Metropolis ARM CPU Examples

Trevor Meyerowitz
e-mail: tcm@eecs.berkeley.edu

September 14, 2004

Technical Memorandum No. UCB/ERL M04/39
University of California at Berkeley

etropolis

Copyright (© 2004 The Regents of the University of California.
All rights reserved.

1

Abstract

This document explains the microarchitectural models of the
Strongarm [?] and XScale [?] ARM Instruction Set [?] processors de-
scribed in the Metropolis Meta Model (MMM) language [?, ?], and
included in the examples directory of the Metropolis 1.0 release.
These are trace-based models built using the YAPI [?] model of com-
putation, and are base their delays and branch prediction schemes
listed in the processor manuals. The models do not simulate the
memory system, the bus, and interrupts. These are good non-trivial
examples in Metropolis that illustrate the use of the YAPI platform,
templates, and interfacing code generated by the Metropolis Sys-
temC Simulator backend to native code.

Chapter One

Introduction

This document explains the microarchitectural models of the Strongarm
[?] and XScale [?] ARM Instruction Set [?] processors described in the
Metropolis Meta Model (MMM) language [?, ?], and included in the ex-
amples directory of the Metropolis 1.0 release. These are trace-based
models built using the YAPI [?] model of computation, and are base their
delays and branch prediction schemes listed in the processor manuals.
The models do not simulate the memory system, the bus, and interrupts.
These are good non-trivial examples in Metropolis that illustrate the use
of the YAPI platform, templates, and interfacing code generated by the
Metropolis SystemC Simulator backend to native code. For a broader
methodological view please read the design guidelines[?], and for a gen-
eral reference see the metamodel document[?].

1.1 Directories
The processor models, support code, and trace-generating simulator can

be found in the metro/examples/yapi_cpus/arm directory. Below are brief
descriptions of the directory contents.

README.txt - A text file providing a brief overview and installation
instructions.

arm_sim - The simulator used for generating traces.

3

1.

INTRODUCTION

object files - A few small traces used to drive the models.
strongarm_yapi - The Strongarm model directory.

xscale_yapi - The XScale model directory.

1.2 Background Information

YAPI

YAPI stands for the Y-Chart API[?]. It is an implementation of Kahn
Process Networks (KPN) [?] with the addition of a non-deterministic se-
lect. Our models only use the KPN semantics, which amount to com-
munication through unbounded FIFO’s with blocking reads and non-
blocking writes. Furthermore, we use the FIFO’s to model pipeline de-
lays by pre-loading them to the wanted length, and then maintaining the
pipeline depth by reading-from and writing-to every FIFO each cycle.

XScale and Strongarm Processors

The XScale and Strongarm Microprocessors are both low-power embed-
ded processors made by Intel that implement the ARM Instruction Set
Architecture (ISA). The Strongarm processor has a five stage pipeline
with static branch prediction, and has speed of up to 206 MHz. The XS-
cale PXA-25x processor is the successor to the Strongarm, has a seven
stage pipeline, dynamic branch predication, and has speeds up to 400
MHz.

Chapter Two

Processor Models

This chapter provides an overview of the different pieces used to con-
struct the microarchitectural models. The first section provides a high
level picture of the models and their behavior. The second section ex-
plains the trace format used by the models. The final section explains
how the high-level model is customized for the Strongarm and XScale
models. The next chapter provides a more detailed view of the code used
in these models.

2.1 High Level Overview

A microarchitectural model executes an instruction trace, and returns the
number of cycles that it takes to execute. To ensure accuracy the model
must account for the delays of individual instructions, the interaction
between them, and the impact of limited resources. We use YAPI in a
cyclical manner, where each cycle every process reads one token from all
of its input channels and writes a token to each of its output channels. In
order to model a particular pipeline length, channels are pre-filled with
the number of tokens equal to the pipeline length. As long as the cyclic
assumption is maintained the pipeline behavior is guaranteed.

We use a two process model like the one pictured in figure ??. The
two processes are a fetch process that handles the fetch and issue of in-
structions from execution trace, and an execution process that handles
the execution, operand dependencies, and forwarding delays between

5

2. PROCESSOR MODELS

Execution
Trace

Result
Channdls

Figure 2.1: Model Overview

instructions. We use three types of YAPI channels: an issue-channel that
passes instructions from the fetch process to the execute process, a stall-
channel from the execute process to the fetch process, and one or more
result-channels that model the execution delays of instructions by con-
necting the execution process to itself.

Each instruction in the execution trace has an associated type as well
as read_operands and write_operands. Operands can be either registers or
the condition codes. Each instruction type is classified by two delays,
issue_delay and results_delay. The issue_delay of an instruction, represents
the number of cycles that it takes for the fetch unit to write the instruction
to the issue-channel assuming that there is a cache hit. The results_delay of
an instruction type is the number of cycles that the next instruction will
have to wait if it depends on one or more write-operand of an instruction
of that type.

Fetch Process

The fetch process begins execution by pre-loading the issue-channel to
model the pipeline between the two processes. This delay typically rep-
resents the delay of instruction fetch and decode.

For the main execution loop, which executes every cycle, it reads from
the stall-channel, and if there is no stall then it writes either the fetched in-

Trace Format

struction from the instruction trace or, if there is an issue stall, an bubble
instruction to the issue-channel.

Execute Process

The Execute process’s execution begins by pre-loading the result-channels
to their configured lengths, then the main loop is entered.

In the main loop, if there is no stall from operand dependencies, then
the next instruction is read from the issue channel. After this the process
reads from the result channels, the process checks to see if any of the
operands of the current instruction are unavailable and if they are it sets
stall to true. If there is no stall, then the appropriate result channel is
selected for the instruction and it is written to it. After this, bubble in-
structions are written to all of the unselected result channels, and the
calculated stall value is written to the stall channel. A stall happens in
the case of operand or condition code dependencies.

2.2 Trace Format

The microarchitectural models are all driven by instruction traces gen-
erated by the functional Instruction Set Simulator (ISS). Each instruction
issued by the ISS is turned into a trace entry that consists of three ele-
ments: a string that indicates if the instruction executes (i.e. “EX”) or
doesn’t (i.e. "NOEX"), a hexadecimal value indicating the PC (Program
Counter) address of the instruction, and the hexadecimal value of the in-
struction. Figure ?? shows the first 4 entries of the present the trace file
metro/examples/yapi _cpus/arm/object files/fib.tr in the first
column, and the decoded entries in the second column.

Trace File Decoded Instructions
NONOEX f£fftfff8 00000000 | andeq r0, r0, r0

NOEX fffffffc 00000000 andeq 10, r0, r0

EX 00000000 ea000011 b11

EX 0000004¢ e3a0d702 mov sp, #524288 ; 0x80000

Figure 2.2: Sample Trace File and its Decoding

2. PROCESSOR MODELS

2.3 Model Customization

Both the Strongarm and XScale models are derived from the same base
models. They each have their own customized Fetch and Execute processes
that extend the Fetch and Exec. Furthermore, they have their own netlists,
and trace_interface C++ files that indicate the issue-stall values.

Chapter Three

Code Documentation

In this chapter we explain different pieces of the code in more detail than
in the previous chapter, and then provide tips for interfacing Metropolis
Models using the SystemC simulator with native code.

3.1 Instruction Class Specification

In this section we show some of the code used to represent the instruction
data type, it comes from the file MyDataTypes.mmm. A segment of this
file is shown in figure ??

The first line of variables has integers for the: instruction word, the
instruction type, the instructions program counter, and the instruction
number (i.e. number that it is in the trace). The second and third lines
have variables for storing the read and write operands. The final vari-
ables relate to the number of issue cycles, whether or not the instruction
issues, how it accesses condition codes, and data in its branches.

The default constructor produces non-executing “bubble” instructions
with no operands. The second type takes in the instruction number, the
instruction word, the program counter, and a boolean indicating execu-
tion. It calls a the setValues() method, which will call the trace interface
code and determine the instruction type and set all of the appropriate
values.

3. CODE DOCUMENTATION

public class Instruction extends Object {
public static final int REG_SIZE = 32;

/I Instruction specific variables
I

public int IW; /I the instruction word
public int inst_type; // the instruction type
public int PC; /I the program counter

public int inst_num; // the instruction # in the trace

public int num_op_regs, op_regs[]; // the operand(read) registers
public int num_wr_regs, wr_regs[]; // the write registers

public int extra_issue_cycles; // number of extra cycles to issue
public boolean executes; /I does it execute?

public boolean reads_cc, writes_cc; // condition code usage

/I branch values

public boolean has_prediction, predict_taken, in_btb;

private boolean is_branch;

I/l empty (bubble) instruction constructor
public Instruction() {...}

/[constructor for non-empty/non-bubble instruction
public Instruction(int _inst_num, int _PC,
int _IW, boolean _exec) {

super();
op_regs = new Iint[REG_SIZE];
wr_regs = new IintfREG_SIZE];

setValues(_inst_num, _PC, _IW, _exec);

Figure 3.1: Instruction Class Code

10

Fetch Code

process Fetch extends
yapiprocess-<Instruction;Instruction;
Instruction;Instruction>- {
Il PORTS
i
1
/I Channel to send fetched instruction to the Execute Process
port yapioutinterface-<Instruction>- FetchedInstruction;
1
/I An incoming channel to get operand stall information
/I from the Execute Process
port yapiininterface-<yapiint>- DoStall;
I
/Il A channel for passing the number of instructions in
/I the trace to the Execute Process
port yapioutinterface-<yapiint>- DoConfig;

/I PARAMETERS

T

1

/Il the length of the Fetchedinstruction pipeline channel
parameter int ExecutionPipelineDepth;

parameter boolean DO_PREDICTION; // do branch prediction
parameter boolean REAL_BTB; // use real (or simulated) BTB

Fetch(String n, int PD, boolean predict,
boolean real_btb) {...}

Figure 3.2: Fetch Declaration with Ports and Parameters

3.2 Fetch Code

Figure ?? shows a portion of the Fetch process declaration in the meta-
model.

11

3. CODE DOCUMENTATION

12

Ports

This model has 3 ports. FetchedInstruction is an output port that passes
the instruction created from the instruction trace on to the Exec process.
DoStall is an input port that reads stall information from the Exec process.
Config is an output port that passes the number instructions in the trace
onto the Exec process.

Parameters

The model can be parameterized in terms of the pipeline depth between
it and the Exec model (i.e. the length of the FetchedInstruction channel),
and in terms of branch prediction.

Pseudo-Code

Figure ?? shows the pseudo-code for the main execution of the Fetch
process.

3.3 Execute Code

Figure ?? shows a portion of the Execute process declaration in the meta-
model.

Ports

This model has 3 ports connected to the Fetch process and two arrays of
ports. FetchedInstruction is an input port that receives instructions from
the Fetch process. DoStall is an output port used to pass stall information
onto the Fetch process. Config is an input port that receives the number
instructions in the trace from the Fetch process. Resultsln and Result-
sOut are arrays of input and output YAPI ports that are used to represent
execution delays within the model. Note that each i-th element of Re-
sultsIn and ResultsOut connects to the same yapichannel and is connected
at each end to the Exec process.

Interfacing with Native Code

FetchExecCode() {
preloadissueChannel();

/I main loop
while(true) {
op_stall = Stall.read();
if (issue_stall > 0) issue_stall--;

if (lop_stall) {
if (no-inst) {
inst = trace.getNext();
issue_stall = inst.issueStall();
}

if (issue_stall==0)
issue_channel.write(inst);
else
issue_channel.write();

Figure 3.3: Fetch Pseudo-Code

Parameters

The Exec process is configured through an array of integers that speci-
ties the lengths of the different commit types. It also is configured via a
branch-misprediction penalty value.

Execution Pseudo-Code

Figure ?? shows the pseudo-code for the main execution of the Exec
process.

3.4 Interfacing with Native Code

While the microarchitectural models are primarily specified in the MMM,
they do rely on trace interfaces and memory management done in non-
native code. We will discuss the interfacing using blackbox statements, as

13

3. CODE DOCUMENTATION

14

process Exec extends yapiprocess-<Instruction;Instruction;
Instruction;Instruction>- {
Il PORTS:
M
I
/[The instruction received from the Fetch process
port yapiininterface-<Instruction>- FetchedInstruction;
I
/l The number of instructions in instruction trace
/I received from the Fetch process
port yapiininterface-<yapiint>- DoConfig;
I
/I The write interface of the results channels
port yapiininterface-<Instruction>-[] ResultsIn;
I
Il The read interface of the results channels
port yapioutinterface-<Instruction>-[] ResultsOut;
I
/I The stall information to write to the Fetch process
port yapioutinterface-<yapiint>- DoStall;

/I PARAMETERS

parameter int MispredictPenalty;// branch mispredict penalty
parameter int num_commit_types; // number of result channels
parameter int commit_lengths[]; // delay of each result channel

Exec(String n, int MP, int commit_types,
int _commit_lengths[]){...}

Figure 3.4: Execute Declaration with Ports and Parameters

well as modifying the makefiles to accommodate non-MMM code when
building a model in Metropolis using the SystemC Simulator. Finally, we
present our use of blackbox statements to manage memory in the model.

Interfacing with Native Code

ExecuteExecCode() {
preloadResultChannels();

/I main loop
while(true) {
if (Istall) inst = issue_channel.read();

ResultChannels.ReadAndUpdate();
stall = ReadOperandsAndCheckStall(inst);

if (!stall)
ResulChannels.selectAndWrite(inst);

ResultChannels.writeBubbles();
stallChannel.write(stall);

Figure 3.5: Execute Pseudo-Code

Blackbox Statements

Our models uses blackbox statements to insert into the generated Sys-
temC simulator code. These are done using the below syntax:

blackbox(SystemCSim)%%
/Il inserted blackbox C++/SystemC code
%%

Makefile Modifications

In order to interface with external code, this code must be added into the
main makefile to be compiled, and also into the final linking file. To mod-
ify the linking we replace the generated systemc_sim.mk makefile with one
that has the external code linked into the final execution. In our case the
modified files are: mmscs xscale.mk and mmscs.strongarm.mk

15

3. CODE DOCUMENTATION

Memory Management Considerations

At the current time the metamodel doesn’t support memory deallocation,
so any dynamic allocations of memory should be deleted using blackbox
statements. Below is an example of the deallocation a variable of type
Instruction.

blackbox(SystemCSim)%%
delete ResultsInstruction;
%%

16

Chapter Four

Installation and Use

4.1 Running the Microarchitectural Models

These instructions assume that you have properly installed and config-
ured the Metropolis framework.

Compiling the Models

In the strongarm_yapi or the xscale_yapi directory type “make” to build
the appropriate executable (i.e. strongarm.x or xscale.x). For a model that
has more verbose output type “make debug” this will produce the exe-
cutables strongarmd.x or xscaled.x.

Running the Models

To run the strongarm model type “./strongarm.x [trace_file]” where trace
file is the extension of an execution trace file. to run the XScale model use
xscale.x instead of strongarm.x.

For example in the directory metro/examples/yapi_cpus/arm/xscale_yapi:
Type: ”./xscale.x ../ object_files/fib.tr” to run an instruction trace from a
Fibonacci program.

Once run, the execution statistics for that trace on the microarchitec-
tural model are printed out. The trace “fib.tr” executes in 1195 cycles on
the Strongarm model and 1419 cycles on the XScale Model.

17

4. INSTALLATION AND USE

4.2 Building and Simulating Traces

To create new traces first new executables must be created using a cross
compiler. Intel has binaries and source of the GNU compiler tools tar-
geted for the XScale at their PXA developer site. The simulator only sup-
ports execution of ELF binary files.

Building the Functional Simulator

To generate new traces the simulator is run with a particular executable
tile with the below format:
“./arm-sim [executable file] [trace file name]”

This will create a trace with the name "trace file name” that can be
used to drive the microarchitectural models.

18

Chapter Five

Acknowledgements

5.1 CPU Modeling Acknowledgements

This work is funded by the SRC and Intel Corporation. It builds upon
work done with Sam Williams, with suggestions and mentoring from Lu-
ciano Lavagno and Kees Vissers. Yoshi Watanabe and Mike Kishinevsky
provided additional mentoring and feedback. The ARM instruction set
emulator is based on a modified version of the gdb-ARMulator modified
by Christian Sauer. The trace-interface files are based on pieces of the
SWARM ARMY7 emulator written by Michael Dales.

5.2 Metropolis Acknowledgements

This work was supported in part by the following corporations:
e Cadence

General Motors

Intel

Semiconductor Research Corporation (SRC)
e Sony

STMicroelectronics

19

5. ACKNOWLEDGEMENTS

¢ and the following research projects:

— NSF Award Number CCR-0225610 and the Center for Hybrid and
Embedded Systems (CHESS, http:/ /chess.eecs.berkeley.edu)

- The MARCO/DARPA Gigascale Systems Research Center (GSRC,
http:/ /www.gigascale.org)

The Metropolis project would also like to acknowledge the research contri-
butions by:

e The Project for Advanced Research of Architecture and Design of Elec-
tronic Systems (PARADES, http://www.parades.rm.cnr.it/) (in particu-
lar Alberto Ferrari)

e Politecnico di Torino

e Carnegie Mellon University

e University of California, Los Angeles

e University of California, Riverside

e Politecnico di Milano

e University. of Rome

e La Sapienza

o University of L’Aquila

e University of Ancona

e Scuola di Sant’Anna and University of Pisa

Metropolis contains the following software that has additional copyrights.
See the README.txt files in each directory for details

examples/yapi_cpus/arm/arm_sim arm_sim is an ARM processor simulator
that was originally released under the GNU Public License. The ARM
Simulator is only necessary if you would like to create your own trace
files. Most users need not build the ARM Simulator.

src/com/JLex JLex has a copyright that is similar to the Metropolis copyright.

20

Metropolis Acknowledgements

src/metropolis/metamodel Portions of the Java code were derived from sources
developed under the auspices of the Titanium project, under funding from
the DARPA, DoE, and Army Research Office. The Java code was further
developed as part of the Ptolemy project. The Java code is released under
Metropolis copyright.

src/metropolis/metamodel/frontend /Lexer Portions of JLexer are: ”"Copy-
right (C) 1995, 1997 by Paul N. Hilfinger. All rights reserved. Portions
of this code were derived from sources developed under the auspices of
the Titanium project, under funding from the DARPA, DoE, and Army
Research Office.”

src/metropolis/metamodel/frontend / parser/ptbyacc ptbyacc is in the public
domain.

21

Bibliography

[1] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli. Metropolis: An integrated electronic sys-
tem design environment. Computer Magazine, pages 45-52, April
2003.

[2] Intel Corporation. SA-110 Microprocessor Technical Reference Manual.
Santa Clara, CA, 2000.

[3] Intel Corporation. Intel Xscale Microarchitecture User’s Manual. Santa
Clara, CA, 2003.

[4] W.]. M. Smits P. vd Wolf J.-Y. Brunel W. M. Kruijtzer P. Lieverse K.
A. Vissers E. A. de Kock, G. Essink. Yapi: Application modeling for

signal processing systems. Proceedings of Design Automation Confer-
ence, pages 402—405, 2000.

[5] G. Kahn. The semantics of a simple language for parallel program-
ming. Proceedings of the IFIP Congress, August 1974.

[6] ARM Ltd. ARM Architecture Reference Manual. Cambridge, England,
2000.

[7] Alessandro Pinto. Metropolis design guidelines. In Technical Memo-
randum UCB/ERL M04/40, University of California, Berkeley, CA 94720,
September 14, 2004.

[8] The Metropolis Design Team. The metropolis meta model version 0.4.
In Technical Memorandum UCB/ERL MO04/38, University of California,
Berkeley, CA 94720, September 14, 2004.

23

	to1 Introduction
	Directories
	Background Information

	to2 Processor Models
	High Level Overview
	Trace Format
	Model Customization

	to3 Code Documentation
	Instruction Class Specification
	Fetch Code
	Execute Code
	Interfacing with Native Code

	to4 Installation and Use
	Running the Microarchitectural Models
	Building and Simulating Traces

	to5 Acknowledgements
	CPU Modeling Acknowledgements
	Metropolis Acknowledgements

	Bibliography

