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r BSIM3v3 has been chosen as the first industry standard model for
circuit simulation and is supported by EIA Compact Model Council
(CMC), a consortium of 20 companies including IBM, Intel, TI, 
Motorola, Lucent, AMD, Hitachi, Philips, Infineon, TSMC, Cadence, 
Avanti, etc.

r As a standard model, BSIM simplifies technology sharing, foundry
and other partnerships, and improves productivity.

Berkeley Short-channel IGFET Model (BSIM)
- Industry Standard Model
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Review of BSIM3
BSIM3 Accounts for Major Physical Mechanisms

• Short/Narrow Channel Effects on Threshold Voltage
• Non-Uniform Doping Effects
• Mobility Reduction Due to Vertical Field
• Bulk Charge Effect
• Carrier Velocity Saturation
• Drain Induced Barrier Lowering (DIBL)
• Channel Length Modulation (CLM)
• Substrate Current Induced Body Effect (SCBE)
• Parasitic Resistance Effects
• Quantum Mechanic Charge Thickness Model
• Unified Flicker Noise Model
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Basic IV model
Vth model for pocket/retrograde technologies
Vgsteff
Bulk charge (Abulk) model
Mobility models
Rout model

GIDL current model

Bias-dependent Rds(V) model, internal or external

Gate (equivalent) Tox and dielectric constant, and quantum-
mechanical charge-layer thickness model

BSIM4 Overview
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RF and High-speed model
Intrinsic input resistance (Rii) model
Non-Quasi-Static (NQS) model
Holistic and noise-partition thermal noise model
Substrate resistance network

Flicker noise model

Geometry calculation (Layout-dependent parasitics) model

Asymmetrical source/drain junction diode model
I-V and breakdown model

Gate dielectric tunneling current model

BSIM4 Overview
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Put Radio On A Single Chip

7.5m m

ISSCC’97

• The ultimate goal: integrate the whole system on a chip (SOC)

• Advantages: lower cost, smaller form factor, better performance
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State-of-the-art RF Model Is 
Table Lookup

Accuracy at
RF

SOC
simulation

Efficiency Scalability Predictive
 ability

Table
lookup

     +     -       -       -       -
Compact
Model

 Present
model is
inadequate

    +       +       +      +

• Table lookup model is not a good solution.

Table Lookup vs. Compact Model
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Missing Pieces

What are missing in the low frequency models:

• Intrinsic input resistance which is function of channel length 
and bias

• Thermal noise becomes very important in RF circuits for
communications. The 20-year old long channel thermal
noise model is not acceptable any more.

• Extrinsic resistance: gate electrode resistance and
substrate resistance
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BSIM4 RF Model

S

G

Rg

Rd

Rs

Substrate
resistance

D

RF model requires accurate low frequency model, Rg and Rsub 

Low Frequency
Model
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Electrode Resistance is A 
Minor Part of Gate Resistance

Drain

Source

Gate electrode resistance:

It is independent of bias, decreases as L increases
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Most of Gate Resistance Is 
Intrinsic
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The proportion constant is determined by 
2-D simulation
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2-D Simulation Verification of Rii 
Model
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• 2-D simulation shows a non-zero Rii

model
2-D simulation

• A single analytical function models dependency of Rii

on Vds, Vgs and L
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Measurement Verification of Rii 
Model

• Measured data show Rg is independent of frequency  

• Rg is strong function of bias
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Verification of Rii With 
Different L

0.5 1.0 1.5 2.0
10

20

30

40

50

60

70
 L=0.27u
 L=0.42u
 L=0.64u
 Model

Vd=1V

R
g 

(o
hm

)

Vg(V)

• Measurements show Rg increases as L increases
• The intrinsic input resistance is dominant over gate electrode resistance
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Substrate Network

S D

B

G

• In practice, two or three resistors are  sufficient for accurate modeling

• Substrate resistance is responsible for the Rout roll-off at high frequency

• BSIM4 allows user to use 0-5 resistors
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Substrate Network Model 
Verification
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Measurement Verification of BSIM4 RF 
Model
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Verification of Scalability of RF 
Model
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Circuit Level Verification of RF 
Model

Vdd
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• A prototype LNA was fabricated in 0.6um CMOS
• Measured result confirms the BSIM RF model

BSIM RF

BSIM3v3
measured
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Holistic Thermal Noise Model

Holistic Thermal Noise Model

Channel Thermal Noise Model

-- physical, all short channel and other 
effect in the BSIM DC model 
automatically included in noise.
-- Gate amplification of noise dominates 
channel resistance noise 

Noise-Partition Model

-- Unifies the induced gate 
noise and channel noise with 
correlation 
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Holistic Thermal Noise Model
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Channel Noise
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Unified Model of Channel Noise and
Induced Gate Noise

Gate impedance

• At high frequencies, the elemental channel resistance noise source 
will generate significant noise current through the gate capacitance.

• The induced gate noise is correlated with the channel noise 
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Noise Partition Model
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Measurement Verification of 
Holistic Noise Model
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Verification With Constant Noise 
Contours 
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BSIM4 Long Channel DIBL due to 
Pocket Implant
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BSIM4 retains mobMod=0 and 1 mobility models from 
BSIM3v3.2.2. The new mobMod=2, universal mobility 
model, is more accurate and suitable for predictive 

modeling:

where the constant C0 = 2 for NMOS and 2.5 for PMOS.

BSIM4 IV Model: Universal Mobility
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Predictive Mobility Model
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Verification of BSIM4 Rout Model
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Verification of BSIM4 Rout Model
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p Verification

BSIM4 IV Model: Gate-Induced Drain Leakage Current
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p Gate tunneling current of n+-poly NMOS and p+-poly PMOS are 
modeled, including Igb between gate and body, and Igc
between gate and channel, which is partitioned between the 
source and drain terminals such that Igc = Igcs + Igcd. 
Tunneling currents  in the gate-source/drain overlap regions (Igs
and Igd) are modeled as well.

p Modeled current flows for NMOST in inversion region

BSIM4 Gate Dielectric Tunneling Current Model

Igs Igd

Igb

Igcs Igcd
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3.    Three tunneling mechanisms are considered ECB, EVB and 
HVB.

4.     Equations:

BSIM4 Gate Dielectric Tunneling Current Model
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5.   Verification:

BSIM4 Gate Dielectric Tunneling Current Model
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5.   Verification:

BSIM4 Gate Dielectric Tunneling Current Model



Chenming Hu University Of California Berkeley

BSIM4 models charge-layer thickness (XDC) effect. Based on 
XDC, the effect of Coxeff on IV and CV is modeled.

Model parameters:
acceptance of either the electrical or physical gate oxide thickness as the model input at the user's 
choice in a physically accurate manner;

TOXE: Electrical gate equivalent oxide thickness;

TOXP: Physical gate equivalent oxide thickness;

TOXM: TOXE at which the other BSIM4 parameters are extracted;
DTOX: Defined as (TOXE - TOXP).

XDC equation:

Gate (Equivalent) Tox and Dielectric Constant, and 
Quantum Mechanical Charge-Layer-Thickness Model
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p Algorithm and model equations:

Gate (Equivalent) Tox and Quantum-Mechanical 
Charge-Layer Thickness

TOXE given?TOXE and TOXP
both given?

No

Yes

TOXP given?
No

YesYes

No

TOXE ⇐ TOXE
TOXP ⇐ TOXP

TOXE ⇐ TOXE
TOXP ⇐ TOXE - DTOX

TOXE ⇐ TOXP + DTOX
TOXP ⇐ TOXP

Default 
case

• TOXE is used to compute: Vth, subthreshold swing, Vgsteff,
Abulk, mobiliy, Vdsat, K1OX = K1 * TOXE / TOXM, K2OX = K2 * 
TOXE / TOXM, capMod=0 and 1, and so on; and
• TOXP is used to compute Coxeff for drain current and
capMod=2 through XDC.
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p Charge-Current-Capacitance (QIC) Model for 
series/parallel devices

BSIM4 Comprehensive and Versatile 
Layout-Dependent Parasitics Model

Intrinsic QIC
( ) ( ) NFWeffcvWeffQICWdrawnQIC fingerpertotal ⋅=

−
,

Overlap QC
( ) ( ) NFWeffcvQCWdrawnQC fingerpertotal ⋅=

−

Diode IC
( ) jbottomefftotaljbottom CAWdrawnC ⋅=,

( ) NFCWeffcjCPWdrawnC jswgjswefftotaljsw ⋅⋅+⋅=,

( ) NFJWeffcjJPJAWdrawnI jswgjsweffbottomsateffsatdiode ⋅⋅+⋅+⋅= ,,
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p This model considers the effects of S/D/G and contact 
geometries and  contact types on :

1. junction perimeters and areas (diode IV and CV);
2. S/D and gate resistances;

p This model supports multi-fingered device layout.
p It is able to model devices either in series, parallel or 
configurations.
p Parameters Wdrawn, Ps, Pd, As and Ad specified in the 
instance line are defined as the total values for a multi-
finger device, not the values for each finger.
p Weff, per-finger device width, is defined as:

p Fourteen New parameters.

BSIM4 Comprehensive and Versatile 
Layout-Dependent Parasitics Model

W
NF

Wdrawn
Weff δ⋅−= 2
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p Series/cascode connections: isolated, shared, and merged

BSIM4 Comprehensive and Versatile 
Layout-Dependent Parasitics Model

Isolated S/D

Shared S/D

Merged S/D

Isolated S/D

DMCI of 
Isolated S/D

DMCG of 
Shared S/D

DMDG of 
Merged S/D

DMCI of 
Isolated S/D
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p Example: Combination of Series/Parallel Connections

BSIM4 Comprehensive and Versatile 
Layout-Dependent Parasitics Model

M1

M2

M1 & M2 isolated

M1

M2

M1 & M2 shared

M1

M2

M1 & M2 merged
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p Multi-finger/parallel devices:

BSIM4 Comprehensive and Versatile 
Layout-Dependent Parasitics Model

Per-finger device

NF (number of fingers) per-finger devices in parallel

S D S D S D

NF=Even, MINSD==0 NF=Even, MINSD==1

S D S

NF=Odd, MINSD is not needed

D
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p S/D Diffusion and Gate Electrode Resistances

BSIM4 Comprehensive and Versatile 
Layout-Dependent Parasitics Model

DMCI of
Point contact 

DMCG of
Wide contact

DMDG
No contact

DMCI of
Wide contact

XGWL-XGL
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Highlights of BSIM4:
p RF Model including the new holistic thermal noise 
model. Comprehensive layout-dependent parasitics
model. Quantum mechanical charge thickness model in IV 
and CV. Gate-Induced drain leakage. Gate dielectric 
tunneling current, heavy pocket implant effect.
p Better physics should further enhance BSIM’s role as a 
vehicle for statistical modeling and predictive modeling.

Summary


