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Abstract. Platform-based design is a powerful concept for coping with the increased pressure on time-to-
market, design and manufacturing costs.  The idea has been exploited for years in the design of Personal 
Computers. We present a generalization and formalization of this approach for the design of electronic 
systems, composed by software and hardware components, and integrated circuits. This approach has been 
vigorously pursued by the MARCO Giga-scale Silicon Research Center as a foundation of its efforts. In 
addition to a formal definition of platforms and platform stacks, we present examples of this concept at the 
most important articulation points of the design process: the hand-off between system level applications 
and implementation and the one between circuit design and manufacturing. We also introduce the concept 
of network platform to show how to extend this concept to higher levels of abstractions, demonstrating its 
general applicability. 

1. Introduction 

The complexity of electronic designs and the number of technologies that must be mastered to bring to 
market winning products have forced electronic companies to focus on their core competence. Product 
specification, IP creation, design assembly and manufacturing are, for the most part, no longer taking place 
in the same organization. Indeed, the electronic industry has been disaggregating from a vertically oriented 
model into a horizontally oriented one for a few years. Integration of the supply chain is today a serious 
problem. Time-to-market pressure, design complexity and cost of ownership for masks are driving towards 
more disciplined design styles that favor design re-use and correct-the-first-time implementations. The 
quest for flexibility in embedded system design coupled with the previous considerations is pushing the 
electronic industry towards programmable solutions for a larger class of designs than ever before. Design 
methodology has become THE focus: design infrastructure and tools must be developed in synchrony with 
design methodology. 
 
Creation of an economically feasible electronic design flow requires a structured methodology that 
theoretically limits the space of exploration, yet in doing so achieves superior results in the fixed time 
constraints of the design. This approach has been very powerful in design for both integrated circuits and 
computer programs. For computer programs, the use of high-level programming languages has replaced for 
the most part assembly languages, for integrated circuits, regular structures such as gate arrays and standard 
cells have replaced transistors as a basic building block. The methodology promoted in this paper can be 
seen as the result of a natural progression in the quest for higher level of abstractions (see Figure 1). 
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Figure 1 A brief history of abstraction in design (Source: F. Schirrmeister). 

 
The methodology is based on defining Platforms at all of the key articulation points in the design flow. 
Each platform represents a layer in the design flow for which the underlying, subsequent design-flow steps 
are abstracted. By carefully defining the platform layers and developing new representations and associated 
transitions from one platform to the next, we believe that an economically feasible electronic system design 
flow can be realized.  
 
The goal of this paper is to distill what has been done over the years so that a unified view of design could 
be based on platforms, i.e., abstraction layers that hide the unnecessary details of lower level of 
abstractions. We have been promoting platform-based design for a number of years and we have seen 
several instances of this principle come to market in the form of chips, chip-sets, architectures and middle-
ware including Operating Systems, Compilers, Device Drivers and Network Communication Protocols. 
 
The platform-based design methodology we have focused on is the outgrowth of the SoC debate where the 
economics of chip manufacturing and design has been carefully studied.  
 
The overall goal of electronic system design is to balance production costs with development time and cost 
in view of performance, functionality and product-volume constraints.  
 

1. Manufacturing cost depends mainly on the hardware components of the product. Minimizing 
production cost is the result of a balance between competing criteria. If we think of an integrated 
circuit implementation, then the size of the chip is an important factor in determining production 
cost. Minimizing the size of the chip implies tailoring the hardware architecture to the 
functionality of the product. However, the cost of a state-of-the-art fabrication facility continues to 
rise: it is estimated that a new 0.18µm high-volume manufacturing plant costs approximately $2-
3B today.  

 
2. NRE (Non-Recurrent Engineering) costs associated with the design and tooling of complex chips 

are growing rapidly. The ITRS predicts that while manufacturing complex System-on-Chip 
designs will be feasible, at least down to 50nm minimum feature sizes, the production of practical 
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masks and exposure systems will likely be a major bottleneck for the development of such chips. 
That is, the cost of masks will grow even more rapidly for these fine geometries, adding even more 
to the up-front NRE for a new design. A single mask set and probe card cost for a next-generation 
chip is over $1M for a complex part, up from less than $100K a decade ago (note: this does not 
include the design cost). Furthermore, the cost of developing and implementing a comprehensive 
test for such complex designs will continue to represent an increasing fraction of a total design 
cost unless new approaches are developed. 

 
Increasing Mask and manufacturing setup costs are presently biasing the manufacturers towards parts that 
have guaranteed high-volume production from a single mask set. This translates to better response time and 
higher priorities at times when global manufacturing resources are in short supply. 
 

3. Design costs are exponentially rising due to the increased complexity of the products, the 
challenges posed by physical effects for deep sub-micron and the limited human resources. Design 
productivity according to Sematech is falling behind exponentially with respect to the technology 
advances. Time-to-market constraints are also growing at such a fast pace that even if costs were 
not an issue, it is becoming plainly impossible to develop complex parts within the constraints. An 
additional problem is the lack of skilled work force that could implement future IC’s considering 
the system aspects of the design and all second order physical effects that will be of primary 
importance in deep sub micron. 

 
The design problems are presently pushing IC and system companies towards designs that can be 
assembled quickly from pre-designed and pre-characterized components versus full custom design 
methods. This translates to high-priority on design re-use, correct assembly of components, and fast, 
efficient compilation from specifications to implementations, correct-by-construction methodologies and 
fast/accurate verification1. 
 
Our objective is a design methodology (i.e., Platform-based Design) that can trade-off various 
components of manufacturing, NRE and design costs sacrificing as little as possible “potential” design 
performance. We define the methodology so that it applies to all levels of abstraction of the design thereby 
providing an all-encompassing intellectual framework in which research and design practices can be 
embedded and justified. 
 
In this paper, we define the motivations and principles for Platform-based Design2. We believe that the 
popularity of this concept has led to confusion as to what this term means and implies. The goal here is to 
define what these characteristics are so that a common understanding can be built and a precise reference 
can be given to the electronic system and circuit design community.   
 
Platform-based design has been generically associated to design styles that favor software solutions over 
application specific hardware. The chip-in-a-day approach proposed by Bob Brodersen has been pitted 
against platform-based design as a more effective way of designing high-performance electronic systems. 
However, if the “formal” definition of platform-based design, as given here, is used, then one can see that 
design style extremes such as full custom and fully programmable styles can be embedded in the unifying 
framework offered here. In any case, we believe that the trend towards more software-based solutions is 
strong and is going to permeate electronic system design for many years to come. 
 

                                                           
1 The design time issue can be addressed not only by re-use but also by tools that provide automatic mapping. For 
example, if we had the ultimate silicon compiler, an architecture platform could be the entire set of micro-architectures 
the silicon compiler can map into.  
2 The design methodology exposed here has been one of the major trusts of the MARCO Giga-scale Silicon Research 
Center, whose overarching goal is: 
“Empowering designers to move from ad-hoc system-on-a-chip design to disciplined, platform-based design by 
enabling scalable, heterogeneous, component-based design with a  single-pass route to efficient silicon 
implementation from a micro-architecture” (Richard Newton and the GSRC team) 
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2. Platforms 

The concept of platform has been around for years. However, many are the definitions of platform that 
have been used and that depend on the domain of application.  
 
In the IC domain, a platform is considered a “flexible” integrated circuit where customization for a 
particular application is achieved by “programming” one or more of the components of the chip. 
Programming may imply “metal customization” (Gate arrays), electrical modification (FPGA 
personalization) or software to run on a microprocessor or a DSP. For example, a platform has been 
considered a fixed micro-architecture to minimize mask-making costs, but flexible enough to warrant its 
use for a set of applications so that production volume will be high over an extended chip lifetime. Micro-
controllers designed for automotive applications such as the Motorola Black Oak PowerPC are examples of 
this approach. The problem with this approach is the potential lack of optimization that may make 
performance too low and size too large. An extension of this concept is “a family” of similar chips that 
differ for one or more components but that are based on the same microprocessor. For the case of the Black 
Oak, Motorola indeed developed a family of micro-controllers, e.g., Silver Oak and Green Oak, that differ 
for flash memory size and peripherals. The TI OMAP platform for wireless communication, the Phillips 
Nexperia Platform, and the Xilinx Vertex Platform are a few examples of this approach.  
 
“We define platform-based design as the creation of a stable microprocessor-based architecture that can be 
rapidly extended, customized for a range of applications, and delivered to customers for quick 
deployment.” Source: Jean-Marc Chateau  (ST Micro) 
 
 
In the PC domain, PC makers have been able to develop their products quickly and efficiently around a 
standard “platform” that emerged over the years. The architecture standards can be summarized in the 
following list: 
 

a. The x86 instruction set architecture (ISA) that makes it possible to re-use the operating 
system and the software application at the binary level3;  

b. A fully specified set of busses (ISA, USB, PCI) that make it possible to use the same 
expansion boards or IC’s for different products4; 

c. Legacy support for the ISA interrupt controller that handles the basic interaction between 
software and hardware. 

d. A full specification of a set of I/O devices, such as keyboard, mouse, audio and video 
devices. 

 
All PCs should satisfy this set of constraints. If we examine carefully the structure of a PC platform, we 
note that it is not the detailed hardware micro-architecture that is standardized, but rather an abstraction 
characterized by a set of constraints on the architecture (a through d above). The platform is an 
abstraction of a “family” of (micro)-architectures. In this case, design time is certainly minimized since the 
essential components of the architecture are fixed and the degrees of freedom allow some optimization for 
performance and cost5.  
 
For system companies, the definition of platform is very loose. This quote from an Ericsson press release is 
a good example: “Ericsson's Internet Services Platform is a new tool for helping CDMA operators and 
service providers deploy Mobile Internet applications rapidly, efficiently and cost-effectively.”  

                                                           
3 In fact, the MS-DOS operating system can be run on any compatible x86 microprocessor. 
4 Note that expansion board re-usability is limited by the technology used.  
5 The concept of PC platform actually can be linked to the old Burroughs ‘E-mode’ mainframe architectural concept, 
where the ISA was common across many different implementations over many years.   Burroughs E-mode was claimed 
to be so effective that programs compiled on the first machines in the early 60’s would work (as object code) on the 
latest machines in the 80’s and 90’s. 

 4



3. Platform-Based Design 

3.1. The Overarching Conceptual View 

As we have seen, various forms of platform-based design have been used for many years. Our intention is 
to formally define the key principles of platform-based design that will serve as a framework for design 
technology research and practices.  
 
The basic tenets of the Platform-based Design Methodology we propose are: 
  

• Regarding design as a “meeting-in-the-middle process” where successive refinements of 
specifications meet with abstractions of potential implementations; 

• The identification of precisely defined layers where the refinement and abstraction process take 
place. The layers then support designs built upon them isolating from lower-level details but 
letting enough information transpire about lower levels of abstraction to allow design space 
exploration with a fairly accurate prediction of the properties of the final implementation. The 
information should be incorporated in appropriate parameters that annotate design choices at the 
present layer of abstraction. These layers of abstraction are called Platforms to stress their role in 
the design process and their solidity.  

 
From a historical perspective and the newly formed concepts stated above, we can state that the general 
definition of a platform is an abstraction layer in the design flow that facilitates a number of possible 
refinements into a subsequent abstraction layer (platform) in the design flow.  
 
The “mille feuilles”6 of Figure 2 is a rendition of the design process as a succession of abstraction layers.  
The analogy covers also the filling between consecutive layers. This filling corresponds to the set of 
methods and tools that allow to map the design from one abstraction layer to the next.  
 
Often the combination of two consecutive layers and their “filling” can be interpreted as a unique 
abstraction layer with an “upper” view, the top abstraction layer and a “lower” view, the bottom layer. We 
will see some examples of how to use this concept. 
 
Every pair of platforms, the tools and methods that are used to map the upper layer of abstraction into the 
lower level one is a platform stack. 

                                                           
6 A “mille feuilles” is a French origin dessert. The version shown in Figure 2 is one of its Italian renditions where 

the custard layers are replaced by Chantilly cream layers enriched by wild berries and the dough layers are lighter and 
crispier. 
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Figure 2.  Platforms, Mapping Tools and Platform Stacks 

 
Note that we can allow a platform-stack to include several sub-stacks if we wish to span a large number of 
abstractions.  This will largely depend on the capabilities of the tools and the outcome of research programs 
such as the GSRC’s. We emphasize again that the upper view, the lower view and the tools that map the 
two platforms are the important constituents of the platform-stack. The larger the span, the more difficult it 
will be to map effectively the two, but the greater the potential7 for design optimization and exploration. 
 
Key to the application of the design principle is the careful definition of the platform layers. Platforms can 
be defined at several point of the design process. Some levels of abstractions are more important than 
others in the overall design trade-off space. In particular, the articulation point between system definition 
and implementation is a critical one for design quality and time. Indeed, the very notion of platform-based 
design originated at this point (see Ferrari and Sangiovanni-Vincentelli, 1999, Martin, Chang et al, 1999, 
Balarin et al., 1997, Keutzer et al, 2000). In studying this articulation point, we have discovered that at this 
level there are indeed two distinct platforms that need to be defined together with the methods and tools 
necessary to link the two. The one that has been studied the most is what we call the Architecture Platform. 
 

3.2. (Micro-) Architecture Platforms 

Integrated circuits used for embedded systems will most likely be developed as an instance of a particular 
(micro-) architecture platform. That is, rather than being assembled from a collection of independently 
developed blocks of silicon functionality, they will be derived from a specific “family” of micro-
architectures, possibly oriented toward a particular class of problems, that can be modified (extended or 
reduced) by the system developer.  
 

                                                           
7 Importantly, most of this potential is unrealized due to the complex and sometimes unrealistic nature of the design 

and verification processes for a single-pass design flow. Our research is toward restricting the space of exploration as 
little as possible, but while enabling a reliable single-pass process. 
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The elements of this family are a sort of  “hardware” denominator that could be shared across multiple 
applications. Hence, the (micro-) architecture platform concept as a family of micro-architectures that are 
closely related is mainly geared towards optimizing design time:  every element of the family can be 
obtained quickly by personalizing an appropriate set of parameters that control the micro-architecture. For 
example, the family may be characterized by the same programmable processor and the same 
interconnection scheme, but the peripherals and the memories of a particular implementation may be 
selected from a pre-designed library of components depending on the particular application. Depending on 
the implementation platform that is chosen – more on this to follow -- each element of the family may still 
need to go through the standard manufacturing process including mask making. This approach then 
conjugates the need of saving design time with the optimization of the element of the family for the 
application at hand. Although it does not solve the mask cost issue directly, it should be noted that the mask 
cost problem is primarily due to generating multiple mask sets for multiple design spins, which is addressed 
by the Architecture Platform methodology. The less constrained the platform, the more freedom a designer 
has in selecting an instance and the more potential there is for optimization —if time permits. However, 
more constraints mean stronger standards and easier addition of components to the library that defines the 
architecture platform (see the PC case). Note that the basic concept is similar to the cell based design layout 
style where regularity and the re-use of library elements allows faster design time at the expense of some 
optimality. The trade-off between design time and design “quality” as always to be kept in mind. The 
economics of the design problem have to dictate the choice of design style. The higher the granularity of 
the library, the more leverage we have in shortening the design time. Given that the elements of the library 
are re-used, there is a strong incentive to optimize them. In fact, we argue that the “macro-cells” should be 
designed with great care and attention to area and performance. It makes also sense to offer a variation of 
cells with the same functionality but with implementations that differ in performance, area and power 
dissipation. 
 
Architecture platforms are, in general, characterized by (but not limited to) the presence of programmable 
components so that each of the platform instances that can be derived from the architecture platform 
maintains enough flexibility to support an application space that guarantees the production volumes 
required for economically viable manufacturing. The library that defines the architecture platform may also 
contain re-configurable components. 8 

3.2.1  Architecture Platform Instance 
An architecture platform instance is derived from an architecture platform by choosing a set of 
components from the architecture platform library and/or by setting parameters of re-configurable 
components of the library.  
 
The flexibility, i.e., the capability of supporting different applications, of a platform instance is guaranteed 
by programmable components. Programmability will ultimately be of various forms, including the two that 
exist today: software programmability to indicate the presence of a micro-processor, DSP or any other 
software programmable component, or hardware programmability to indicate the presence of 
reconfigurable logic blocks such as FPGAs, whereby logic function can be changed by software tools 
without requiring a custom set of masks. Some of the new architecture and/or implementation platforms 
being offered on the market mix the two into a single chip (for example, Triscend, Altera and Xilinx are 
offering FPGA fabrics with embedded hard processors). Software programmability yields a more flexible 
solution since modifying software is in general faster and cheaper than modifying FPGA personalities. On 
the other hand, logic functions mapped on FPGAs execute orders of magnitude faster and with much less 
power than the corresponding implementation as a software program. Thus, the trade-off here is between 
flexibility and performance.  

                                                           
8 Reconfigurability comes in two flavors:  

• Run-time reconfigurability, a la Triscend/Xilinx/Altera, where FPGA blocks can be customized by the user 
without the need of changing mask set, thus saving both design cost and fabrication cost;  

• Design-time reconfigurability, a la Tensilica Xtensa, where the silicon is still application-specific; in this 
case, only design time is reduced. 
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3.2.2  Architecture Platform Design Issues 
 
Today the choice of an architecture platform is more an art than a science. Seen from the application 
domain, the constraints that determine the architecture platform are often given in terms of performance 
and “size”. For a particular application, we require that, to sustain a set of functions, a CPU should be able 
to run at least at a given speed and the memory system should be of at least a given number of bytes. Since 
each product is characterized by a different set of functions, the constraints identify different architecture 
platforms where applications that are more complex yield stronger architectural constraints. Coming from 
the IC manufacturer space, production and design costs imply adding platform constraints and 
consequently reducing the number of choices. The intersection of the two sets of constraints defines the 
architecture platforms that can be used for the final product. Note that, because of this process, we may 
have a platform instance that is over-designed for a given product; that is, the potential of the architecture is 
not fully utilized to implement the functionality of that product. Over-design is very common for the PC 
platform. In several applications, the over-designed architecture has been a perfect vehicle to deliver new 
software products and extend the application space. We believe that some degree of over-design will be 
soon accepted in the embedded system community to improve design costs and time-to-market. Hence, the 
“design” of an architecture platform is the result of a trade-off in a complex space that includes: 
 
• The size of the application space that can be supported by the architectures belonging to the 

architecture platform. This represents the flexibility of the platform;  
• The size of the architecture space that satisfies the constraints embodied in the architecture platform 

definition. This represents the degrees of freedom that architecture providers have in designing their 
hardware instances. 

 
Once an architecture platform has been selected, then the design process consists of exploring the 
remaining design space with the constraints set by the platform. These constraints cannot only be on the 
components themselves but also on their communication mechanism. In fact, particular busses may be a 
fixed choice for the communication mechanism (for example, the AMBA bus for the ARM micro-
processor family).  
 
When we march towards implementation by selecting components that satisfy the architectural constraints 
defining a platform, we perform a successive refinement process where details are added in a disciplined 
way to produce an architecture platform instance.   
 
Architecture platform-based design is neither a top-down nor a bottom-up design methodology. Rather, it 
is a “meet-in-the-middle” approach. In a pure top-down design process, application specification is the 
starting point for the design process. The sequence of design decisions drives the designer toward a solution 
that minimizes the cost of the architecture. The design process selects the most attractive solution as 
defined by a cost function. In a bottom-up approach, a given architecture (instance of the architecture 
platform) is designed to support a set of different applications that are often vaguely defined and is, in 
general, much based on designer intuition and marketing inputs. In general, IC companies traditionally 
followed this approach trying to maximize the number of applications (hence, the production volume) of 
their platform instances. The trend is towards defining platforms and platform instances in close 
collaboration with system companies thus fully realizing the meet-in-the-middle approach.  
 
Application developers work with an architecture platform by first choosing the architectural elements they 
believe are best for their purposes yielding a platform instance. Then, they must map the functionality of 
their application onto the platform instance. The mapping process includes hardware/software partitioning. 
While performing this step, the designers may decide to move a function from software implementation 
running on one of the programmable components to a hardware block. This hardware could be 
implemented anywhere from programmable logic to full custom, the representations of which would be 
abstracted from the implementation platform. Once the partitioning and the selection of the platform 
instance are finalized, the designer develops the final and optimized version of the application software. 
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Due to the market forces briefly outlined above, most of the implementation of a system functionality is 
done in software. There is in fact a very strong trend in system-level design towards software away from 
hardware implementations. Indeed, market data indicate that more than 80% of system development efforts 
are now in software versus hardware. This implies that an effective platform has to offer a powerful design 
environment for software to cope with development costs. In addition, one of the motivations toward 
standardization of the programmable components in platforms is software re-use. If the Instruction Set 
Architecture is kept constant, then software porting is much easier. However, this mechanism limits the 
degrees of freedom of system designers who may have to ignore very performing platforms in favor of 
older architectures to maintain software compatibility. Thus, there are two main concerns for an effective 
platform-based design: 
 

1. Software development environment; 
2. A set of tools that insulate the details of the architecture from application software. 
 

This brings us to the definition of an API platform. 

3.3. API Platform 

The concept of architecture platform by itself is not enough to achieve the level of application software re-
use we require. The architecture platform has to be abstracted at a level where the application software 
“sees” a high-level interface to the hardware that we call Application Program Interface (API) or 
Programmers Model. A software layer is used to perform this abstraction (see Figure 3). This layer wraps 
the essential parts of the architecture platform:  
 
• The programmable cores and the memory subsystem via a Real Time Operating System (RTOS),  
• The I/O subsystem via the Device Drivers, and  
• The network connection via the network communication subsystem9.  
 
 

                                                           
9 In some cases, the entire software layer, including the Device Drivers and the network communication subsystem 

is called RTOS. 
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Figure 3. Layered software structure (Source: A. Ferrari)  

 
In our conceptual framework, the programming language is the abstraction of the ISA, while the API is the 
abstraction of a multiplicity of computational resources (concurrency model provided by the RTOS) and 
available peripherals (Device Drivers)10. There are different efforts that try to standardize the API or 
Programmers Model.  
 
In our framework, the API or Programmers Model is a unique abstract representation of the architecture 
platform via the software layer. With an API so defined, the application software can be re-used for every 
platform instance. Indeed the Programmers Model (API) is a platform itself that we can call the API 
platform.  

 
Of course, the higher the abstraction level at which a platform is defined, the more instances it contains. For 
example, to share source code, we need to have the same operating system but not necessarily the same 
instruction set, while to share binary code, we need to add the architectural constraints that force to use the 
same ISA, thus greatly restricting the range of architectural choices.  
 
In our framework, the RTOS is responsible for the scheduling of the available computing resources and of 
the communication between them and the memory subsystem. Note that in several embedded system 
applications, the available computing resources consist of a single microprocessor. In others, such as 
wireless handsets, the combination of a RISC microprocessor or controller and DSP has been used widely 
in 2G, now for 2.5G and 3G, and beyond.  In set-top boxes, a RISC for control and a media processor have 
also been used.   In general, we can imagine a multiple core architecture platform where the RTOS 
schedules software processes across different computing engines. 
 

                                                           
10 Several languages abstract or embed directly the concurrency model avoiding the RTOS abstraction. 
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There is a battle that is taking place in this domain to establish a standard RTOS for embedded applications. 
For example, traditional embedded software vendors such as ISI and WindRiver are now competing with 
Microsoft that is trying to enter this domain by offering Windows CE, a stripped down version of the API 
of its Windows operating system. In our opinion, if the conceptual framework we offer here is accepted, the 
precise definition of the hardware platform and of the API should allow to synthesize automatically and in 
an optimal way most of the software layer, a radical departure from the standard models borrowed from the 
PC world.  

3.4. System Platform-Stack 

The basic idea of system platform-stack is captured in Figure 4. The vertex of the two cones represents the 
combination of the API or Programmers’ Model and the architecture platform. A system designer maps its 
application into the abstract representation that “includes” a family of architectures that can be chosen to 
optimize cost, efficiency, energy consumption and flexibility. The mapping of the application into the 
actual architecture in the family specified by the Programmers’ Model or API can be carried out, at least in 
part, automatically if a set of appropriate software tools (e.g., software synthesis, RTOS synthesis, device-
driver synthesis) is available. It is clear that the synthesis tools have to be aware of the architecture features 
as well as of the API. This set of tools makes use of the software layer to go from the API platform to the 
architecture platform.  

Architecture Platform 
Space Exploration

API Platform
Specification

Application Space

Application Instance

Platform Instance

System
Platform Stack

API Platform

Architecture Platform
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System Platform Stack

Architectural Space

Figure 4 System platform stack 

 
The System Platform-Stack is the combination of two platforms and the tools that map one abstraction 
into the other.  
 
We recall that the platform–stack can be seen as a “single” layer obtained by gluing together the top 
platform and the bottom platform whereby the upper view is the API platform and the lower view is the 
collection of components that comprise the architecture platform. 
 
In the design space, there is an obvious trade-off between the level of abstraction of the Programmers’ 
Model and the number and diversity of the platform instances covered. The more abstract the 
Programmers’ Model the richer is the set of platform instances, but the more difficult it is to choose the 
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“optimal” architecture platform instance and map automatically into it. Hence, we envision a number of 
system platform-stacks that will be handled with somewhat different abstractions and tools. For example, 
traditional platforms that include a small number of standard components such as microprocessors and 
DSPs have an API that is simpler to handle than that for reconfigurable architectures11.  
 
Generalizing our thinking process, we view design as primarily a process of providing abstraction views. 
That is, an “API” platform is a pre-defined layer of abstraction above some more complex device or system 
that can be used to design at a higher level. Suppose our low level machine is a micro-controller with some 
peripheral devices and some programmable logic. A high-level language compiler, a small RTOS and a 
logic synthesis tool for the programmable logic, along with models of the fixed peripherals, might provide 
the link between the API platform and this machine architecture.  
 
Following this model, we see that a structural view of the design is abstracted into the “API” model that 
provides the basis for the design process that rests upon this layer of abstraction. To choose the right 
architecture platform we need to export at the API level an “execution” model of the architecture platform 
that estimates the performance of the lower level architecture platform. This model may include size, power 
consumption and timing; variables that are associated to the lower level abstraction (from the 
implementation platform) and that cannot be computed at the “API” level. On the other hand, we can pass 
constraints from higher levels of abstraction down to lower levels to continue the refinement process 
satisfying the original design constraints. Together with constraints and estimates, we may also use cost 
functions to select among feasible solutions.  
 
In summary, the system platform–stack is a comprehensive model that includes the view of platforms from 
both the application and the implementation point of views. It is the vertex of the two cones in Figure 4. 
Note that the system platform effectively decouples the application development process (the upper 
triangle) from the architecture implementation process (the lower triangle). Note also that, once we use the 
abstract definition of “API” as described above, we may obtain extreme cases such as traditional PC 
platforms on one side and full hardware implementation on the other. Of course, the programmer model for 
a full custom hardware solution is trivial since there is a one-to-one map between functions to be 
implemented and physical blocks that implement them. In this latter case, platform-based design amount to 
adding to traditional design methodologies some higher level of abstractions. Re-usability is of course 
almost not existent. Figure 5 shows how different design styles can be framed in a disciplined platform-
based design approach. In this figure, we also show the mapping of an application onto the appropriate 
platform and the export of performance parameters from the lower level platforms to the API. 
 

                                                           
11 There are also mixed-level platforms (e.g., C and assembler, or RTOS and direct register read/write). They may be 
non-ideal from the viewpoint of abstraction, but they are still used and should be mentioned. In the absence of good 
mapping tools, they may be the only option. Another way of viewing them is the ability of mixing blocks designed 
using various platform layers in the same design. 
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Figure 5 Design styles for architecture implementation in platform-based design (source: R. Newton). 

3.5. Silicon Implementation Platform Stack 

The Silicon Implementation Platform (SIP) Stack of the design flow takes all of or components of the 
architecture platform and maps them to a physical implementation. In this case, we can identify a set of 
abstractions that are related by mapping methods in the same vein that we followed above. In addition, we 
can also export to the physical implementation problem the view of platform stack to include the 
combination of two platforms and of the intermediate levels of abstraction with the transformations and 
tools needed to go from one abstraction to the next.  
 
The platform stack from architecture to actual physical implementation is called the Silicon 
Implementation Platform (SIP) Stack.  
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The top-level view of the SIP stack is the platform architecture view, as shown in 
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The view from beneath the architecture platform is a net-list of abstract views of computational blocks and 
interconnects structures. The next platform, or subsequent level of abstraction towards implementation, can 
vary somewhat based on the underlying technologies that are abstracted.  For example, the layout of the 
blocks and of the interconnections among blocks affects all the performance parameters such as size, 
timing and power consumption. The constraints from the architecture platform, that were generated based 
on implementation layer abstractions, are used to determine whether a particular layout of the architecture 
platform instance can be used. In some cases a floor-plan view would be used to export upward the 
parameters related to various components, including interconnect. In this case, the floor plan is itself a 
platform (the floor-plan platform) in our conceptual framework. In other cases, including those which 
result from creation of new implementation platforms and silicon implementation methodologies as part of 
our GSRC research, the silicon implementation platform stack can be a single multi-faceted layer, as shown 
in Figure 4. Similarly, the floor-plan platform can be directly incorporated as part of the architecture 
platform. More research remains to be done on this topic. 
 
The concept of implementation platform is strongly related to the concept of regular design and design re-
use. Based on extensive reuse, floor-plan platforms represent blocks and associated interconnection 
patterns that are selected from a library of pre-designed components. These components may be described 
at the detailed physical level or at a higher level of abstraction where new abstractions are used to represent 
the details of the manufacturing process and isolation from the complex manufacturing interface. More 
generally, the architecture components can be mapped to regular blocks of logic that are synthesized into 
geometrically and physically regular, often programmable and/or reconfigurable, fabrics. Importantly, these 
fabrics that lie in the SIP stack incorporate accurate abstractions from the manufacturing interface. In 
addition, the myriad of components and instances which lie in the SIP stack are based on regular structures 
that facilitate: correct-by-assembly design, ease of verification, construction of reliable components from 
widely fluctuating parameters, and manufacture of high-yielding reliable silicon ICs. 
 
It should be noted that this design process from system conception to implementation could also stop at 
other platform abstractions where the actual implementation is fully instantiated. Any design style (or at 
least the most meaningful design styles) can be restructured and reorganized to fit within a platform-based 
concept. It can span all the way from a customized solution to a fully programmable standard part. Of 
course, in the case we do not leverage re-use and flexibility via novel regular structures, there is no 
difference from traditional design flows. The important point here is that this approach does capture re-use 
and flexibility but it is itself flexible enough to mix and match design styles to accommodate a wide 
spectrum of applications and implementation platforms.  
 
The final stack on the path to implementation and manufacture is the mask set and the recipes for 
manufacturing. The technology files are the characterization of the manufacturing interface platform 
used to generate the most accurate performance and cost parameters, as shown in Figure 7. 
 

Silicon Implementation 
 

Manufacturing Interface 
 

Manufacturing Interface  
Platform Stack 

 

 

 15



 

Figure 7 Manufacturing interface platform stack (source: L. Pileggi). 

 
 
In the SIP stack, the abstract views exported above and below are fairly well understood since they have 
been part of the ASIC design flow in use for years. For deep sub-micron technologies though, the accuracy 
of these approximations is in discussion since the actual layout of the wire-transistor pattern affects the 
performance parameters in such a substantial way that the decomposition into logic synthesis and detailed 
layout creates timing closure problems. In addition, what were considered physical second-order effects 
(e.g., cross talk, power distribution) a few years ago are now very important for the performance of the 
design and must handled via regular design structures that facilitate correct-by-construction assembly and 
accurate abstraction to the higher platform layers. Clearly, estimation, characterization, cost functions and 
constraint passing are all essential components in the design flow when we consider the final 
implementation of the architecture platform instance.  
 
For the manufacturing interface, what was once a process taken for granted, it is now a critical step in 
controlling and predicting cost, performance and reliability. Models of the manufacturing realities must be 
accurately abstracted to the implementation platform, which requires new instantiations of geometrical 
regularity. This lowest layer of regularity provides a foundation for subsequent layers of implementation 
regularity. 

3.6. Network Platform 

The Platform-based design paradigm can be extended to levels of abstraction higher than the API Platform. 
In particular, it can be applied to the design of large-scale distributed systems such as communication 
networks.  
 
To implement communication networks, the functionality is mapped onto a Network Platform (NP) that 
consists of a set of processing and storage elements (nodes) and physical media (channels) carrying the 
synchronization and data messages exchanged by nodes. Nodes and channels are the architecture resources 
in the NP library and are identified by parameters like processing power and storage size (nodes) and 
bandwidth, delay, error rate (channels). 
 
The task of choosing an NP requires selecting from the NP library an appropriate set of resources and a 
network topology that defines how channels connect nodes. A broad range of options of physical channels 
(e.g. cable, wireless link, fiber) and network topologies (mesh, star, ring…) are usually available. 
Therefore, the design space to explore is quite large.  
 
Moreover, choosing an NP is especially challenging for distributed networks due to the inherently lossy 
nature of the physical channels that connect nodes at distant locations. In these cases, when reliable 
communication is required, it is necessary to introduce additional resources (such as 
request/acknowledgment protocols) to overcome the effects of noise and interference. Introducing 
protocols requires adding processing power and memory units at the communicating nodes; as a result, the 
protocol components often dominate the implementation cost function and the design effort. Therefore, in 
selecting an NP, it is essential to balance the cost of all the different components and tradeoff between the 
use of complex protocols and that of more reliable (and more expensive) channels. 
 
Channels can be defined at different levels of abstraction. Physical channels, such as coaxial cables or 
optical fibers, merely transport bits, while more abstract “logical” channels (e.g. ATM virtual circuit), that 
consist of a physical channel and a set of protocol functions, may provide more sophisticated 
communication services, such as in-order and reliable packet delivery. 
 
Communication is usually described in terms of a stack of layers, where each layer defines an abstraction 
level and, hence, a Network Platform. The description of an NP is usually given in terms of a set of 

 16



interface function primitives that the applications running on it can use. This set of primitives defines the 
Network API Platform and allows hiding the application designer many lower layer details. Primitives 
typically present in an NAPI Platform include confirmed/unconfirmed data push, data request, 
reliable/unreliable send/receive, and broadcast/multicast send. 
 
For example, consider the multicast-send primitive. It is a useful abstraction and is invoked when the 
application requires one node to address a group of nodes having a common attribute. The underlying 
software layer translates the symbolic address identifying the destination nodes and automatically sends a 
copy of the packet to all the destinations relieving the application programmer from the task to call multiple 
one-destination send. 

4. Conclusions 

The main motivation that has prompted us to develop these concepts was design re-use and regularity to 
the fullest extent due to the economics of building future electronics systems. We defined a platform stack 
as a stack of layers of abstraction:  
 

1. The upper layer is the abstraction of the design below so that an application could be developed on 
the abstraction without referring to the underlying layers;  

2. The lower layer is the set of rules that allow one to classify a set of components as part of the 
platform.  

 
In this framework, the components of a platform are in general partially or completely pre-designed and the 
upper layer is used to decouple the “application” from the implementation of the platform. While this 
concept has been used for years in the PC domain, its generalization is novel. Its use in industry is now 
accepted. It relates mostly to architecture platforms and the Application Programmer Interface (API) 
abstraction as the upper layer of the system platform stack. However, because of the definition of platforms 
and platform stacks we use, it is possible and desirable to extend the platform concept to cover all steps of 
design from conception to implementation (see Figure 8). The tools and methods used to map the upper and 
lower layers of a platform-stack are the glue that keeps the platforms together. Hence, we can imagine a 
platform stack that spans several levels of abstraction of a design. To be able to choose efficiently the 
instances of the platform we need to deal with the constraint propagation process in the top down aspect of 
the design, while we need an annotation mechanism (estimation) that can be associated to the top levels of 
abstraction to capture lower level details. These mechanisms are an essential part of platform-based design.  
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Platform Design Methodology:
Composition of Platform Stacks

Figure 8 Composition of platform stacks 
 

At the architecture platform level, flexibility is an essential property. We expect that programmable 
components will take the lion’s share of the computing power of a platform, so that electronic design will 
be increasingly dependent on software. The leading platforms today such as Philips Nexperia for multi-
media and TI OMAP for cellular phones are all based on programmable components: a micro-processor 
(MIPS) with a VLIW processor for Nexperia and a micro-processor (ARM) with a DSP for OMAP. 
However, there is a strong interest in developing an approach that can take into considerations re-
configurable processors and logic, an intermediate platform between a fixed processor one and an ASIC. In 
addition, approaches such as the chip-in-a-day process are of great interest when performance and power 
efficiency are sought. In this case, the use of abstraction layers is limited to lower level libraries and the 
tools that generate lower level layers automatically from higher ones are of great interest. In this case, the 
concern of mask making and NRE costs is offset by gains in design “quality”. The investigation and choice 
of the most appropriate level of abstractions and of the tools that support this design method, represents a 
core part of the GSRC research. 
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The overall effort can be seen as a summary and a manifesto for the GSRC Research program directed by 
Richard Newton and sponsored by DARPA and the SIA. The entire effort of the program can be 
summarized in Figure 9.  
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Figure 9 The overall methodology (Source: R. Newton) 
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