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Introduction
Warp Processors — Dynamic HW/SW Partitioning
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Introduction

Previous Dynamic Optimizations -- Translation

= Dynamic Binary Translation

= Modern Pentium processors

= Dynamically translate instructions onto underlying RISC
architecture

= Transmeta Crusoe & Efficeon

= Dynamic code morphing

= Translate x86 instructions to underlying VLIW processor
= Just In Time (JIT) Compilation

= Interpreted languages

= Recompile code to native instructions

= Java, Python, etc.



Introduction

Previous Dynamic Optimization -- Recompiiation

= Dynamic optimizations are increasingly common
= Dynamically recompile binary during execution

= Dynamo /Bala, et al., 2000] - Dynamic software optimizations
= Identify frequently executed code segments (hotpaths)
= Recompile with higher optimization

= BOA [Gschwind, et al., 2000] - Dynamic optimizer for Power PC

= Advantages

= [ransparent optimizations
= No designer effort
= No tool restrictions

= Adapts to actual usage

= Speedups of up to 20%-30% -- 1.3X



Introduction

Hardware/Software Partitioning

Profiler | am | SV Critical = Benefits
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Introduction

Binary-Level Hardware/Software Partitioning

] = Can hw/sw partitioning be
done dynamically?
Tradtional  Standard = Enabler — binary-/level partitioning
fono hore. Compiler . [Stitt & Vahid, ICCADD2]
= Partition starting from SW binary
@ = Can be desktop based

= Advantages

= Any compiler, any language, multiple
sources, assembly/object support,
legacy code support

Mﬁfiﬁif,dj Netlist| . Disadvantage

= Loses high-level information
= Quality loss?

Binary
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Introduction

Binary-Level Hardware/Software Partitioning
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Introduction

Binary Partitioning Enables Dynamic Partitioning

=N

Standard
Compiler

Binary
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= Dynamic HW/SW Partitioning
=« Embed partitioning CAD tools on-chip
= Feasible in era of billion-transistor chips

= Advantages
= No special desktop tools
= Completely transparent
= Avoid complexities of supporting different
FPGA types
= Complements other approaches

= Desktop CAD best from purely technical
perspective
= Dynamic opens additional market

segments (i.e., all software developers)
that otherwise might not use desktop CAD



Warp Processors

Tools & Reguirements

= Warp Processor Architecture .
= On-chip profiling architecture Decompilation
= Configurable logic architecture "
= Dynamic partitioning module

........... Binary
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Warp Processors
All that CAD on-chip?

= CAD people may first think dynamic HW/SW partitioning is
‘absurd”
= Those CAD tools are complex
= Require long execution times on powerful desktop workstations
Require very large memory resources
Usually require GBytes of hard drive space
Costs of complete CAD tools package can exceed $1 million
All that on-chip?
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Warp Processors

Tools & Reguirements
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= But, in fact, on-chip CAD may be

practical since specialized { Decompilation
= CAD Binary
= Traditional CAD -- Huge, arbitrary input . Updater

= Warp Processor CAD -- Critical sw kernels

= FPGA RT Synthesis
= Traditional FPGA — huge, arbitrary netlists, ;
ASIC prototyping, varied I/O

= Warp Processor FPGA — kernel speedup LEEe RyhEsE
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) Technology Mapping
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Warp Processors

Configurable Logic Architecture

= Loop support hardware

= Data address generators (DADG) and loop control hardware
(LCH), found in digital signal processors — fast loop execution

= Supports memory accesses with regular access pattern

= Synthesis of FSM not required for many critical loops

= 32-bit fast Multiply-Accumulate (MAC) unit
Lysecky/Vahid, DATE 04
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Warp Processors

Configurable Logic Fabric abc def

Simple fabric: array of configurable logic « [
blocks (CLBs) surrounded by switch matrices 4_|-

A Adj.
(SMs) Ad. o | LUT Lot | LA

= Simple CLB: Two 3-input 2-output LUTSs
= carry-chain support

= Simple switch matrices: 4-short, 4-long v vy
Channels ol 02 03 04

= Designed for simple fast CAD DL 2 3oLiLalal
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Warp Processors

Profiler

= Non-intrusive on-chip loop profiler

= Gordon-Ross/Vahid CASES'03, to appear in “best ...
of MICRO/CASES” issue of IEEE Trans. on M M

Computers. 8 ([T TR
= Provides relative frequency of top 16 loops

= Small cache (16 entries), only 2,300 gates
= Less than 1% power overhead when active
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Warp Processors
Dynamic Partitioning Module (DPM)

“““““ Binary

= Dynamic Partitioning Module _,
= Executes on-chip partitioning tools g
. : Binary
= Consists of small low-power o Updater
: Partitioning
processor (ARM7) ;
= Current SoCs can have dozens { RT Synthesis
= On-chip instruction & data caches H
= Memory: a few megabytes § | Togic Synthesis
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Warp Processors

Decompilation
Software Binarg
= Goal: recover high-level Binary Parsing
information lost during
Compil ation CDFG Creation
= Otherwise, synthesis results will Contral Structure
be poor discover loops, if-else, etc. Recovery
= Utilize sophisticated
decompilation methods reduce operation sizes, etc,  emoving Instruction-
Set Overhead

= Developed over past decades
for binary translation

= Indirect jumps hamper CDFG

Undoing Back-End

reroll loops, etc. : L
PS, Compiler Optimizations

recovery . .
: . allows parallel memory access Alias Analysis
= But not too common in critical
loops (function pointers, switch Annotated
statements) CDFG

Stitt/Vahid, submitted to DAC 04
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Warp Processors

Decompilation Results

= In most situations, we can recover all high-
level information

= Recovery success for a dozen benchmarks, using
several different compilers and optimization levels:

Decompilation Process Success Rate
CDFG Recovery 88%|  Stitt/Vahid, submitted to DAC’04
Loop Identification 100%
Loop Type Recovery 100%
If Statement Recovery 100%
Array Recovery 100%
Unrolled Loop Identification 100%
Loop Rerolling 100%

17



Warp Processors

Execution Time and Memory Reqguirements

18



Warp Processors

Dynamic Partitioning Module (DPM)
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Warp Processors
Binary HW/SW Partitioning

Simple partitioning algorithm -- move most frequent loops to hardware
Usually one 2-3 critical loops comprise most execution

Decompiled Binar{’J

Sort Loops by freq. P;:zlitzcj
u

Remove Non-HW

St R Stitt/Vahid, ICCAD 02

Stitt/Vahid, submitted to DAC 04

Move Remaining W
Regions to HW until Regions
WCLA is Full
If WCLA is Full,
Remaining Regions S_W
Stay in SW Regions
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Warp Processors

Execution Time and Memory Reqguirements
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Warp Processors

Dynamic Partitioning Module (DPM)
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Warp Processors
RT Synthesis

Converts decompiled CDFG to Boolean expressions

Maps memory accesses to our data address generator

architecture

= Detects read/write, memory access pattern, memory read/write
ordering

Optimizes dataflow graph
= Removes address calculations and loop counter/exit conditions
= Loop control handled by Loop Control Hardware

1 r1 mmm) © Memory Read DADG Read r2
N ¥\ e Increment Address \
I Read : 2 I

N
+ r3

rl

rt Stitt/Lysecky/Vahid, DAC 03
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Warp Processors
RT Synthesis

= Maps dataflow operations to hardware components

= We currently support adders, comparators, shifters, Boolean logic,
and multipliers

= Creates Boolean expression for each output bit of dataflow graph

rl r2 r3 8
N N
. ¥ <
32-bit adder ! | 32-bit comparator
r4 r5

r4[0]=r1[0] xor r2[0], carry[0]=r1[0] and r2[0]
r4[1]=(r1[1] xor r2[1]) xor carry[0], carry[1]= .......

Stitt/Lysecky/Vahid, DAC’03 24



Warp Processors

Execution Time and Memory Reqguirements
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Warp Processors

Dynamic Partitioning Module (DPM)

ARM

f

Memory

"""" Binary

Decompilation
. Binary

Partitioning Updater

RT Synthesis

-
-
-
-
0
0
0
0
-
0
0
0
0
0
0
0
0

o (Profiler)
O

8| up I$

.-'E' Tea, I ’D$

= taa,
O , A ;
E e W ;
E WCLA || DPm
: an® -
m !‘-

ny Technology Mapping
H
R
=g
::':. Placement & Routing
=
o] = |
=
= Binary
S

26



Warp Processors
Logic Synthesis

= Optimize hardware circuit created during RT synthesis

= Large opportunity for logic minimization due to use of immediate
values in the binary code

= Utilize simple two-level logic minimization approach

rl 4 r2[0] = r1[0]:xor 0 xor 0
\ / r2[1] = r1[1] xor 0 xorcarry[0]
r2[2] =rl[2]:xor 1 xoricarry[1]
r2[3] =rl[3]:xor 0 xor:carry[2]

r2 Logic Synthesis

r2[0] = r1[0
2[1] =rl[1
2[2] = r1[2
r2[3] =rl[3

xor carry[0]

xor carry[1]
xor carry|[2]

— e e

Stitt/Lysecky/Vahid, DAC’03 27



iWarp Processors - ROCM

= ROCM - Riverside On-Chip Minimizer

Two-level minimization tool

Utilized a combination of approaches from Espresso-II /Brayton, et
al. 1984] and Presto /Svoboda & White, 19/9]

Eliminate the need to compute the off-set to reduce memory usage
Utilizes a single expand phase instead of multiple iterations
On average only 2% larger than optimal solution for benchmarks
Lysecky/Vahid, DAC 03
Lysecky/Vahid, CODES+ISSS’03
Expand ~—

xy Y
7

Irrxdant
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Warp Processors - ROCM

Results

14

@ Espresso-Exact

127

O Espresso-I1
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10-

m ROCM (ARM7)

S N h & @
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Exec. Time
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57 s

500 MHz Sun 40 MHz ARM 7

(Triscend A7)

Code Mem
(KB)

ROCM executing on 40MHz ARM7
requires less than 1 second
Small code size of only 22 kilobytes

Average data memory usage of
only 1 megabyte

\
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Lysecky/Vahid, DAC 03
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Warp Processors

Execution Time and Memory Reqguirements
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Warp Processors
Dynamic Partitioning Module (DPM)
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Warp Processors
Technology Mapping/Packing

= ROCPAR — Technology Mapping/Packing
= Decompose hardware circuit into basic logic gates (AND, OR, XOR, etc.)
= Traverse logic network combining nodes to form single-output LUTs
= Combine LUTs with common inputs to form final 2-output LUTSs
= Pack LUTs in which output from one LUT is input to second LUT
= Pack remaining LUTs into CLBs Lysecky/Vahid, DATE 04
Stitt/Lysecky/Vahid, DAC 03
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Warp Processors

Placement

= ROCPAR - Placement

= Identify critical path, placing critical nodes in center of configurable logic
fabric

= Use dependencies between remaining CLBs to determine placement
= Attempt to use adjacent cell routing whenever possible

Lysecky/Vahid, DATE 04
P Stitt/Lysecky/Vahid, DAC 03

CLB||CLB||CLB | |CLB

CLB||CLB||CLB||CLB

Q CLB||CLB||CLB | |CLB
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Warp Processors

Execution Time and Memory Reqguirements
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Warp Processors
Routing

= FPGA Routing
= Find a path within FPGA to connect source and sinks of each net

= VPR - Versatile Place and Route /Betz, et al., 199/7]

= Modified Pathfinder algorithm
= Allows overuse of routing resources during each routing iteration
= If illegal routes exists, update routing costs, rip-up all routes, and reroute

= Increases performance over original Pathfinder algorithm
= Routability-driven routing: Use fewest tracks possible
= Timing-driven routing: Optimize circuit speed

Route ~

Routing Resource Graph

Rip-up illegal?
yes \/

no

Done! \/"




Warp Processors
Routing

= Riverside On-Chip Router (ROCR)

= Represent routing nets between CLBs as routing between SMs

= Resource Graph
Nodes correspond to SMs
Edges correspond to short and long channels between SMs
= Routing
= Greedy, depth-first routing algorithm routes nets between SMs
= Assign specific channels to each route, using Brelaz's greedy vertex coloring
algorithm

g Reqtﬁires much less memory than VPR as resource graph is much
smaller

Routing
Resource

Rip-up illegal?
yes\/

no

Done!

Lysecky/Vahid/Tan, submitted to DAC’04 36



Warp Processors

Routing.: Performance and Memory Usage Results

SEEE | ARG V() RGCR = Average 10X faster than VPR (TD)
mark Time Mem Time Mem Time Mem
alud 221.1] 16508 8.3[ 12312 0.6] 3484 = Up to 21X faster for ex5p
apex2 315.6| 18780 12.4| 14552 43| 349
apex4 213.7| 14332 7.8 11128 0.6| 3468
bigkey 403.6| 47944 13.5| 37648 1.3 3512
des 376.0| 52276 12.8| 49980 1.0 349%| = Memory usage of onIy 3.6 MB
diffeq 135.5| 15484 5.8 12576 0.4 3480
dsip 231.2| 47796]  10.4| 37496 0.9 3500 = 13X less than VPR
e64 19.2| 6296 1.0 5644 0.1 3428
elliptic 770.4| 33524 33.7| 26244 7.8 3572
ex5p 187.8| 12612 6.3 9840 0.3| 3460
frisc 865.9| 33468 35.1| 27112 13.8| 3564
misex3 190.9| 15628 6.8 11508 0.4 3468
51423 41| 4240 0.5| 3548 0.1 3428
$298 265.0| 18984 11.6| 15384 0.7 3496
s38417 | 1428.2| 57380 49.9| 44180 8.7 3680
s38584.1 | 1110.1] 51760 36.0 43700 8.8 3692
seq 291.1| 17198 11.4| 13800 2.2| 3488
tseng 73.6| 11048 3.1 8960 0.2| 3464
Averag_je 394.6| 26403 14.8| 21423 2.9 3510

Lysecky/Vahid/Tan, submitted to DAC’04 37



Warp Processors

Routing.: Critical Path Results

32% longer critical path than VPR (Timing Driven)
10% shorter critical path than VPR (Routability Driven)
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Warp Processors

Execution Time and Memory Reqguirements
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Warp Processors

Dynamic Partitioning Module (DPM)
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Binary Updater

i Warp Processors

= Binary Updater
= Must modify binary to use hardware within WCLA
« HW initialization function added at end of binary

= Replace HW loops with jump to HW initialization
function
= HW initialization function jumps back to end of loop

output += inputl[i]*2; e

[;77 InitHW () {
] y

41



Initial Overall Results

Experimental Setup

Considered 12 embedded benchmarks from NetBench, MediaBench,
EEMBC, and Powerstone

Average of 53% of total software execution time was spent executing
single critical loop (more speedup possible if more loops considered)

On average, critical loops comprised only 1% of total program size

Total Loop Loop Execution .
Benchmark Instructions Instructions Time Loop Size% | Speedup Bound
brev 992 104 70.0% 10.5% 3.3
g3faxl 1094 6 31.4% 0.5% 1.5
g3fax2 1094 6 31.2% 0.5% 1.5
url 13526 17 79.9% 0.1% 5
logmin 8968 38 63.8% 0.4% 2.8
pktflow 15582 5 35.5% 0.0% 1.6
canrdr 15640 5 35.0% 0.0% 1.5
bitmnp 17400 165 53.7% 0.9% 2.2
tblook 15668 11 76.0% 0.1% 4.2
ttsprk 16558 11 59.3% 0.1% 2.5
matrix01 16694 22 40.6% 0.1% 1.7
idctrn01 17106 13 62.2% 0.1% 2.6
Average: 53.2% 1.1% 3.0

42



Warp Processors

Experimental Setup

=  Warp Processor

/5 MHz ARMY7 processor

Configurable logic fabric with fixed
frequency of 60 MHz

Used dynamic partitioning CAD tools to map
critical region to hardware

= Active for roughly 10 seconds to perform
partitioning

= Versus traditional HW/SW Partitioning

/5 MHz ARMY7 processor

Zﬂl‘l onnn

guugguaouugoooogug

[y

onn

Profiler
IS
ARM7 DS
~a.config.
ly DPM

Xilinx Virtex-E FPGA (executing at maximum
possible speed)

Manually partitioned software using VHDL

VHDL synthesized using Xilinx ISE 4.1 on
desktop

Xilinx Virtex-E

FPGA

guooguououguooogoooog

= Executed on an ARM7 processor /
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Warp Processors: Initial Results

Performance Speedup

Average speedup of 2.1
vs. 2.2 for Virtex-E
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Warp Processors: Initial Results
Energy Readuction

Average energy reduction of 33%
v.s 36% for Xilinx Virtex-E
100% - N\

@ Wip Proc.
O Xi i -
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Execution Time and Memory Requirements (on PC)

iWarp Processors

Xilinx ISE

| ) —

Y
Manually performed 9 1 S
60 MB

‘ 46X improvement

ROCPAR

\IIIII!
025 [som]

On a 75Mhz ARM?7: only 1.4 s
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i Current/Future Work

= Extending Warp Processors
= Multiple software loops to hardware
« Handling custom sequential logic
= Better synthesis, placement, routing

= JIT FPGA Compilation

= Idea: standard binary for FPGA

= Similar benefits as standard binary for microprocessor
e.g., portability, transparency, standard tools

47



i Future Directions

= Warp Processors may achieve speedups of 10x to
1000x

= Hardware/software partitioning shows tremendous speedup

= Working to improve tools/fabric towards these results
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i Publications

A Configurable Logic Architecture for Dynamic Hardware/Software Partitioning, R
Lysecky and F. Vahid, Design Automation and Test in Europe Conference (DATE),
February 2004.

= Frequent Loop Detection Using Efficient Non-Intrusive On-Chip Hardware, A.
Gordon-Ross and F. Vahid, ACM/IEEE Conf. on Compilers, Architecture and
Synthesis for Embedded Systems (CASES), 2003; to appear in special issue "Best
of CASES/MICRO" of IEEE Trans. on Comp.

= A Codesigned On-Chip Logic Minimizer, R. Lysecky and F. Vahid, ACM/IEEE
ISSS/CODES conference, 2003.

= Dynamic Hardware/Software Partitioning: A First Approach. G. Stitt, R. Lysecky
and F. Vahid, Design Automation Conference, 2003.

= On-Chip Logic Minimization, R. Lysecky and F. Vahid, Design Automation
Conference, 2003.

= The Energy Advantages of Microprocessor Platforms with On-Chip Configurable
Logic, G. Stitt and F. Vahid, IEEE Design and Test of Computers,
November/December 2002.

= Hardware/Software Partitioning of Software Binaries, G. Stitt and F. Vahid,
IEEE/ACM International Conference on Computer Aided Design, November 2002.
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