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Abstract

MVSIS is a program modeled after SIS, but the logic network it works on is such that all variables can
be multi-valued each with its own range. We include all the technology-independent transformations of
SIS for combinational logic synthesis as well as transformations specific to multi-valued nodes such as
merge, pair_decode, encode, elim part, print_part_value, print_range, reset_default. MVSIS
has been made to have the look and feel of SIS. MVSIS can read and write BLIF-MV files with the
read blifmv and write blifmv commands, or read BLIF files with the read blif command.

1 Introduction

Multi-level multi-valued (MV) logic synthesis can have many applications including:
1. Logic synthesis for multi-valued hardware devices.

2. Initial manipulation of a hardware description before it is encoded into binary and processed by
standard binary logic synthesis programs; MV is a natural way to describe procedures at a higher
level.

3. A front end to a software compiler, since software lends itself naturally to the evaluation of multi-
valued variables in a single cycle. Strong logic synthesis transformations can be applied to compilers
aimed at embedded applications.

4. Asynchronous synthesis

We have developed and included techniques for combinational optimization of MV networks. Like SIS
[1, 2], MVSIS is an interactive tool, and has been made to have the look and feel of SIS. When applied
to purely binary networks, it behaves almost exactly like the technology independent part of SIS. In the
sequel, the main components of MVSIS are described, the input specification, the MV-transformations and
special commands, verification by simulation, followed by a few examples illustrating the use of MVSIS in
the design process.



2 Design Specification

2.1 BLIF-MV Description Format

An MV circuit can be input to MVSIS as a netlist of MV-nodes (command: read blifmv). We use a
simple subset of BLIF-MV [3] used in VIS to specify the design. Such BLIF-MV files can be generated by
the Verilog front-end to VIS (v12mv) or be written out by VIS. Binary networks specified in BLIF (the
format most commonly used in SIS) can also be read in (read blif). After a design specification is read
in, it is converted into an MV-network, a design representation used within MVSIS. An MV-network is a
network of nodes; each node represents an MV-function with a single multi-valued output. The functions
associated with each value (value-functions) of a node are stored in SOP form. There is one MV variable
associated with the output of each node. An edge connects node ¢ to node j if any of the value-functions
at j depends explicitly on the variable associated with node i. The network has a set of primary inputs (all
of which may be multi-valued) and a set of nodes, designated as the outputs of the network. An important
distinction with other MV methods, is that in our representations, each variable can have a separate range
of its own, including two values. All ranges are represented by the sets {0,1,...,n; — 1}.

MVSIS 1.0 supports sequential MV-network with multi-valued latches. A latch, as any other variables
in the network, can be multi-valued. In the BLIF-MV file, a latch can be specified using construct .latch,
with the initial state specified using construct .reset. We only support BLIF-MV files with constant initial
state values.

2.2 External Don’t Cares

The original BLIF-MV file is extended to support external don’t cares. Like in SIS, a don’t care network
is specified as a combinational network following the key word .exdc. The inputs of the EXDC can be
a subset of the primary inputs plus the latch outputs; the outputs of the EXDC can be a subset of the
primary outputs. The outputs of the EXDC are matched with those of the original network by names.
They are binary variables, even though the original output may be multi-valued. Given a table for function
f, its companion external don’t care table defines a boolean function for f, whose minterms may produce
any value for f (universal don’t care minterms).

For multi-valued nodes, if a .default value is given, the node is completely specified. For a table
without the .default value, if the sum-of-products specification does not cover all the minterms in the
input space, it is incompletely specified. In this case, the unspecified minterms are assumed to be able to
take any value at the output, namely don’t cares. In some applications, like data mining, the unspecified
minterms can consume a large space. Therefore, MVSIS 1.0 provides a way of extracting incomplete
specification as external don’t cares. In the currently implementation, if an incompletely specified table in
the network is (i) a primary output, and (ii) all its fanins are primary inputs, then an EXDC network is
extracted for that node.

In the future we plan to extract and add to the external don’t care set also the minterms that are
explicitly described as taking any value out of the range of an output function (universal minterms), since
their semantics is the same as the one of unspecified minterms.

External don’t cares are a special case of non-determinism, because they restrict it to the case when
an input minterm assumes a unique output value or any output value (universe of the output variable).
MVSIS 1.0 does not support partial don’t cares, where an input minterm may assume any value out of a
proper subset of the universe of the output variable.



3 Combinational Optimization

3.1 Node Simplification

The logic value-functions (one for each output value) at an MV-node are simplified with the simplify
command which uses the two-level logic minimizer ESPRESS0-MV. The objective of a general two-level logic
minimizer is to find a logic representation with a minimum number of implicants (cubes) and literals while
preserving functionality. Satisfiability don’t cares from the local fanins and subset support variables are
used in the minimization unless the —d option is used. After simplication, the value-functions are replaced
with simplified versions if the new functions have been improved according to the cost function in use.

For each node, one of the value-functions is selected as the default value. For example, for a binary
output function, the onset is usually the primary value and the offset, the default value. The default value-
function is never looked at unless a command requires it. For example, if the output of a binary function
is used in the complemented form in a fanout, and the node is eliminated, then the complement must be
computed to effect the elimination. The values of the nodes and statistics of the network are based only
on the non-default value-functions. However, there is one command reset_default which looks at each
node and chooses a default value for it based on the cost of the node. For example, if the cost function
is the number of cubes, reset_default will cause value functions to be minimized, and the default value
will be chosen to be the value whose function has the most cubes.

Currently, there are two cost functions which can be used. These can be selected using the set
command. With set cost 0, the number of cubes in the SOP form is used. With set cost 1, the
number of literals in the factored form is used. In the future, there will be more complex cost functions
depending on the target of the application, e.g., the number of cubes, the number of nodes, the number of
values, the number of fanins.

The strongest kind of node simplification that can be performed on a network, is implemented using
the fullsimp (alias fs) command. To perform this function on a multi-level MV-network, an appropriate
don’t care set is first generated. Subsets of the satisfiability and observability don’t care sets (SDC and
ODC respectively) are used. The notion of compatible observability don’t cares (CODC) used in SIS
has been generalized to take MV-nodes into account [4]. Given these, MV-image computation techniques
are used to map them to the local space of each node. An SDC of those nodes in the network whose
support is a subset of the support of the node being simplified is also added to the local don’t care set thus
derived. This allows a form of Boolean substitution when fs is executed. Each node is then simplified by
ESPRESSO-MV using this local don’t care set.

During any of the above forms of simplification, if it is estimated that simplification will take too long,
the node will be minimized with a simpler form of minimization or left unchanged. The complexity of an
ESPRESSO-MV session is estimated by the number of cubes in the onset and don’t care set, and the number
of fanin variables. If this is too large, ESPRESS0-MV is not called. There is also a timeout for the fullsimp
and simplify commands, controlled by the -t option. The specified time (in integer seconds) is shared
among three time consuming computations; CODC computation, image computation, and ESPRESS0-MV
minimization. If any one of these takes longer than the allocated time, the simplification for that node is
terminated and only the local SDC is used for the node minimization. A default timeout value of 2 seconds
is used.



3.2 Kernel and Cube Extraction

An important step in network optimization uses algebraic methods for extracting new nodes representing
logic functions that are common factors of other nodes. Several techniques based on algebraic decompo-
sition are part of SIS. Similarly, we have developed new algebraic techniques for MV-logic [5] which treat
binary and multi-valued variables uniformly. They include methods for finding common sub-expressions,
semi-algebraic division, decomposing a multi-valued network, and factoring a SOP form. The relevant
commands and brief descriptions of their abilities are listed below.

1. The command fx looks at all the nodes in the network and tries to extract good common factors
and create new nodes in the network, re-expressing other nodes in terms of these newly introduced
nodes. It is one of the transforms used to break down large functions into smaller pieces. It has two
options, -q and -g.

The -q option generates candidate two-cube divisors by making each pair of cubes in a node value-
function cube-free. These candidate two-cube divisors are made canonical and hashed into a table.
A count is kept on the number of hits for each entry to obtain the value of a divisor. Complements
are also kept if it is a two-cube expression. The divisor with the largest value is then extracted as a
new node and substituted into all functions where applicable. For efficiency, the divisor table is only
incrementally updated after each substitution.

The -g option can generate additional divisors. This method extends £fx -q. If no divisor is found
by fx -q, fx -g first generates a set of candidate double-cube divisors, one for each function, by
factoring each node in the network. It then divides these candidate divisors, used in the factorization,
into all other nodes and computes their values. The divisor with the largest value is extracted. In
general, this method can find divisors that £x -q cannot find, since factoring can sometimes find
divisors that cannot be obtained by the other method. This method can take longer CPU times if
the number of cubes in the nodes is large.

2. The command decomp does a complete factoring of each node, but instead of creating a factored
form for each, decomposes the node according to its factorization. Thus more intermediate nodes
are produced this way. Such intermediate nodes may not have been produced by fx —-q or fx -g, so
there is a possibility of finding better factors. After this, resub (see below) followed by sweep should
be executed to eliminate duplicate factors. Then elimination can be done to clean up the network,
possibly followed by simplify to look for Boolean substitutions.

3. Algebraic substitution of one node into another is performed in MVSIS using resub [-d] [node-list].

As an argument it takes a list of nodes that are to be algebraically substituted into all other nodes.
If no list is given, all nodes are tried. All value-functions of the divisor are tried; the default value-
function is also tried unless the -d option is given. We do not attempt to divide into the default
function of other nodes, since their value-functions can be obtained by complementation. resub
uses the new methods of ”exact” semi-algebraic division, developed for multi-valued logic. There are
two modes for this. If the divisor is a two-cube divisor, then a fast method based on matching is
used; otherwise, a slower branch and bound method is used (called the satisfiability-matrix method).
Although in theory all pairs of nodes must be looked at during resub, there are very effective filters
to determine if no algebraic substitution is possible.



3.3

1.

Network Manipulations

The command collapse collapses nodes in the network. If no arguments are given, it collapses the
entire multi-level network so the SOP forms for each output are in terms of the primary inputs only.
Thus the number of nodes in the network will be exactly the number of primary outputs. If a single
node name is given as an argument, that node will be collapsed. If two names are given, one must
be a fanin of the other, in which case the fanin node is collapsed into the fanout node. The collapsed
node is removed from the network, if there is no other fanout.

The command eliminate eliminates all the nodes in the network whose value (as measured by the
current setting for the cost function) does not exceed a specified threshold. The value of a node
represents the total cost of the network with the node eliminated, minus the current cost of the
network. If the value is not greater than the specified threshold, the node will be eliminated by
collapsing the node into each of its fanouts. Of course, a primary input or a primary output will not
be eliminated. The command iterates, since eliminating one node may affect the value of other nodes.
The iteration continues until all remaining nodes have a value greater than the threshhold. However,
if it is estimated that the elimination of a particular node will cause a blow-up in the number of
cubes, the node will be kept (see the global parameter el _1imit specified by the command set).

. merge is a command unique to MVSIS. It takes a list of nodes and forces a merge of them into a single

multi-valued node. In the worst case, if for example, there are k binary nodes in the list, it will create
a single node with 2¥ values. However, some new value-functions may be 0, in which case they are
not created. In addition, if a pair of values always appears together in all the fanouts, then their
functions will be merged into a single value-function. If no list is given, merge looks for a likely list
of candidates and merges them if it can achieve a gain in the value for the network. This may result
in several additional multi-valued nodes through multiple merges. merge can be given as argument
a list of nodes to be merged. In this case, the nodes will be merged regardless of the gain, provided
the merging does not introduce cycles. Cycles can happen if there is a path from some node A to
some node B in the list, which passes through a node not in the list.

. encode is like the inverse of merge. It tries to find a good binary encoding for each multivalued

variable in the network, including primary inputs and outputs. At the end, each signal is encoded
as a binary signal, including primary inputs and outputs. Then a binary file can be written. As an
option (-1i), encoders and decoders can be put at the inputs and outputs which convert the network
to its original multi-valued inputs and outputs. The internal signals are binary. This can be written
as a blif-mv file and validated against the original file. The encoding heuristic starts from the
outputs and in reverse topological order works back to the primary inputs. At each node, its outputs
are encoded using the information on how its fanouts are used. The encode command is encode with
option - i specifying that encoders and decoders should be put at the inputs and outputs.

. pair_decode does bit pairing to create a new multi-valued node. It looks for a ”best” pair of signals

to pair together. Then it creates a new node with values equal to all the decodes of the pair. If both
signals are binary, then a 4-valued node is created and algebraically substituted into nodes which
algebraically depend on at least one of these decodes. Finally, any set of values of the new node,
which always appear together in the fanouts, are merged into a single value of the new node. After
this step, simplify should be executed to effect full substitution.



6. elim part is a command like eliminate, except it works only on multi-valued output nodes and can
eliminate some of the value-parts for the nodes. A specified threshold controls which parts are to be
eliminated. The value given to each of the parts is heuristic and each part is ordered using this value.
To see the accumulated value of the parts, the command print_part_value shows the ordering of
the parts, and the accumulated values from least to greatest. For example, for a particular node m it
might print out the following,

m: (110) 12 30 50 68 88 112 136 160 184 (6 3078521 4)

The name m is first followed by the value of the node as evaluated in eliminate (110), then a vector
of the accumulated part values 12,30, . .., where 12 is the value of the 6* part, 30 is 12 plus the value
of the 3" part, etc. If the command elim_part 30 is given, MVSIS will eliminate the first two values
in the order (6 and 3) by merging their functions so that the range of the node is reduced by 1 and
assigning them to the highest available value (here it is 7). A new default value is selected for the
new function; the merged part may have a larger function so it would replace the previous default
part. Fanout nodes will be modified accordingly to preserve the network functionality.

7. sweep successively eliminates single input intermediate nodes in the network and deletes nodes with
no fanouts.

8. undo replaces the current network with the previous one. This is particularly useful if a forced merge
results in a worse network. The combination merge and undo allows one to experiment with different
mergings. undo treats f£s special so that one is able to do two commands like merge; fs and undo
will revert back to the circuit before the merge.

4 Sequential Optimization

Like in SIS, all combinational optimizations are performed on the combinational part of the sequential
network. New command extract_seq_dc implements a reachability computation in the state space and
computes the set of unreachable states, which are consequently treated as external don’t cares (EXDC). In
the case where there exists an EXDC network already, the unreachable EXDC is ORed with the existing
one.

5 Other Commands

5.1 Iteration

Several commands have the option to apply the command a given number n times, or until a fixed point, i.e.
no change occurs in the network. These commands are eliminate, pair_decode, gx, fx and fullsimp.
The command structure is, for example eliminate -i n <threshold> where n is the iteration count. If
no -i option is given, iteration to a fixed point is implied.

5.2 Printing, reading and writing

There is one write command, write_blifmv, and two read commands, read blifmv and read_blif. The
latter reads in ordinary BLIF files.



To view the results at any stage, there are several print commands which print to the console. print
prints the SOP form of each value (including the default value if the option -d is given) of each node in
the network. print_factor prints the factored form of each value-function (excluding the default) of each
node in the network. Each of these can take, as argument, a list of names of nodes to be printed. In
general, *, like SIS, stands for all a list of nodes in the network.

print_range prints out the size of the range for each variable; print_value the value of each node
(according to the current cost function); print_stats the statistics of the network in terms of the network
name, the number of primary outputs, the number of nodes, the number of cubes, and the number of
literals in the cubes. print_stats -f also prints out the number of literals in the factored forms of the
nodes (for a given function all values are taken into account except the default one). print_io prints the
inputs and outputs of the network. If a list of nodes is given, it prints out the fanins and fanouts of each
node in the list.

Sometimes, in order to view an output or factorization better, it is useful to change the names of the
variables to short names using the command chng name. It is a toggle between short names and the original
names. Associated is a command reset _names which resets the naming of short names for the variables so
that all variables appear in lexicographic order with no gaps in the naming. Thus inputs are named first,
{a,b,c,...}, then outputs, and finally intermediate nodes.

5.3 Setting global parameters

The set command sets various global parameters, which control the transformations. With no argument,
set prints out the current values of the global parameters.

1. cost controls the type of cost function to be used in the evaluation of the value of a node. set
cost 0 uses the number of cubes as the cost function; set cost 1 uses the number of literals in the
factored form.

2. time limit, controls the maximum amount of time (in seconds) that can be spent in factoring a
single function. Since MV-algebraic factoring may take some time, this is useful in controlling the
time spent in the factoring process, especially when the factoring is only being used to estimate the
value of a node or to produce a readable output.

3. el 1limit controls when a node will be eliminated. It may be that eliminating a node can result in a
fanout becoming too large. For each fanout, we estimate the number of cubes that will result after
elimination. If this estimate exceeds the maximum of el 1imit and twice the largest cover of any
node value, then the elimination is aborted.

4. autoexec can be given a command which will automatically execute after each command line is exe-
cuted. A typical use is set autoexec print_stats —-f, which will print out the statistics (including
literals in the factored forms) of the network after each transformation.

5. alias is like set. It is used to create nick-names for various commands. For example alias pfs
print_stats -f can be used to print out the stats of the network (including the number of literals
in the factored forms) with the single command pfs. alias with no arguments will print out a list of
all aliases defined so far. A typical set of aliases is incorporated in the file mvsisrc, which is executed
when MVSIS is started.



5.4 Help and Scripts

1. help prints the set of commands available and with a single argument, a command, will print a
detailed description of the command.

2. New command _print_version print out the new features included in the currently release compared
with the previous one.

3. source reads and executes commands from a file (script file).

6 Verification

MV-networks can be verified in MVSIS by simulation. The command validate verifies the combinational
equivalence of two networks by simulating the networks on random vectors, and comparing the outputs.
The number of random vectors can be provided by the user from the command line. Command gen _vec
generates a specified number of random input vectors appropriate for the ranges of the primary inputs,
and writes them into a file. This can be used by the command simulate, which simulates the network
and produces the results at the primary outputs. If a formal MDD-based verification is desired, one can
write out BLIF-MV files and envoke VIS using its command comb_verify.

In addition to the simulation based method, an MDD-based method is implemented in the new release.
For combinational networks, it computes the global function for each output using MDD representation
and compares the MDD structure; for sequential networks, it performs the same computation for each latch
input as well. If a match can not be found among the latch variables of the two networks to be verified,
no validation can be claimed by this method. Since MVSIS does not support non-deterministic networks,
the new release includes a command called qcheck. It performs a quick check for non-determinism at the
primary outputs by random simulation. If a network is non-deterministic and it is exercised by one of the
random vectors, the command produces an error message; a completion without error message does not
prove its determinism.

7 Examples Session

We illustrate MVSIS with some examples.

7.1 Example 1

The specification of the example matmul-c is given below in the BLIF-MV format (see BLIF-MV documen-
tation in VIS).

#2 X 2 matrix mult over the ring Z_3
.model matmul

.inputs all al2 a21 a22

.inputs bll b1l2 b21 b22

.outputs c11 c¢12 c21 c22

.mv all, al2, a21, a22 3

.mv bll, bl2, b21, b22 3

mv cll, «cl12, «c21, c22 3

.table all al2 bill b21 ci1

00 --0



b21

0
2

1
0 2

0
1

2

02

1
000
011
022
1

1
1

02

bl1l

10
1

1
1

1
1
1
1
1
1
1
1
1

1

0
1

2

202
210
221

1
1
1

12 000
12 012
12 021
12
12
12

1
0

0
1

1
1
1

22

12 202
12 211
12 220
20 0-0

20

-2

1

20 2-1
2

2
2

000
011
022
1

1
1

1
1
1
1
1
1
1
1
1

02
1
2

1

201
212
220

2
2
2

22 000
22 012
22 021

22

0
1

2

1
1
1

1
0

22

22

22 201
22 210
22 222

.table all al2 b12 b22 cl2

00

-0

=b22
-00

1
02

2

1
2

02

1

02

b12

10



.table a21 a22 bill b21 c21

00 --0
01 - - =b21
02 -00
02 -12
02 -21
10 - - =bll

.table a21 a22 b12 b22 c22

00 --0
01 - - =b22
02 -00
02 -12
02 -21
10 - - =bl2
.end

The above example is stored in a file called matmul-c. We start MVSIS with the command mvsis. Using
the mvsisrc file, the cost function is set to 1, i.e. cost is the number of literals in the factored forms and
we change to the short names mode. The following aliases are used:

rl read_blifmv
saf set autoexec print_stats -f
fs fullsimp

rsd reset_default
pPTr print_range

s simplify -t 2
pf print_factor
m merge

pr print_range
pio print_io

el eliminate

rsn reset_name
pd pair_decode

UC Berkeley, MVSIS 0.0.1 (compiled 13-Feb-01 at 5:54 PM)

changing to short-name mode

mvsis> rl matmul-c

mvsis> pr

{i}: 3

{j}: 3

{k}: 3

{1}: 3
: 3

a:

10
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mvsis> pio

primary inputs: abcdefgh

primary outputs: {i} {j} {k} {1}

mvsis> s

mvsis> saf

matmul: 4 nodes, 4 POs, 96 cubes(sop), 320 lits(sop), 160 lits(fact.)
mvsis> rsd

matmul: 4 nodes, 4 POs, 96 cubes(sop), 320 lits(sop), 160 lits(fact.)
mvsis> pd 1

m{0} = a{0}e{2} + e{0}

m{1} = a{0}e{1}

m{3} = a{i}e{2} + a{2}e{1}
n{0} = a{0}f{2} + £{0}
n{1} = a{0}£f{1}

n{3} = a{1}f{2} + a{2}f{1}
0{0} = e{0}c{2} + c{0}
o{1} = e{0}c{1}

o{3} = e{1}c{2} + e{2}c{1}
p{0} = £{0}c{2} + {0}
p{1} = £{0}c{1}

p{3} = f{1}c{2} + £{2}c{1}
q{0} = b{0}g{2} + g{0}
q{1} = b{0}g{1}

q{3} = b{1}g{2} + b{2}g{1}
r{0} = b{0}n{2} + h{0}
r{1} = b{0}h{1}

r{3} = b{1}h{2} + b{2}h{1}
s{0} = g{0}d{2} + d4{0}
s{1} = g{0}d{1}

s{3} = g{1}d{2} + g{2}d{1}
t{0} = h{0}d{2} + d{0}
t{1} = h{0}d{1}

t{3} = h{1}d{2} + h{2}d{1}

matmul: 12 nodes, 4 POs, 64 cubes(sop), 184 lits(sop), 160 lits(fact.)
mvsis> s

matmul: 12 nodes, 4 POs, 56 cubes(sop), 96 lits(sop), 96 lits(fact.)
mvsis> rsn

matmul: 12 nodes, 4 POs, 56 cubes(sop), 96 lits(sop), 96 lits(fact.)
mvsis> pf

{iH1} = p{2}t{2} + p{1}t{0} + p{O}t{1}
{iX{2} = p{2}t{0} + p{1}t{1} + p{0}t{2}
{j 1} = m{2}q{2} + m{1}q{0} + m{0}q{1}
{iH2} = m{2}q{0} + m{1}q{1} + m{0}q{2}
{k}{1} = n{2}r{2} + n{1}r{0} + n{O}r{1}

11



{k}{2}
{13{1}
{13{2}

m{0}
m{2}
n{0}
n{2}
o{0}
o{2}
p{0}
pi{2}
q{0}
q{2}
r{0}
r{2}
s{0}
s{2}
t{0}
t{2}

matmul:

mvsis>

{i}:
{j}:
{k}:
{1}:

a:

¢ nw R QO0T OB B PMHAHODGAQAONDCDT

a{0} + £{0}
a{2}f{1} + a{1}f{2}
c{0} + e{0}
c{2}e{1} + c{1}e{2}
c{0} + £{0}
c{2}f{1} + c{1}£{2}
b{0} + g{0}
b{2}g{1} + b{1}g{2}
b{0} + n{0}
b{2}h{1} + b{1}h{2}
d{o} + g{o}
d{2}g{1} + d{1}g{2}
d{0} + n{o}
d{2}n{1} + d{1}n{2}
a{0} + e{0}
a{2}e{1} + a{1}e{2}
12 nodes, 4 POs,

o]
1
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7.2 Example 2

n{2}r{0} + n{1}r{1} + n{0}r{2}
o{2}s{2} + o{1}s{0} + o{0}s{1}
o{2}s{0} + o{1}s{1} + o{0}s{2}

56 cubes(sop),

The second example is in the file aluack.mv.

.model alu

.inputs a b carryin control

.outputs out carryout
.mv or 4

.mv and 4

96 lits(sop),

12
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.mv control 4
.mv out 4

.mv xor 4

.mv sum 4

.mv a 4

.mv suml 4

.mv b 4

.table a b —->or
.default 3

00

N R R WN R

NNRFP, R OOOO
O, O WN =

2 2

.table a b —->and
.default O

11

W WWNDNEFE -
N =~ WNW
N = NN

33
.table control or and xor sum —>out
.default 0O

1___

2___

3___

I
w N =
I
|

I

|
w N =

|

---1
---2
3

W WWNNMNNRE, PP, OOO
1
1
|
|
W NEF, WONEFE WNEFE WN P

.table a b —->xor
.default O
11

NNMNNRFPRr PR, PROOO

WKk, O WNOWN
F WNNWEFE WN

13



w ww
N = O
= N W

.table suml carryin ->sum
.default 0
01

1
0
1
0

N Wk, NO
W NN

13

.table a b carryin ->carryout
.default 0O

-1

w
[

O F NN WWWWWNWNE
NP, O WNEFEDNNWW
e |

|
e T

31
.table a b —->suml
.default O

01

OFRP NWWNRFEROWNOLR
WNFE,OWOFRL, NNWE
W WWWMNDNDMNNNRE PP

.end
The following additional aliases are used:

enm encode -i

u undo

m merge

vl validate —n 1000

UC Berkeley, MVSIS 0.0.1 (compiled 13-Feb-01 at 5:54 PM)

mvsis> rl aluack.mv

alu: 7 nodes, 2 POs, 68 cubes(sop), 140 lits(sop), 128 lits(fact.)
mvsis> fs

14



alu: 7 nodes,
mvsis> rsd
alu: 7 nodes,
mvsis> u

alu: 7 nodes,
mvsis> m

alu: 6 nodes,

mvsis> fs

alu:

6 nodes,

2

2

2

2

2

POs, 48 cubes(sop),
POs, 49 cubes(sop),
POs, 48 cubes(sop),
POs, 41 cubes(sop),

POs, 41 cubes(sop),

mvsis> vl aluack.mv

Networks are combinationally equivalent

2

2

POs, 41 cubes(sop),

POs, 41 cubes(sop),

98 lits(sop), 96 lits(fact.)
98 lits(sop), 97 lits(fact.)
98 lits(sop), 96 lits(fact.)
80 lits(sop), 80 lits(fact.)
80 lits(sop), 80 lits(fact.)

according to simulation.
80 lits(sop), 80 lits(fact.)

80 lits(sop), 80 lits(fact.)

= d{3}j{1} + d{2}1{2,6} + d{1}h{1} + d{0}1{1,2}
= d{3}j{2} + d{2}1{4,7} + a{1}h{2} + d{0}1{3,4}
= 1{5,6,7,8}(d{2}1{8} + d4{0}) + a{3}j{3} + d{1}n{3}
= c{1}j{0,3}x{0,1,3} + n{1,2,3}1{0,3,4,5,6,7,8}
b{1}1{0,1,3,5} + 1{7}
b{2}1{0,1,3,5} + 1{6}
a{3}p{3}1{0,1,3,5}

alu: 6 nodes,
mvsis> pr

{e}: 4

{£f}: 2

a: 4

b: 4

c: 2

d: 4

h: 4

j: 4

k: 4

1: 9

alu: 6 nodes,
mvsis> pf
{e}{1}

{e}{2}

{e}{3}

{£3{1}

h{1} =

h{2} =

h{3} =

j{1} = c{1}x{0}
j{2} = c{1}x{1}
j{3} = c{1}x{2}
k{1} = 1{2,6}
k{2} = h{3}1{5}
k{3} = 1{8}
1{0} = a{0}b{0}
1{1} = a{1}b{1}
1{2} = a{1}b{0}
1{3} = a{2}p{2}
1{4} = a{2}b{0}
1{5} = a{3}b{3}
1{6} = a{3}b{2}
1{7} = a{3}p{1}
alu: 6 nodes,

mvsis> enm

alu:

22 nodes,

mvsis> fs

alu:

14 nodes,

+
+
+

c{0}k{1}
c{0}k{2}
c{0}k{3}

h{0,1}1{1,3,4}

a{0}b{1}
a{0}b{2}
a{2}p{3}
a{1}p{3}
POs, 41 cubes(sop),

2 POs, 87 cubes(sop),

2 POs, 36 cubes(sop),

80 lits(sop), 80 lits(fact.)
338 lits(sop), 199 lits(fact.)

81 lits(sop), 77 lits(fact.)

15



mvsis> gx

alu: 16 nodes, 2 POs, 37 cubes(sop), 79 lits(sop), 77 lits(fact.)
mvsis> fs

alu: 16 nodes, 2 POs, 37 cubes(sop), 78 lits(sop), 75 lits(fact.)
mvsis> el O

alu: 14 nodes, 2 POs, 35 cubes(sop), 79 lits(sop), 74 lits(fact.)
mvsis> pr

{e}:
{f}:
a:
b:
c:
d:
do:
e0:
hO:
jo:
kO:
10:
mO:
n0:
o0:
pO:
q0:
w0:
alu: 14 nodes, 2 POs, 35 cubes(sop), 79 lits(sop), 74 lits(fact.)
mvsis> pf

NNDNMNDNMNDNDNDNDNDNNNNDNENDSPDND

{e}{0} = do{0}e0{0}
{e}{1} = do{1}e0{1}
{e}{2} = do{0}e0{1}
{£}{0} = 10{0}m0{0}(c{0} + hOo{1}) + qO0{1}

do{1} = d{3}ho{1} + d4{0,2}jo{1} + d{0,1}10{1}
e0{1} = d{3}(k0{1}w0{0} + k0{0}wO{1}) + mO{1}(d{1,2}p0{0} + d{0,1}p0{1})
+ d{0,2}k0{1}10{0}m0{0}

ho{1} = c{0}jo{1} + wo{1}

jo{1} = no{1}o0{0}

k0{1} = jo{1}po{0} + 10{1}p0{1} + m0{0}o0{1}

10{1} = a{1,3}jo{0}

m0{1} = n0{0}o0{1} + p0{0}q0{0}

n0{1} = (a{0,2,3}v{0,1,2} + a{0,1,2}b{0,2,3}) (af{1,2,3}b{0,1,3} + a{0,1,3}p{1,2,3})
00{1} = qo0{0}(a{1,3}b{1,3}n0{1} + a{0,2}v{0,2}) + a{1,2}n0{0}

po{1} = a{1,2}p{1,2} + a{0,3}b{0,3} + b{0,2}00{1}

q0{1} = a{0,1}p{0,1}

w0{1} = c{1}jo{o}

mvsis> vl aluack.mv
Networks are combinationally equivalent according to simulation.

7.3 Example 3

The third example has both latches and external don’t cares

16



.model latch
.inputs a b
.outputs £

mv £ 3

.mv x 3

.table x a b -> £
.default 2
1-0 1

0-- 0

.reset x

0

.latch f x
.exdc

.inputs a b
.outputs £
.table a b -> £
.default O
111

.end

Given the semantics of default and of .exdc, the previous table is equivalent to the following one:

.model latch
.inputs a b

.outputs f

.mv £ 3

.mv x 3

.table x a b -> £
.default 2
1-0 1

00- 0
0-0 0

101 2
20- 2

2 -0 2

011 (0,1,2)
111 (0,1,2)
211 (0,1,2)
.reset x

0

.latch f x
.end

7.4 Example 4
The following example shows an FSM.

.model lion9
.inputs i0 i1
.outputs ns o0
.mv i0 2

mv il 2

17



.mv o0 2
.mv ps, ns 9 stO0 stl st2 st3 st4d stb5 st6 st7 st8
.latch ns ps

.reset ps

st0

.table i0 il ps -> ns o0

0 st0 st1
st0 st0
stl stO
stl sti
stl st2
st2 stil
st2 st2
st2 st3
st3 st2
st3 st3
st3 st4
st4 st3
st4 st4
st4 stb
stb st4
stb stb
stb sté
st6 stb
st6 sté
st6 st7
st7 sté
st7 st7
st7 st8
st8 st7
st8 st8

QOO OO R OFRKFFPFPLPOFPFOOOOFR,R O REPEREREFEOOHR

OFRrPrORFRPRFPFPFPLPOFPLROOOORFRLRORFRRFEPLELRELORL,OOO©O
P PR R RRrRR,RRPRPRPRRPRRPRPRRPRPRRPRRPRPRPROOO0OOOOOOC

.end
The following external don’t care network is produced:

.exdc

.inputs i0 il ps
.outputs ns o0

.mv ps 9

.table i0 i1l ps ->00
.default O

0 (3,{7-81
1 ({0-1},5)
-81

0 (2,6) 1
-101
1141

.table i0 il ps —->ms
.default O

10 (3,{7-8})
01 ({0-1},5)
1-81

O OB
=

=

18



0

0o (2,6) 1
-1
1

01
41

[y

Then the mv network is encoded by encode -i (aliased by enm) and it is validated against the original
one.

mvsis> enm

mvsis> wl

.model lion9

.inputs i0 il

.outputs ns o0

.mv ns 9 stO stl st2 st3 sté4 st st6é st7 st8
.table ps_bO ps_bl ps_b2 ps_b3 i0 il —>inf_ns_b2

.default 0O

00-0111

01-1111

-1-0011

0-1--11

1---011

.table ps_bO ps_bl ps_b2 ps_b3 i0 il ->o0
.default 1

000--00

0010-10

00-01-0

.table ps_bO0 ps_bl ps_b2 ps_b3 i0 il —->inf ns_bl
.default 0O

01100

0
1
1

e

-111

---01

.table ps_bO ps_bl ps_b2 ps_b3 i0 il —>inf_ns_bO
.default O

-111001

1---001

.table inf_ns_b0 inf_ns_bl inf_ns_b2 inf_ns_b3 ->ns
.default st8

001 st0

0 sti1

st2

st3

st4

stb

sté

11 st7

.table ps_bO ps_bl ps_b2 ps_b3 i0 il —>inf_ns_b3
.default O

010 -

B O O O O O
o
=
I
i

O OO OO O OO
= = B, O O O
B O O rFr »r O

m O FPr O L O
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--1-011

-1-0011
1---011
.reset ps_b0

0
.latch inf_ns_bO ps_bO

.reset ps_bl

0

.latch inf_ns_bl ps_bil

.reset ps_b2

0

.latch inf_ns_b2 ps_b2

.reset ps_b3

1

.latch inf_ns_b3 ps_b3

.exdc

.inputs i0 il ps_bO ps_bl ps_b2 ps_b3
.outputs ns o0

.table ps_bO ps_bl ps_b2 ps_b3 i0 il —>00
.default 0O

0-10
1
0

1
1

1
00
0_
0
1

O O O O
OO r Hr O
B = B 2O O

0
___1_
.table ps_bO ps_bl ps_b2 ps_b3 i0 il —>ns
.default 0O

0-10
1
0

e

1
00
0_
0
1

O O O O
OO r KL O
= = B OO

1
001
---1
.end
mvsis> validate lion9.mv
Networks are sequentially equivalent according to simulation.

e

The following example demonstrates extract_seq dc. that computes sequential don’t cares (unreachable
states) and merges them with the exdc network. The example has multi-valued sequential don’t cares
(states st5 and st6 are unreachable from the initial state st1), to which additional don’t cares are added
after encoding because there is an unused code (101).

mvsis> rl 1b2.mv

node ns is incompletely specified (exdc extracted)
node o0 is incompletely specified (exdc extracted)
mvsis> wl

.model 1b2

.inputs i0 i1l

.outputs ns o0

20



.mv ns 6 stl st2 st3 st4 stb sté
.mv ps 6 stl st2 st3 st4 stb5 st6

.table i0 i1 ps ->01

00stl 1
00st20
00 st3 0
00st6 1
01stl 1
01st31
01std 1
01sth 1
10st20
1 0st4 0
1 0sth 1
1 0 st6 1
11st10
11st30
11st4 1
11st50
11st61

.table i0 il ps ->00

00st1 1
00 st21
00 st31
00 st6 1
01stl 1
01st30
01std 0
01sth 1
1 0st21
10st4 1
1 0sth O
1 0 st6 0
11st11
11st31
11std4 1
11stbh 1
11 st61

.table i0 il ps ->ns

0 0 stl1 sti1
0 0 st2 st2
0 0 st3 st2
0 0 st6 stl
0 1 stl stl
0 1 st3 st3
0 1 st4 st3
0 1 stb stil

1 0 st2 st4
1 0 st4 st4
1 0 stb stb
1 0 st6 stb
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stl st3

st3 st3

st4d st4d

stb st3

1 st6 st6

.reset ps

st1

.latch ns ps

.exdc

.inputs i0 il ps
.outputs ns o0

.mv ps 6 stl st2 st3 st4 stb5 st6
.table i0 il ps ->00
.default 0O

0 0 (st4,stb) 1

10 (st1,st3) 1

- 1st21

01st61

.table i0 il ps ->ns
.default O

0 0 (st4,stb) 1

10 (st1,st3) 1

- 1st21

01st61

.end

N e
e

mvsis> extract_seq_dc

external don’t care network has been created
mvsis> wl

.model 1b

.inputs i0 i1l

.outputs ns o0

.mv ns 6 stl st2 st3 st4 stb st6

.mv ps 6 stl st2 st3 st4 stb st6

.table i0 il ps ->01

0 stl1 1

st2
st3
st6
stl
st3
st4
stb
st2
st4
stb
st6
stl
st3
st4
stb
st6

P P RPRRPRPRPRPRPRPPRPPOOOOCOOOO
B B, R, R P O0O0O00O0OR, P, P EFEOOO
P OPRP OOFRPR PR OORFRPRFRPRRPRPRREPRREL OO



.table i0 il ps ->00
0 st1 1
st2
st3
st6
stl
st3
st4
stb
st2
st4
stb
st6
stl
st3
st4
stb
1 st6 1
.table i0 il ps ->ns
0 stl sti
st2 st2
st3 st2
st6 sti
stl sti
st3 st3
st4 st3
stb sti
st2 st4
st4 st4
stb stb
st6 stb
stl st3
st3 st3
st4 st4
stb st3
st6 sté

.reset ps
stl

.latch ns ps

.exdc

.inputs i0 il ps

.outputs o0 ns

.mv ps 6 stl st2 st3 st4 stb5 sté6
.table ps i0 il ->00

.default O

(st5,st6) - - 1
st2 - 11

(st1,st3) 101

(st4,stb) 00 1

.table ps i0 il ->ns

.default 0O

P P PR RPRPRPRRPRPRPOOOOCOOOO
P B, PP OO0OO0OO0ORFRRFEPREREFEOOO
P PP PRPOORRFPEFPLOORRERRELRLBRL

P PR P RPRPRPRPRPRPOOOOOOOO
B B, R, P O0OO0OO0OO0OFR PP, PP OOO
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(st5,st6) - - 1
st2 - 11

(st1,st3) 1
(st4,st5) 0 0
.end

01
1

mvsis> enm -v

node inf_ns is encoded as: value 0 - 001 value 1 - 010 value 2 - 000 value 3 - 011 value 4 - 100 value 5 -
mvsis> extract_seq_dc

external don’t care network has been created

mvsis> wl

.model 1b

.inputs i0 i1

.outputs ns o0

.mv ns 6 stl st2 st3 st4 stb st6

.table ps_bO ps_bl ps_b2 i0 il ->inf_ns_b2

.default O

0001

O O =
= = = O
|

1
11-
.table ps_bO ps_bl ps_b2 i0 il ->01
.default 1

-
» O P Bk O
B, O L, O

e i i ol S

= O O =
S O OO

1
o_
.table ps_bO ps_bl ps_b2 i0 il ->00
.default 1

» O r O
O |

O O =
= O = O
OB O K
O O O o

.table ps_bO ps_bl ps_b2 i0 il ->inf ns_bl
.default 0O

-0001

11-1

-111

-101

.table ps_bO ps_bl ps_b2 i0 il ->inf_ns_bO
.default 0O

1-0101

11-1-1

.table inf_ns_b0 inf_ns_bl inf_ns_b2 ->ns

.default st6

O = O O
e
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.reset ps_b0

0

.latch inf_ns_bO ps_bO

.reset ps_bl

0

.latch inf_ns_bl ps_bil

.reset ps_b2

1

.latch inf_ns_b2 ps_b2

.exdc

.inputs i0 il ps_bO ps_bl ps_b2
.outputs inf_ns_b2 o0 inf_ns_bl inf_ns_bO ns
.table ps_bO ps_bl ps_b2 i0 il ->00
.default 0O

----1

10-11

0-101

11001

.table ps_b0O —>inf_ns_b2
.default 0O

11

.table ps_b0 —>inf_ns_bil
.default O

11

.table ps_b0O —->inf_ns_b0
.default 0O

11

.table ps_bO ps_bl ps_b2 i0 il ->ns
.default 0

1----1

-10-11

0-101

11001

.end

=

(el

I O

8 Caveats

1. MVSIS only works correctly on deterministic networks, i.e. ones where any primary output as a
function of the primary inputs, has at most one value per minterm. We do not check for non-
determinism. If a network is non-deterministic, it can result in a new network that is not equivalent
to the original. If a node is incompletely specified, unspecified minterms are assigned to the default
value.

2. MVSIS can be applied to binary files by using the read blif command. The results can be compared
to those obtained by SIS. At this time we are still tuning the algorithms in MVSIS and comparing
with SIS on binary files. SIS has a set of filters which are used to estimate when a result may blow
up and if so it will not do the computation. We are experimenting with similar filters in MVSIS.
Nevertheless, MVSIS is pretty competitive with SIS in terms of speed and results.

25



. In general, some MVSIS commands do not have filters yet. Some examples are reset _default which

computes the default value for each node and chooses another value-function to be the default if it
is larger. This computation uses the complement operation and may blow up. We do have filters on
fullsimp, factor and eliminate.

. Another source of slow behavior can be resub, if there are many nodes in the network. As mentioned,

formal verification can be done by writing a file and using VIS. For now, we have not built in a formal
verification method, like SIS which can compute BDDs for two networks and compare them. Our
verification is only by simulation through the validate command.

. MVSIS is only being made available as an executable running under LINUX. This saves us a lot of

development effort that would be expended in releasing source code which is compilable on various
machines running under different environments. Perhaps in the future, source code can be released
so that users can experiment with adding different algorithms, as SIS is used in academia and in
industry. It is easy to port the code to alphas and SUNs. If there are users who desire MVSIS source
code, we may work with individuals to make it available under special requests.

. A BLIF-MV file can be generated using v12mv which translates verilog to BLIF-MV. v12mv is available

as part of VIS.

. The missing minterms of an incompletely specified PIPO node (i.e., a node whose outputs are primary

outputs and whose inputs are primary inputs) are added to the external don’t care set; whereas the
missing minterms of an incompletely specified non-PIPO node are assigned to the current default
value for that node.
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