EECS249: Models of Computation

Alberto Sangiovanni Vincentelli
Luciano Lavagno
Roberto Passerone
Design

- From an idea...
- ... build something that performs a certain function
- Never done directly:
 - some aspects are not considered at the beginning of the development
 - the designer wants to explore different possible implementations in order to maximize (or minimize) a cost function
- Models can be used to reason about the properties of an object
Design Process

Abstract Specification

More Refined Spec

C-code
Assembly
Bits

RTL

Gate Level

XNF

Mask

“Implementation”

Design Flow
Informal specification leads to:
- unambiguous specification
- various stages not logically connected
- costly redesign

We need:
- Formal specification
- Set of Properties
- Set of Performance Indices
- Set of Constraints

E.g.
- await i; emit o
- AG i → o
- Time (i,o)
- Time (i,o) < 10 s

Formal Model of Design: why?
Functions vs. computation

- Functions specify only a relation between two sets of variables (input and output).
- Computations describe how the output variables can be derived from the value of the input variables.
Model of Computation

- A MoC is a framework in which to express what sequence of actions must be taken to complete a computation.
- An instance of a model of computation is a representation of a function under a particular interpretation of its constituents.
- Not necessarily a bijection (in fact almost never!)
- Examples: Finite State Machine, Turing Machine, differential equation.
Model relationship

MODEL

MOC

FUNCTION

OBJECT

interpretation

interpretation

interpretation

interpretation
Partial recursive functions

- Functions need not be computable
- A particular set of functions is obtained by recursive definitions with unbounded search. They are called Partial Recursive Functions.
- Church’s Thesis: “The set of computable functions is the set of Partial Recursive Functions”
- Accept or reject!
- Models which can represent all partial recursive functions are called Turing-complete
- Example: Turing Machines
So why different models?

- Different models = different properties
- Turing-complete models are too powerful!
- Some problems may be undecidable
Properties of a Design

Property:
A (redundant) assertion of the behavior of a design

Verification of Property:
Inherent in model of computation
E.g. Determinacy

or
Verify syntactically

or
Verify semantically

Dataflow network
FSM network
Petri net
Need to distinguish between *model* and *language*

Language needs to
- be expressive enough for application domain
 (write things once…)
- have semantics in desired MOC

MOC needs to
- be powerful enough for application domain
- have appropriate synthesis and validation algorithms
Control versus Data Flow

- Fuzzy distinction, yet useful for:
 - specification (language, model, ...)
 - synthesis (scheduling, optimization, ...)
 - validation (simulation, formal verification, ...)

- Rough classification:
 - control:
 - don’t know when data arrive (quick reaction)
 - time of arrival often matters more than value
 - data:
 - data arrive in regular streams (samples)
 - value matters most
Control versus Data Flow

- Specification, synthesis and validation methods emphasize:
 - for control:
 - event/reaction relation
 - response time
 (Real Time scheduling for deadline satisfaction)
 - priority among events and processes
 - for data:
 - functional dependency between input and output
 - memory/time efficiency
 (Dataflow scheduling for efficient pipelining)
 - all events and processes are equal
Administra-trivial

- Who is taking the class?
- Are you all on the mailing list?
- Pair up for paper presentation.
- Projects: if you have one, propose it!
- OK to have group projects.
Models Of Computation for reactive systems

- **Main MOCs:**
 - Communicating Finite State Machines
 - Dataflow Process Networks
 - Petri Nets
 - Discrete Event
 - Codesign Finite State Machines

- **Main languages:**
 - StateCharts
 - Esterel
 - Dataflow networks
Finite State Machines

- Functional decomposition into states of operation
- Inputs and outputs are sequences of events
- Typical domains of application:
 - control functions
 - protocols (telecom, computers, ...)
- Different communication mechanisms:
 - synchronous
 (classical FSMs, Moore ‘64, Kurshan ‘90)
 - asynchronous
 (CCS, Milner ‘80; CSP, Hoare ‘85)
FSM Example

- **Informal specification:**

 If the driver

 turns on the key, and

 does not fasten the seat belt within 5 seconds

 then an alarm beeps

 for 5 seconds, or

 until the driver fastens the seat belt, or

 until the driver turns off the key
FSM Example

If no condition is satisfied, implicit self-loop in the current state
FSM Definition

- FSM = (I, O, S, r, δ, λ)
- I = {KEY_ON, KEY_OFF, BELT_ON, END_TIMER_5, END_TIMER_10}
- O = {START_TIMER, ALARM_ON, ALARM_OFF}
- S = {OFF, WAIT, ALARM}
- r = OFF
- δ: 2^I × S → S
 - e.g. δ({KEY_OFF}, WAIT) = OFF
- λ: 2^I × S → 2^O
 - e.g. λ({KEY_ON}, OFF) = {START_TIMER}
 - note: self-loop not implied in the function
Non-deterministic FSMs

- δ and λ may be \textit{relations} instead of \textit{functions}:
 - $\delta \subseteq 2^I \times S \times S$
 - $\lambda \subseteq 2^I \times S \times 2^O$

 e.g. $\delta(\{\text{KEY_OFF, END_TIMER_5}\}, \text{WAIT}) = \{\{\text{OFF}\}, \{\text{ALARM}\}\}$

- Non-determinism can be used to describe:
 - an unspecified behavior (incomplete specification)
 - an unknown behavior (environment modeling)
NDFSM: incomplete specification

- E.g. error checking first partially specified:

 0 \rightarrow 1 \rightarrow \ldots \rightarrow 7 \rightarrow 8

 \text{BIT or not BIT} \Rightarrow

 \text{BIT or not BIT} \Rightarrow

 \text{BIT or not BIT} \Rightarrow \text{ERR}

- Then completed as even parity:

 0 \rightarrow p1 \rightarrow \ldots \rightarrow p7 \rightarrow 8

 \text{NOT BIT} \Rightarrow

 \text{BIT} \Rightarrow

 \text{BIT} \Rightarrow \text{ERR}
NDFSM: time range

- Special case of unspecified/unknown behavior, but so common to deserve special treatment for efficiency

- E.g. undetermined delay between 6 and 10 s

START => SEC => SEC => END

START => 1 SEC => 2 SEC => 3 SEC => 4 SEC =>

0 SEC => END

1 SEC => 0

2 SEC => 0

3 SEC => 0

4 SEC => 0

5 SEC => 0

6 SEC => 0

7 SEC => 0

8 SEC => 0

9 SEC => 0

END SEC => SEC => SEC => SEC =>
NDFSMs and FSMs

- Formally FSMs and NDFSMs are equivalent (Rabin-Scott construction, Rabin ‘59)
- In practice, NDFSMs are often more compact
- *Language-theoretic* non-determinism (equivalence-oriented) is subtly different from *FSM* non-determinism (containment-oriented)
 - we need one *FSM compatible with the NDFSM*
- Two classes of FSM non-determinism
 - Output (deterministic in language theoretic sense)
 - State
Modeling Concurrency

- Need to compose parts described by FSMs
- Interconnected FSMs specify system
- How do the interconnected FSMs talk to each other?
FSM Composition

- Bridle complexity via hierarchy: *FSM product yields an FSM*
- Fundamental hypothesis:
 all the FSMs change state together (*synchronicity*)
- System state = Cartesian product of component states
 (state explosion may be a problem...)
- E.g. seat belt control + timer

![FSM Diagram]
FSM Composition

KEY_ON and START_TIMER =>
START_TIMER must be coherent

OFF, 0

not SEC and
(KEY_OFF or BELT_ON) =>

WAIT, 1

SEC and
not (KEY_OFF or BELT_ON) =>

WAIT, 2

not SEC and
(KEY_OFF or BELT_ON) =>

OFF, 1

SEC and
(KEY_OFF or BELT_ON) =>

OFF, 2

Belt Control

Timer
FSM Composition

- **Given**
 - $M_1 = (I_1, O_1, S_1, r_1, \delta_1, \lambda_1)$ and
 - $M_2 = (I_2, O_2, S_2, r_2, \delta_2, \lambda_2)$

- **Find the composition**
 - $M = (I, O, S, r, \delta, \lambda)$

- **given a set of constraints of the form:**
 - $C = \{ (o, i_1, \ldots, i_n) : o \text{ is connected to } i_1, \ldots, i_n \}$
FSM Composition

- Unconditional product $M' = (I', O', S', r', \delta', \lambda')$
 - $I' = I_1 \cup I_2$
 - $O' = O_1 \cup O_2$
 - $S' = S_1 \times S_2$
 - $r' = r_1 \times r_2$
 - $\delta' = \{ (A_1, A_2, s_1, s_2, t_1, t_2) : (A_1, s_1, t_1) \in \delta_1 \text{ and } (A_2, s_2, t_2) \in \delta_2 \}$
 - $\lambda' = \{ (A_1, A_2, s_1, s_2, B_1, B_2) : (A_1, s_1, B_1) \in \lambda_1 \text{ and } (A_2, s_2, B_2) \in \lambda_2 \}$

- Note:
 - $A_1 \subseteq I_1$, $A_2 \subseteq I_2$, $B_1 \subseteq O_1$, $B_2 \subseteq O_2$
 - $2^{x \cup y} \cong 2^x \times 2^y$
FSM Composition

■ Constraint application
 - $\lambda = \{ (A_1, A_2, s_1, s_2, B_1, B_2) \in \lambda' : \text{for all } (o, i_1, \ldots, i_n) \in C$
 \[o \in B_1 \cup B_2 \text{ if and only if } i_j \in A_1 \cup A_2 \text{ for all } j \} \]

■ The application of the constraint rules out the cases where the connected input and output have different values (present/absent).

■ Outcomes:
 - λ is empty or incompletely specified
 - λ is a function
 - λ is a relation
FSM Composition

- \(I = I_1 \cup I_2 \)
- \(O = O_1 \cup O_2 \)
- \(S = S_1 \times S_2 \)
- Assume that
 \(o_1 \in O_1, i_3 \in I_2, o_1 = i_3 \) (communication)
- \(\delta \) and \(\lambda \) are such that, e.g., for each pair:
 - \(\delta_1(\{ i_1 \}, s_1) = t_1, \quad \lambda_1(\{ i_1 \}, s_1) = \{ o_1 \} \)
 - \(\delta_2(\{ i_2, i_3 \}, s_2) = t_2, \quad \lambda_2(\{ i_2, i_3 \}, s_2) = \{ o_2 \} \)
we have:
 - \(\delta(\{ i_1, i_2, i_3 \}, (s_1, s_2)) = (t_1, t_2) \)
 - \(\lambda(\{ i_1, i_2, i_3 \}, (s_1, s_2)) = \{ o_1, o_2 \} \)
i.e. \(i_3 \) is in input pattern iff \(o_2 \) is in output pattern
FSM Composition

- Problem: what if there is a cycle?
 - Moore machine: δ depends on input and state, λ only on state
 - composition is always well-defined
 - Mealy machine: δ and λ depend on input and state
 - composition may be undefined
 - what if $\lambda_1(\{i_1\}, s_1) = \{o_1\}$ but $o_2 \not\in \lambda_2(\{i_3\}, s_2)$? Is o_1 output or not?

- Causality analysis in Mealy FSMs (Berry ‘98)
Moore vs. Mealy

- Theoretically, same computational power (almost)
- In practice, different characteristics
- Moore machines:
 - non-reactive
 (response delayed by 1 cycle)
 - easy to *compose*
 (always well-defined)
 - good for implementation
 - software is always “slow”
 - hardware is better when I/O is latched
Moore vs. Mealy

- Mealy machines:
 - reactive
 (0 response time)
 - hard to *compose*
 (problem with combinational cycles)
 - Esterel compilation algorithm
 - problematic for implementation
 - software must be “fast enough”
 (synchronous hypothesis)
 - may be needed in hardware, for speed
Hierarchical FSM models

- Problem: how to reduce the size of the representation?
- Harel’s classical papers on StateCharts (language) and bounded concurrency (model): 3 orthogonal exponential reductions

- Hierarchy:
 - state a “encloses” an FSM
 - being in a means FSM in a is active
 - states of a are called OR states
 - used to model pre-emption and exceptions

- Concurrency:
 - two or more FSMs are simultaneously active
 - states are called AND states

- Non-determinism:
 - used to abstract behavior
Models Of Computation for reactive systems

- **Main MOCs:**
 - Communicating Finite State Machines
 - Dataflow Process Networks
 - Petri Nets
 - Discrete Event
 - Codesign Finite State Machines

- **Main languages:**
 - StateCharts
 - Esterel
 - Dataflow networks
StateCharts

- An extension of conventional FSMs
- Conventional FSMs are inappropriate for the behavioral description of complex control
 - flat and unstructured
 - inherently sequential in nature
- StateCharts supports repeated decomposition of states into sub-states in an AND/OR fashion, combined with a synchronous (instantaneous broadcast) communication mechanism
State Decomposition

- OR-States have sub-states that are related to each other by *exclusive-or*
- AND-States have orthogonal state components (synchronous FSM composition)
 - AND-decomposition can be carried out on any level of states (more convenient than allowing only one level of communicating FSMs)
- Basic States have no sub-states (bottom of hierarchy)
- Root State: no parent states (top of hierarchy)
To be in state U the system must be either in state S or in state T.
To be in state U the system must be both in states S and T.
StateCharts Syntax

- The general syntax of an expression labeling a transition in a StateChart is \(e[c]/a \), where
 - \(e \) is the event that triggers the transition
 - \(c \) is the condition that guards the transition
 (cannot be taken unless \(c \) is true when \(e \) occurs)
 - \(a \) is the action that is carried out if and when the transition is taken

- For each transition label:
 - event condition and action are optional
 - an event can be the changing of a value
 - standard comparisons are allowed as conditions and assignment statements as actions
StateCharts Actions and Events

- An action a on the edge leaving a state may also appear as an event triggering a transition going into an orthogonal state:
 - executing the first transition will immediately cause the second transition to be taken *simultaneously*

- Actions and events may be associated to the execution of orthogonal components: $\text{start}(A), \text{stopped}(B)$
Graphical Hierarchical FSM Languages

- Multitude of commercial and non-commercial variants:
 - StateCharts, UML, StateFlow, …
- Easy to use for control-dominated systems
- Simulation (animated), SW and HW synthesis
- Extended with arithmetics
- Original StateCharts have problems with *instantaneous reaction* (micro-steps):
 - behavior is implementation-dependent
 - not a truly synchronous language!!!!
Summary of Finite State Machines

■ Advantages:
 ♦ Easy to use (graphical languages)
 ♦ Powerful algorithms for
 ➔ synthesis (SW and HW)
 ➔ verification

■ Disadvantages:
 ♦ Sometimes over-specify implementation
 (sequencing is fully specified)
 ♦ Numerical computations cannot be specified compactly
 (need extended FSMs)
Synchronous Languages

- Assumptions:
 - the system continuously reacts to internal and external events by emitting other events
 - events can occur only at discrete instants
 - zero (negligible) reaction time

- Both control (Esterel) and data flow (Lustre, Signal)

- Very simple syntax and clean semantics (based on FSMs)

- Deterministic behavior

- Simulation, software and hardware synthesis, verification
ESTEREL

- Designed at INRIA by Berry et al.
- Concurrent modules:
 - interface signals, possibly with values
 - local signals and variables
 - statements, e.g.:
 - `await` (single or multiple signals)
 - `do stmt1 watching signal [timeout stmt2]`
 (instantaneous killing of stmt1)
 - `trap exception in stmt1 [handle do stmt2]`
 (allow stmt1 to terminate)
 - allows “external” procedures and functions
Example: readable counter

module counter:
input go, reset, req; output ack(integer);
var t:integer in
loop do
 t:=0;
 every go do
 t:=t+1;
 await req; emit ack(t)
 end
watching reset
end
end.
Other communicating FSM models

- **Synchronous** (Esterel, StateCharts):
 all FSMs make a transition simultaneously

- **A-synchronous** (not synchronous):
 communication is mediated by “channels”:
 - blocking write/blocking read (CSP, CCS)
 (rendez-vous: both partners must be ready)
 - non-blocking write/blocking read (CFSMs, SDL)
 (bounded or unbounded FIFOs)
 - non-blocking write/non-blocking read
 (shared variables)