAD

Warp Processors

Tools & Reguirements

= Warp Processor Architecture .
= On-chip profiling architecture Decompilation
= Configurable logic architecture "
= Dynamic partitioning module

........... Binary

Binary

Partitioning Updater

RT Synthesis

anooooooonononn

Profiler

uP

I$

l

Config.
Logic Arch.

l PIDS

4_

DPM

Logic Synthesis

Technology Mapping

Placement & Routing

IJIJIJIJIJI.I‘IJ.HIJIJIJIJIJIJ
...
L]

................. ... HW Updated
.................. Binary

Warp Processors
All that CAD on-chip?

= CAD people may first think dynamic HW/SW partitioning is
‘absurd”
= Those CAD tools are complex
= Require long execution times on powerful desktop workstations
Require very large memory resources
Usually require GBytes of hard drive space
Costs of complete CAD tools package can exceed $1 million
All that on-chip?

S
S . Q
. S i o >
OSQ 5\§o ‘o§ 0)03\ Q%\ & §
O &) O o
QQJ Qfo O Vs N QQ
| 30s | 1min -2 mins | 1min | 1min] 12 m/ns 2 — 30 mins

6 — . G Coml =
20 MB 50MB 60 MB

10

Warp Processors

Tools & Reguirements

o
o* .
“““ Binary

“““
.

e

e
o

= But, in fact, on-chip CAD may be

practical since specialized { Decompilation
= CAD Binary
= Traditional CAD -- Huge, arbitrary input . Updater

= Warp Processor CAD -- Critical sw kernels

= FPGA RT Synthesis
= Traditional FPGA — huge, arbitrary netlists, ;
ASIC prototyping, varied I/O

= Warp Processor FPGA — kernel speedup LEEe RyhEsE

s Careful simultaneous

) Technology Mapping
CAD d : :

= FPGA features = B Placement & Routing
evaluated for impact = =
on CAD = =

HW

= CAD influences FPGA ¢ =] I;piiaatreyd

features E 7
g B Arr e DPM |B e

= Add architecture E |

features for kernels (sgapapupagupegupagupagagegugagagagagagapeye) 11

Warp Processors

Configurable Logic Architecture

= Loop support hardware

= Data address generators (DADG) and loop control hardware
(LCH), found in digital signal processors — fast loop execution

= Supports memory accesses with regular access pattern

= Synthesis of FSM not required for many critical loops

= 32-bit fast Multiply-Accumulate (MAC) unit
Lysecky/Vahid, DATE 04

anooooooonooonn

wb
uP $]55
Config.
Logic \1 ppm
Arch.

“
*
*
*
*
*
*
*
*
*
*
*
*
*
“
*

IJIJIJIJIJIJIJIJIJIJIJIJ"UIJIJ

*

v

DADG
&
LCH

A

..Reg.L pP..Regl..| »P Reg2
v v v
32-bit MAC
v v v

Configurable Logic

Fabric

12

Warp Processors

Configurable Logic Fabric abc def

Simple fabric: array of configurable logic « [
blocks (CLBs) surrounded by switch matrices 4_|-

A Adj.
(SMs) Ad. o | LUT Lot | LA

= Simple CLB: Two 3-input 2-output LUTSs
= carry-chain support

= Simple switch matrices: 4-short, 4-long v vy
Channels ol 02 03 04

= Designed for simple fast CAD DL 2 3oLiLalal
, , 3L 6 <$—-3L
: Lysecky/Vahid, DATE 04, 2L Q < 2L
5 ,2EEEEF 1L Q C <>
- = e /]
CE SSMIzzE=¢ Es e oME: &1 114 ‘;L
L9gic || pem |Bs e L w :::: n 2 N Y112
5 - mflf [CLB| wmfff |CLB| 1 Py <& Q 1
Configurable o " PE e Bl 01 T 0
- AMIE S = SR = 5 patee 012 30L1L2L3L

13

1L

Warp Processors

Profiler

= Non-intrusive on-chip loop profiler

= Gordon-Ross/Vahid CASES'03, to appear in “best ...
of MICRO/CASES” issue of IEEE Trans. on M M

Computers. 8 ([T TR
= Provides relative frequency of top 16 loops

= Small cache (16 entries), only 2,300 gates
= Less than 1% power overhead when active

Bitaia s NI RN R L S TR L

mm

rd/wr__,
Frequent addr

...................... »| Frequent
(= 4’
: Profiler) Loop Ca:?:he __data_|Loop Cache
: TS Controller saturation
o uP »Ds YW
= I l data | ++ data
= Config.
= rd/wr >
=
o uP addr > I$

...................... data

|

Gordon-Ross/Vahid, CASES’03 14

Warp Processors
Dynamic Partitioning Module (DPM)

“““““ Binary

= Dynamic Partitioning Module _,
= Executes on-chip partitioning tools g
. : Binary
= Consists of small low-power o Updater
: Partitioning
processor (ARM7) ;
= Current SoCs can have dozens { RT Synthesis
= On-chip instruction & data caches H
= Memory: a few megabytes § | Togic Synthesis
[alaBalalalalalalalalalalalalalalalalalalalsl :': Technology Mapplng
- Profiler g;
E I$?I-'.
..... g uP i Placement & Routing
ﬁk—b -.E. I ’D$.g
ARM |e>D s} v | F
= i h HW Updated
Memory = WCLA | DPm |B : Binary
|| I Bereersmmnssnesessssnsssssssnessd!
'ﬂ'ﬂ'ﬂ'ﬂ'ﬂ:l_:l:l;l:ﬂ!iﬂﬂ'ﬂ'ﬂm
.............. 15

Warp Processors

Decompilation
Software Binarg
= Goal: recover high-level Binary Parsing
information lost during
Compil ation CDFG Creation
= Otherwise, synthesis results will Contral Structure
be poor discover loops, if-else, etc. Recovery
= Utilize sophisticated
decompilation methods reduce operation sizes, etc, emoving Instruction-
Set Overhead

= Developed over past decades
for binary translation

= Indirect jumps hamper CDFG

Undoing Back-End

reroll loops, etc. : L
PS, Compiler Optimizations

recovery . .
: . allows parallel memory access Alias Analysis
= But not too common in critical
loops (function pointers, switch Annotated
statements) CDFG

Stitt/Vahid, submitted to DAC 04

16

Warp Processors

Decompilation Results

= In most situations, we can recover all high-
level information

= Recovery success for a dozen benchmarks, using
several different compilers and optimization levels:

Decompilation Process Success Rate
CDFG Recovery 88%| Stitt/Vahid, submitted to DAC’04
Loop Identification 100%
Loop Type Recovery 100%
If Statement Recovery 100%
Array Recovery 100%
Unrolled Loop Identification 100%
Loop Rerolling 100%

17

Warp Processors

Execution Time and Memory Reqguirements

18

Warp Processors

Dynamic Partitioning Module (DPM)

ARM

f

Memory

"""" Binary

Decompilation
. Binary

RT Synthesis

Logic Synthesis

o (Profiler)
O

8| up I$

.-'E' Tea, I ’D$

= taa,
O , A ;
E e W ;
E WCLA || DPm
: an® -
m !‘-

L Technology Mapping
H
R
=g
::':. Placement & Routing
=
o] = |
=
= Binary
S

19

Warp Processors
Binary HW/SW Partitioning

Simple partitioning algorithm -- move most frequent loops to hardware
Usually one 2-3 critical loops comprise most execution

Decompiled Binar{’J

Sort Loops by freq. P;:zlitzcj
u

Remove Non-HW

St R Stitt/Vahid, ICCAD 02

Stitt/Vahid, submitted to DAC 04

Move Remaining W
Regions to HW until Regions
WCLA is Full
If WCLA is Full,
Remaining Regions S_W
Stay in SW Regions

20

Warp Processors

Execution Time and Memory Reqguirements

21

Warp Processors

Dynamic Partitioning Module (DPM)

ARM

f

Memory

"""" Binary

Decompilation
. Binary

Partitioning Updater

.
.
.
-
-
-
»

i

a

-

-
-
-
-
0

Logic Synthesis

o (Profiler)
O

8| up I$

.-'E' Tea, I ’D$

= taa,
O , A ;
E e W ;
E WCLA || DPm
: an® -
m !‘-

ny Technology Mapping
H
R
=g
::':. Placement & Routing
=
o] = |
=
= Binary
S

22

Warp Processors
RT Synthesis

Converts decompiled CDFG to Boolean expressions

Maps memory accesses to our data address generator

architecture

= Detects read/write, memory access pattern, memory read/write
ordering

Optimizes dataflow graph
= Removes address calculations and loop counter/exit conditions
= Loop control handled by Loop Control Hardware

1 r1 mmm) © Memory Read DADG Read r2
N ¥\ e Increment Address \
I Read : 2 I

N
+ r3

rl

rt Stitt/Lysecky/Vahid, DAC 03

23

Warp Processors
RT Synthesis

= Maps dataflow operations to hardware components

= We currently support adders, comparators, shifters, Boolean logic,
and multipliers

= Creates Boolean expression for each output bit of dataflow graph

rl r2 r3 8
N N
. ¥ <
32-bit adder ! | 32-bit comparator
r4 r5

r4[0]=r1[0] xor r2[0], carry[0]=r1[0] and r2[0]
r4[1]=(r1[1] xor r2[1]) xor carry[0], carry[1]=

Stitt/Lysecky/Vahid, DAC’03 24

Warp Processors

Execution Time and Memory Reqguirements

&)
. \Q 'S be
IS S 2 S
& L) 3

Q ’D

@
N
&
|305|]m/n |12m/n5| 1min | 1 min] J-Zm/ns
Gwe) Come) (om)) (v o

&
& N &

25

Warp Processors

Dynamic Partitioning Module (DPM)

ARM

f

Memory

"""" Binary

Decompilation
. Binary

Partitioning Updater

RT Synthesis

-
-
-
-
0
0
0
0
-
0
0
0
0
0
0
0
0

o (Profiler)
O

8| up I$

.-'E' Tea, I ’D$

= taa,
O , A ;
E e W ;
E WCLA || DPm
: an® -
m !‘-

ny Technology Mapping
H
R
=g
::':. Placement & Routing
=
o] = |
=
= Binary
S

26

Warp Processors
Logic Synthesis

= Optimize hardware circuit created during RT synthesis

= Large opportunity for logic minimization due to use of immediate
values in the binary code

= Utilize simple two-level logic minimization approach

rl 4 r2[0] = r1[0]:xor 0 xor 0
\ / r2[1] = r1[1] xor 0 xorcarry[0]
r2[2] =rl[2]:xor 1 xoricarry[1]
r2[3] =rl[3]:xor 0 xor:carry[2]

r2 Logic Synthesis

r2[0] = r1[0
2[1] =rl[1
2[2] = r1[2
r2[3] =rl[3

xor carry[0]

xor carry[1]
xor carry|[2]

— e e

Stitt/Lysecky/Vahid, DAC’03 27

iWarp Processors - ROCM

= ROCM - Riverside On-Chip Minimizer

Two-level minimization tool

Utilized a combination of approaches from Espresso-II /Brayton, et
al. 1984] and Presto /Svoboda & White, 19/9]

Eliminate the need to compute the off-set to reduce memory usage
Utilizes a single expand phase instead of multiple iterations
On average only 2% larger than optimal solution for benchmarks
Lysecky/Vahid, DAC 03
Lysecky/Vahid, CODES+ISSS’03
Expand ~—

xy Y
7

Irrxdant

28

Warp Processors - ROCM

Results

14

@ Espresso-Exact

127

O Espresso-I1
O ROCM

10-

m ROCM (ARM7)

S N h & @

Ultra60

Exec. Time
(seconds)

57 s

500 MHz Sun 40 MHz ARM 7

(Triscend A7)

Code Mem
(KB)

ROCM executing on 40MHz ARM7
requires less than 1 second
Small code size of only 22 kilobytes

Average data memory usage of
only 1 megabyte

\

35001
3000+
2500
2000
1500
1000
500
0-

Data Mem (KB)

Lysecky/Vahid, DAC 03

Lysecky/Vahid, CODES+ISSS 03 29

Warp Processors

Execution Time and Memory Reqguirements

&
S P '\ o &w &

. @
N
&
|305]m/n |12m/n5| 1min | 1 min] 12m/n5
Gwe) Come) (om)) (v o

|<Js|<_75|<15| 15|

30

Warp Processors
Dynamic Partitioning Module (DPM)

““““ Binary

Decompilation
. Binary

Partitioning Updater

RT Synthesis

Logic Synthesis

o 3| B
g S Placement and Routing
I$f—> " g- UP I »ps E —J
=]
ARM DS O . 4 B
= hht 19N v « 1
: ' 1B | HW] Updated
| I S) Nl MJ
: |
............ "

Warp Processors
Technology Mapping/Packing

= ROCPAR — Technology Mapping/Packing
= Decompose hardware circuit into basic logic gates (AND, OR, XOR, etc.)
= Traverse logic network combining nodes to form single-output LUTs
= Combine LUTs with common inputs to form final 2-output LUTSs
= Pack LUTs in which output from one LUT is input to second LUT
= Pack remaining LUTs into CLBs Lysecky/Vahid, DATE 04
Stitt/Lysecky/Vahid, DAC 03

32

Warp Processors

Placement

= ROCPAR - Placement

= Identify critical path, placing critical nodes in center of configurable logic
fabric

= Use dependencies between remaining CLBs to determine placement
= Attempt to use adjacent cell routing whenever possible

Lysecky/Vahid, DATE 04
P Stitt/Lysecky/Vahid, DAC 03

CLB||CLB||CLB | |CLB

CLB||CLB||CLB||CLB

Q CLB||CLB||CLB | |CLB

33

Warp Processors

Execution Time and Memory Reqguirements

&
S P '\ o &w &

. @
N
&
|305]m/n |12m/n5| 1min | 1 min] 12m/n5
Gwe) Come) (om)) (v o

|<]$|<]5|<1$| Is|<15<1s]

34

Warp Processors
Routing

= FPGA Routing
= Find a path within FPGA to connect source and sinks of each net

= VPR - Versatile Place and Route /Betz, et al., 199/7]

= Modified Pathfinder algorithm
= Allows overuse of routing resources during each routing iteration
= If illegal routes exists, update routing costs, rip-up all routes, and reroute

= Increases performance over original Pathfinder algorithm
= Routability-driven routing: Use fewest tracks possible
= Timing-driven routing: Optimize circuit speed

Route ~

Routing Resource Graph

Rip-up illegal?
yes \/

no

Done! \/"

Warp Processors
Routing

= Riverside On-Chip Router (ROCR)

= Represent routing nets between CLBs as routing between SMs

= Resource Graph
Nodes correspond to SMs
Edges correspond to short and long channels between SMs
= Routing
= Greedy, depth-first routing algorithm routes nets between SMs
= Assign specific channels to each route, using Brelaz's greedy vertex coloring
algorithm

g Reqtﬁires much less memory than VPR as resource graph is much
smaller

Routing
Resource

Rip-up illegal?
yes\/

no

Done!

Lysecky/Vahid/Tan, submitted to DAC’04 36

Warp Processors

Routing.: Performance and Memory Usage Results

SEEE | ARG V() RGCR = Average 10X faster than VPR (TD)
mark Time Mem Time Mem Time Mem
alud 221.1] 16508 8.3[12312 0.6] 3484 = Up to 21X faster for ex5p
apex2 315.6| 18780 12.4| 14552 43| 349
apex4 213.7| 14332 7.8 11128 0.6| 3468
bigkey 403.6| 47944 13.5| 37648 1.3 3512
des 376.0| 52276 12.8| 49980 1.0 349%| = Memory usage of onIy 3.6 MB
diffeq 135.5| 15484 5.8 12576 0.4 3480
dsip 231.2| 47796] 10.4| 37496 0.9 3500 = 13X less than VPR
e64 19.2| 6296 1.0 5644 0.1 3428
elliptic 770.4| 33524 33.7| 26244 7.8 3572
ex5p 187.8| 12612 6.3 9840 0.3| 3460
frisc 865.9| 33468 35.1| 27112 13.8| 3564
misex3 190.9| 15628 6.8 11508 0.4 3468
51423 41| 4240 0.5| 3548 0.1 3428
$298 265.0| 18984 11.6| 15384 0.7 3496
s38417 | 1428.2| 57380 49.9| 44180 8.7 3680
s38584.1 | 1110.1] 51760 36.0 43700 8.8 3692
seq 291.1| 17198 11.4| 13800 2.2| 3488
tseng 73.6| 11048 3.1 8960 0.2| 3464
Averag_je 394.6| 26403 14.8| 21423 2.9 3510

Lysecky/Vahid/Tan, submitted to DAC’04 37

Warp Processors

Routing.: Critical Path Results

32% longer critical path than VPR (Timing Driven)
10% shorter critical path than VPR (Routability Driven)

Crtical path (ns)

—
n
o

—
N
(¢)]

—

o

o
.

~
(&)
;

(&)
o
!

N
a
;

]

o H

D M S A) oG o
R L SR I € P ® 9f

@ VPR (RD)

m VPR (TD)

O ROCR ‘|

AN

\

ull

Benchmark

110 1 0 I

A (M ’\ 2% \ > ag
QP« D 0 X
%) (2)%6 X§ ; 3©

Lysecky/Vahid/Tan, submitted to DAC’04 38

Warp Processors

Execution Time and Memory Reqguirements

)
NS Q
Q S & N &
§ Y ~ 9 . [od)
& ' /\O’ o S &
QQJ 'D o Vs N

@
N
&
| 305]m/n | 1-2m1n5| 1min | 1 min] J-Zm/ns
Gwe) Come) (om)) (v o

|<1$|<]5|<1$| Isl<1d<1

39

Warp Processors

Dynamic Partitioning Module (DPM)

ARM

f

Memory

"""" Binary

Decompilation
Partitioning !J

RT Synthesis

Logic Synthesis

o (Profiler)
O

8| up I$

.-'E' Tea, I ’D$

= taa,
O , A ;
E e W ;
E WCLA || DPm
: an® -
m !‘-

L Technology Mapping
H
R
=g
::':. Placement & Routing
=
o] = |
=
= Binary
S

40

Binary Updater

i Warp Processors

= Binary Updater
= Must modify binary to use hardware within WCLA
« HW initialization function added at end of binary

= Replace HW loops with jump to HW initialization
function
= HW initialization function jumps back to end of loop

output += inputl[i]*2; e

[;77 InitHW () {
] y

41

Initial Overall Results

Experimental Setup

Considered 12 embedded benchmarks from NetBench, MediaBench,
EEMBC, and Powerstone

Average of 53% of total software execution time was spent executing
single critical loop (more speedup possible if more loops considered)

On average, critical loops comprised only 1% of total program size

Total Loop Loop Execution .
Benchmark Instructions Instructions Time Loop Size% | Speedup Bound
brev 992 104 70.0% 10.5% 3.3
g3faxl 1094 6 31.4% 0.5% 1.5
g3fax2 1094 6 31.2% 0.5% 1.5
url 13526 17 79.9% 0.1% 5
logmin 8968 38 63.8% 0.4% 2.8
pktflow 15582 5 35.5% 0.0% 1.6
canrdr 15640 5 35.0% 0.0% 1.5
bitmnp 17400 165 53.7% 0.9% 2.2
tblook 15668 11 76.0% 0.1% 4.2
ttsprk 16558 11 59.3% 0.1% 2.5
matrix01 16694 22 40.6% 0.1% 1.7
idctrn01 17106 13 62.2% 0.1% 2.6
Average: 53.2% 1.1% 3.0

42

Warp Processors

Experimental Setup

= Warp Processor

/5 MHz ARMY7 processor

Configurable logic fabric with fixed
frequency of 60 MHz

Used dynamic partitioning CAD tools to map
critical region to hardware

= Active for roughly 10 seconds to perform
partitioning

= Versus traditional HW/SW Partitioning

/5 MHz ARMY7 processor

Zﬂl‘l onnn

guugguaouugoooogug

[y

onn

Profiler
IS
ARM7 DS
~a.config.
ly DPM

Xilinx Virtex-E FPGA (executing at maximum
possible speed)

Manually partitioned software using VHDL

VHDL synthesized using Xilinx ISE 4.1 on
desktop

Xilinx Virtex-E

FPGA

guooguououguooogoooog

= Executed on an ARM7 processor /

43

Warp Processors: Initial Results

Performance Speedup

Average speedup of 2.1
vs. 2.2 for Virtex-E

5_
41 @ “rp PI:OC.
4. O Xiling Virtex-E |
S 3
©
CIJ
a
0B 21
1_;
0_.

A 000 Qe QDD AD
S A 4 TSR0 Q> O AV L
O KT KR SR & SO KX PSR

§E S TS TLE ¥

Warp Processors: Initial Results
Energy Readuction

Average energy reduction of 33%
v.s 36% for Xilinx Virtex-E
100% - N\

@ Wip Proc.
O Xi i -
80% Xillx Virtex-E ||

60% -

N
3
>

Energy Reduction

N
3
>

%%J\\«\@& ¥ & D> 6
C & VS ESFLRL AV
MEOF \0@5& F *é@@\& SRS

45

Execution Time and Memory Requirements (on PC)

iWarp Processors

Xilinx ISE

|) —

Y
Manually performed 9 1 S
60 MB

‘ 46X improvement

ROCPAR

\IIIII!
025 [som]

On a 75Mhz ARM?7: only 1.4 s

46

i Current/Future Work

= Extending Warp Processors
= Multiple software loops to hardware
« Handling custom sequential logic
= Better synthesis, placement, routing

= JIT FPGA Compilation

= Idea: standard binary for FPGA

= Similar benefits as standard binary for microprocessor
e.g., portability, transparency, standard tools

47

i Future Directions

= Warp Processors may achieve speedups of 10x to
1000x

= Hardware/software partitioning shows tremendous speedup

= Working to improve tools/fabric towards these results

65 -
60 -
55+
50+
45 -
401
35+
301

Speedup

<~ &L & S < & X
& & VgL L Vg N &
& K 7V & O N S

& & & ¢ &
NS < o~ &
& & &
Sk ¥

i Publications

A Configurable Logic Architecture for Dynamic Hardware/Software Partitioning, R
Lysecky and F. Vahid, Design Automation and Test in Europe Conference (DATE),
February 2004.

= Frequent Loop Detection Using Efficient Non-Intrusive On-Chip Hardware, A.
Gordon-Ross and F. Vahid, ACM/IEEE Conf. on Compilers, Architecture and
Synthesis for Embedded Systems (CASES), 2003; to appear in special issue "Best
of CASES/MICRO" of IEEE Trans. on Comp.

= A Codesigned On-Chip Logic Minimizer, R. Lysecky and F. Vahid, ACM/IEEE
ISSS/CODES conference, 2003.

= Dynamic Hardware/Software Partitioning: A First Approach. G. Stitt, R. Lysecky
and F. Vahid, Design Automation Conference, 2003.

= On-Chip Logic Minimization, R. Lysecky and F. Vahid, Design Automation
Conference, 2003.

= The Energy Advantages of Microprocessor Platforms with On-Chip Configurable
Logic, G. Stitt and F. Vahid, IEEE Design and Test of Computers,
November/December 2002.

= Hardware/Software Partitioning of Software Binaries, G. Stitt and F. Vahid,
IEEE/ACM International Conference on Computer Aided Design, November 2002.

49

	Warp Processors(a.k.a. Self-Improving Configurable IC Platforms)
	IntroductionWarp Processors – Dynamic HW/SW Partitioning
	IntroductionPrevious Dynamic Optimizations -- Translation
	IntroductionPrevious Dynamic Optimization -- Recompilation
	IntroductionHardware/Software Partitioning
	IntroductionBinary-Level Hardware/Software Partitioning
	IntroductionBinary-Level Hardware/Software Partitioning
	IntroductionBinary Partitioning Enables Dynamic Partitioning
	Warp ProcessorsTools & Requirements
	Warp ProcessorsAll that CAD on-chip?
	Warp ProcessorsTools & Requirements
	Warp ProcessorsConfigurable Logic Architecture
	Warp ProcessorsConfigurable Logic Fabric
	Warp ProcessorsProfiler
	Warp ProcessorsDynamic Partitioning Module (DPM)
	Warp ProcessorsDecompilation
	Warp ProcessorsDecompilation Results
	Warp ProcessorsExecution Time and Memory Requirements
	Warp ProcessorsDynamic Partitioning Module (DPM)
	Warp ProcessorsBinary HW/SW Partitioning
	Warp ProcessorsExecution Time and Memory Requirements
	Warp ProcessorsDynamic Partitioning Module (DPM)
	Warp ProcessorsRT Synthesis
	Warp ProcessorsRT Synthesis
	Warp ProcessorsExecution Time and Memory Requirements
	Warp ProcessorsDynamic Partitioning Module (DPM)
	Warp ProcessorsLogic Synthesis
	Warp Processors - ROCM
	Warp Processors - ROCMResults
	Warp ProcessorsExecution Time and Memory Requirements
	Warp ProcessorsDynamic Partitioning Module (DPM)
	Warp ProcessorsTechnology Mapping/Packing
	Warp ProcessorsPlacement
	Warp ProcessorsExecution Time and Memory Requirements
	Warp ProcessorsRouting
	Warp Processors Routing
	Warp Processors Routing: Performance and Memory Usage Results
	Warp ProcessorsRouting: Critical Path Results
	Warp ProcessorsExecution Time and Memory Requirements
	Warp ProcessorsDynamic Partitioning Module (DPM)
	Warp ProcessorsBinary Updater
	Initial Overall Results Experimental Setup
	Warp ProcessorsExperimental Setup
	Warp Processors: Initial ResultsPerformance Speedup
	Warp Processors: Initial ResultsEnergy Reduction
	Warp Processors Execution Time and Memory Requirements (on PC)
	Current/Future Work
	Future Directions
	Publications

