
Simulation in MetropolisSimulation in Metropolis

GuangGuang YangYang
10/28/200410/28/2004

10/28/2004 2EE 249

OutlineOutline

IntroductionIntroduction
SystemCSystemC--based Simulation based Simulation

Implementing MMM SemanticsImplementing MMM Semantics
Imperative ConstructsImperative Constructs
Declarative ConstraintsDeclarative Constraints

Efficient Simulation TechniquesEfficient Simulation Techniques

Case StudyCase Study
ConclusionConclusion

10/28/2004 3EE 249

IntroductionIntroduction
Platform based designPlatform based design

Platforms have sufficient flexibility to support a series of Platforms have sufficient flexibility to support a series of
productsproducts
Choose a platform by design space explorationChoose a platform by design space exploration
Above two require models to be reusableAbove two require models to be reusable

Orthogonalization of concernsOrthogonalization of concerns
Computation vs. CommunicationComputation vs. Communication
Behavior vs. CoordinationBehavior vs. Coordination
Behavior vs. ArchitectureBehavior vs. Architecture
Capability vs. CostCapability vs. Cost

ChallengesChallenges
Relate orthogonalized concernsRelate orthogonalized concerns
Potential big overhead in design analysisPotential big overhead in design analysis

10/28/2004 4EE 249

Metropolis MetaMetropolis Meta--ModelModel
A combination of imperative program and declarative A combination of imperative program and declarative
constraintsconstraints
Imperative program:Imperative program:

objects (process, media, quantity, objects (process, media, quantity, statemediastatemedia))
netlistnetlist
await await
block and labelblock and label
interface function callinterface function call
quantity annotationquantity annotation

Declarative constraints:Declarative constraints:
Linear Temporal Logic (LTL)Linear Temporal Logic (LTL)
(synch)(synch)
Logic of Constraints (LOC)Logic of Constraints (LOC)

ChallengesChallenges
Simulate constructs with rich semantics like awaitSimulate constructs with rich semantics like await
Enforce declarative constraints in simulationEnforce declarative constraints in simulation

10/28/2004 5EE 249

SystemCSystemC--based Simulationbased Simulation

Why Why SystemCSystemC Based Simulator?Based Simulator?
Widely used by system designers Widely used by system designers
High simulation speedHigh simulation speed
Increasing number of supporting EDA toolsIncreasing number of supporting EDA tools

Interleaving Concurrent Execution SemanticsInterleaving Concurrent Execution Semantics
sc_modulesc_module
sc_channelsc_channel

Sequential Simulation ImplementationSequential Simulation Implementation
http://http://www.systemc.orgwww.systemc.org

10/28/2004 6EE 249

ChallengesChallenges
Simulate constructs with rich semantics like Simulate constructs with rich semantics like
awaitawait

Enforce declarative constraints in simulationEnforce declarative constraints in simulation

10/28/2004 7EE 249

Implementing MMM SemanticsImplementing MMM Semantics

sc_channelsc_channel, , sc_mainsc_mainnetlistnetlist
sc_portsc_portportport

sc_interfacesc_interfaceinterfaceinterface

sc_channelsc_channelquantityquantity
sc_channelsc_channelstatemediumstatemedium
sc_channelsc_channelmediummedium
sc_modulesc_moduleprocessprocess

In In SystemCSystemCIn MMMIn MMM

10/28/2004 8EE 249

ManagerScoreboard

P0

M

P1

C0

Overall FrameworkOverall Framework

Process Info
& Functions

10/28/2004 9EE 249

Simulation AlgorithmSimulation Algorithm

Alternating running phasesAlternating running phases
Process phaseProcess phase
Manager phaseManager phase

ManagerScoreboard

P0
M

P1
C0

Manager

P0

P1

C0

…

…

…

…

…

…

…

…

DeltaCycle

P0

P1

C0

i1

Manager

i1+1

P0

P1

C0

i2

Manager

i2+1

P0

P1

C0

i3

10/28/2004 10EE 249

Simulation Algorithm (2)Simulation Algorithm (2)

When to alternate?When to alternate?
At named events(currently await, IFC, label, block)At named events(currently await, IFC, label, block)
After manager makes decisionsAfter manager makes decisions

process P {
…

void thread(){
…

await(C;T;S)…;
…

portA.IFC1();
…

Label1: x = 5;
…

}
}

process P {
…

void thread(){
…

await(C;T;S)…;
…

portA.IFC1();
…

Label1: x = 5;
…

}
}

ManagerManager

10/28/2004 11EE 249

process Proc {
port reader X;
port writer Y;

void thread() {
int w = 0;

while (w < 30) {
await {

(Y.space() > 0; Y.writer; Y.writer) {
Y.write(w);
w = w + 1; }

(X.n() > 0; X.reader; X.reader) {
X.read(); }

}
}

}
}

Await ExampleAwait Example

interface reader extends Port{

update int read();

eval int n();

}

interface reader extends Port{

update int read();

eval int n();

}

interface writer extends Port{

update void write(int i);

eval int space();

}

interface writer extends Port{

update void write(int i);

eval int space();

}

ManagerScoreboard

P0
M

P1
C0

YY XX

P0,P1,C0 prototypeP0,P1,C0 prototype

int storage[];
read(){…}

n(){…}
write(){…}
space(){…}

int storage[];
read(){…}

n(){…}
write(){…}
space(){…}

10/28/2004 12EE 249

P1

{

Initialize
wait(invokeP1)

set Testlist & Setlist
notify(manager)
wait(invokeP1)

Evaluate guards
notify(manager)
wait(invokeP1)

Run critical section
……

}

manager

{

Initialize
wait(DeltaCycle)
notify(invoke_all)

while(true){

wait(manager)

if(await){

notify(invoke?)
wait(manager)}

1st filtering
Call scheduling func

2nd filtering
notify(invoke?)

}
}

C0

{

Initialize
wait(invokeC0)

……
notify(manager)
wait(invokeC0)

Run interface function
……

}

Delta

Cycle

1

0

4

5

2

3

6

await{(Y.space() > 0; Y.writer; Y.writer) Y.write(W);
(X.n() > 0; X.reader; X.reader) X.read(); }

X.read ();

10/28/2004 13EE 249

Scheduling Netlist

P0

M

P1

c0

QuantityQuantity
System using System using GlobalTimeGlobalTime quantityquantity

GlobalTime

SM

SM

SM
Netlist

beg{ port2SM.requestI(, 0); }

end{ begTime=port2SM.A(beg(, LAST);

beg_event

beg_event
end_event

process P{
port writer Y;
thread(){
while(true){
z=z+1;

Y.write(z);
}}}

Make requestMake request

port2SM.request(end(, begTime+4)); }

10/28/2004 14EE 249

Quantity Resolution in SimulationQuantity Resolution in Simulation

wait for Manager phase

do await-intfc scheduling

call quantity
resolution functions

Q1::resolve()

Q3::resolve()

Q2::resolve()

Fix-point
computation

go back to Process phase

cleanup by
Q::postcond()

10/28/2004 15EE 249

SimulationSimulation ResultResult

10/28/2004 16EE 249

ChallengesChallenges
Simulate constructs with rich semantics like Simulate constructs with rich semantics like
awaitawait

Enforce declarative constraints in simulationEnforce declarative constraints in simulation

10/28/2004 17EE 249

ConstraintsConstraints
Logic of constraints (LOC)Logic of constraints (LOC)

Specify quantitative propertiesSpecify quantitative properties
e.g. throughput, rate, latencye.g. throughput, rate, latency

can be checked by can be checked by simulation+LOCsimulation+LOC checkerchecker
can be enforced by simulatorcan be enforced by simulator
can be formally verifiedcan be formally verified

Linear Temporal Logic (LTL)Linear Temporal Logic (LTL)
Defined over events, variables, etc.Defined over events, variables, etc.
Standard temporal operators, Standard temporal operators, booleanboolean operatorsoperators

10/28/2004 18EE 249

Enforcing LTL ConstraintsEnforcing LTL Constraints

Basic ideaBasic idea
Convert LTL to Convert LTL to BBüüchichi Automaton (BA)Automaton (BA)
Keep track of system state and BAKeep track of system state and BA
Use BA to guide simulationUse BA to guide simulation

10/28/2004 19EE 249

LTL constraintsLTL constraints

constraint{

// mutual exclusion between P0 and P1

ltl(G(beg(P0, M.write) -> ((! beg(P1, M.write)) U end(P0, M.write))));

ltl(G(beg(P1, M.write) -> ((! beg(P0, M.write)) U end(P1, M.write))));

} } }

P0

M

P1

c0

process P{
port writer Y;
thread(){
while(true){
z=z+1;

Y.write(z);
}}}

10/28/2004 20EE 249

LTL constraints in SimulationLTL constraints in Simulation

switch to Manager phase
wait

Y.write(z);

switch to Manager phase
wait

Build Büchi Automaton for LTL
loop{

wait
do await-intfc scheduling
choose good transition in BA
switch to Process phase

}

…
…

…
…

Deltac

P0
P1
c0

i1

Mgr
i1

P0
P1
c0

i2

Mgr
i2

P0
P1
c0

i3
Process Phase Manager Phase

All Behavior Mutual
Exclusive
Behavior

10/28/2004 21EE 249

Simulation ResultSimulation Result

With LTL Enforcement

monitor> c read BEGIN
monitor> P0 write BEGIN
monitor> c read END
monitor> P0 write END
monitor> P1 write BEGIN
monitor> c read BEGIN
monitor> P1 write END
monitor> c read END
monitor> P0 write BEGIN
monitor> c read BEGIN
monitor> P0 write END
monitor> P1 write BEGIN
monitor> c read END
monitor> P1 write END
monitor> c read BEGIN
monitor> P0 write BEGIN
……

Without LTL Enforcement

monitor> c read BEGIN
monitor> P0 write BEGIN
monitor> P1 write BEGIN
monitor> c read END
monitor> P0 write END
monitor> P1 write END
monitor> c read BEGIN
monitor> P0 write BEGIN
monitor> P1 write BEGIN
monitor> c read END
monitor> P0 write END
monitor> P1 write END
monitor> c read BEGIN
monitor> P0 write BEGIN
monitor> P1 write BEGIN
monitor> c read END
……

violation
NO

violation

10/28/2004 22EE 249

Case StudyCase Study

PicturePicture--inin--PicturePicture

60 processes60 processes
200 media200 media
Approximately 19,000 lines of codeApproximately 19,000 lines of code

USRCONTROL

JU
G

G
L

E
R

MPEG

MPEG

RESIZE

PES_PARSERTS_DEMUX

PIP

10/28/2004 23EE 249

Advantages of Using Advantages of Using
Orthogonalization of ConcernsOrthogonalization of Concerns

Identified three critical errors in the behavior Identified three critical errors in the behavior
deadlocks: one in the algorithm and two in the deadlocks: one in the algorithm and two in the
communication protocols (first refinement step communication protocols (first refinement step
towards implementation)towards implementation)
Quick architecture explorationQuick architecture exploration

Changed rapidly different architecturesChanged rapidly different architectures
Changed rapidly communication mechanismsChanged rapidly communication mechanisms

Analysis of interaction between algorithm Analysis of interaction between algorithm
choices and implementation architecturechoices and implementation architecture

10/28/2004 24EE 249

Efficiency in Simulation Efficiency in Simulation

2.94M2.94M22.722.7Native Native SystemCSystemC

9.16K9.16K72767276BaselineBaseline

Cycle/Cycle/
Second*Second*

SimSim..
Time(sTime(s))

OptOpt
TechTech

Performance degradation Performance degradation w.r.tw.r.t. native . native SystemCSystemC
simulation (i.e., maintaining no separation of concerns)simulation (i.e., maintaining no separation of concerns)

Source: Philips
: based on 200MHz clock: based on 200MHz clock

10/28/2004 25EE 249

ChallengesChallenges
Relate orthogonalized concernsRelate orthogonalized concerns

Potential big overhead in design analysisPotential big overhead in design analysis

10/28/2004 26EE 249

The Fix (Part 1):The Fix (Part 1):
Optimization Techniques for Imperative Optimization Techniques for Imperative

Exclusion ConstraintsExclusion Constraints

MediumMedium--Centric ApproachCentric Approach
Interface usage information is stored in mediaInterface usage information is stored in media
Time complexity is linear in the number of processesTime complexity is linear in the number of processes

Named Event ReductionNamed Event Reduction
A named event is an event that needs to be observed A named event is an event that needs to be observed →→
Record information and stop simulation at this eventRecord information and stop simulation at this event
Among the named events, static analysis could remove some Among the named events, static analysis could remove some
unnecessary observance needunnecessary observance need

Interleaving ConcurrencyInterleaving Concurrency

10/28/2004 27EE 249

Exclusion constraints Exclusion constraints ––
Interleaving Concurrency (1)Interleaving Concurrency (1)

Metropolis uses true concurrencyMetropolis uses true concurrency
The simulation platform, The simulation platform, SystemCSystemC, uses interleaving , uses interleaving
concurrencyconcurrency

P1 M P2

process P1{
port writer Y;
thread(){
while(true){
z=z*2;
z=z+1;
Y.write(z);

}}}

medium M implements
reader, writer{

void write(int z){
await(true;
this.writer, this.reader;
this.writer, this.reader) {

s=z;
}

}
int read(){…}

}

Y X

process P2{
port reader X;
thread(){
while(true){
X.read();

}}}

10/28/2004 28EE 249

Exclusion constraints Exclusion constraints ––
Interleaving Concurrency (2)Interleaving Concurrency (2)

Interleaving implies that concurrent processes Interleaving implies that concurrent processes
in Metropolis specification are scheduled on a in Metropolis specification are scheduled on a
sequential processsequential process
Idea: take advantage of interleaving to make Idea: take advantage of interleaving to make
simulation fastersimulation faster

medium M implements
reader, writer{

void write(int z){
await(true;
this.writer, this.reader;
this.writer, this.reader) {

s=z;
}

}
int read(){…}

}

medium M implements
reader, writer{

void write(int z){
if (true)

s=z;
}
int read(){…}

}

await statement
becomes if
statement.

10/28/2004 29EE 249

Exclusion constraints Exclusion constraints ––
Interleaving Concurrency (3)Interleaving Concurrency (3)

A sequence of events is Interleaving Concurrent A sequence of events is Interleaving Concurrent
Atomic (ICAtomic (IC--Atomic) ifAtomic) if no effective named no effective named
events exists in that sequence of events.events exists in that sequence of events.

P1 M P2

process P1{
port writer Y;
thread(){
while(true){
z=z*2;
z=z+1;
Y.write(z);

}}}

medium M implements
reader, writer{

void write(int z){
await(true;
this.writer, this.reader;
this.writer, this.reader) {
s=z;

}
}

int read(){…}
}

Y X

process P2{
port reader X;
thread(){
while(true){
X.read();

}}}

10/28/2004 30EE 249

Exclusion constraints Exclusion constraints ––
Interleaving Concurrency (4)Interleaving Concurrency (4)

Theorem 1: For an Theorem 1: For an await(await(guardguard; test list; set list; test list; set list) {) {critical critical
sectionsection}, if }, if critical section critical section is ICis IC--Atomic, and all interface Atomic, and all interface
functions in functions in test list test list are ICare IC--Atomic, then the await can Atomic, then the await can
be simplified to be simplified to
await(await(guardguard; ;) {; ;) {critical sectioncritical section} or if (} or if (guardguard) {) {critical section}critical section}

await(guard;
test list;
set list;) {

critical section
}

In test list:
function1() {…}
function2() {…} IC-AtomicIC-Atomic

10/28/2004 31EE 249

The Fix Part 2:The Fix Part 2:
Constraints for coordinating sequential Constraints for coordinating sequential

programsprograms:: Declarative Simultaneity CDeclarative Simultaneity Constraintsonstraints

Declarative Simultaneity ConstraintsDeclarative Simultaneity Constraints: constraints : constraints
separated from imperative programsseparated from imperative programs

Can be used to specify behaviorCan be used to specify behavior--architecture mapping architecture mapping

P1 M P2 Task CPU MEM

events:
e0,
e1,
…,

read(),
e2,
e3,
…

events:
e0’,
e1’,
…,

readMEM(),
e2’,
e3’,
…

synch

10/28/2004 32EE 249

Simultaneity constraints(2)Simultaneity constraints(2)

Elaborate constraints

synch(e1, e2);

synch(e1, e3);

synch(e4, e5);

Construct synch event
equivalent classes

e1, e2, e3

ID=0 ID=1

e4, e5

Annotate equivalent
classes info

e1 ~ group 0

e4 ~ group 1

…

Generate SystemC code
if (ID==0)

group 0 counter++;

else …

At run tim
e, compare

counters and cardinalities

only!!!

10/28/2004 33EE 249

Case Study (2)Case Study (2)
PicturePicture--inin--Picture behavior simulation resultPicture behavior simulation result

MC: MediumMC: Medium--CentricCentric
NER: Named Event ReductionNER: Named Event Reduction
IC: Interleaving ConcurrencyIC: Interleaving Concurrency
: based on 200MHz clock: based on 200MHz clock

IC: 4.5IC: 4.53593593.29M3.29M20.2920.29MC/NER/ICMC/NER/IC

------------2.94M2.94M22.722.7Native Native SystemCSystemC

NER: 20NER: 208080747K747K89.2689.26MC/NERMC/NER

MC: 4MC: 44437.1K37.1K17971797MCMC

------119.16K9.16K72767276BaselineBaseline

SpeedupSpeedup
byby

OverallOverall
SpeedupSpeedup

Cycle/Cycle/
Second*Second*

SimSim..
Time(sTime(s))

OptOpt
TechTech

10/28/2004 34EE 249

Case Study (3)Case Study (3)
PiPPiP Behavior model + CPUBehavior model + CPU--BusBus--MemMem modelmodel
BehaviorBehavior--Architecture MappingArchitecture Mapping

*: compared with the time spent on behavior and architecture *: compared with the time spent on behavior and architecture
themselvesthemselves

4.0%4.0%6464

3.4%3.4%3232

2.9%2.9%1616

2.9%2.9%88

Handling Overhead *Handling Overhead *# of Simultaneity # of Simultaneity
ConstraintsConstraints

10/28/2004 35EE 249

ConclusionConclusion
MMM language has strong expressive power. Simulation MMM language has strong expressive power. Simulation
of the language is done on top of of the language is done on top of SystemCSystemC..
Orthogonalizing concerns in system design is essential, Orthogonalizing concerns in system design is essential,
but introduces overhead to analysis tools, in general it but introduces overhead to analysis tools, in general it
could be huge.could be huge.
We applied a few techniques to minimize the overhead. We applied a few techniques to minimize the overhead.
From the simulation result, it shows 4X to 20X speedup From the simulation result, it shows 4X to 20X speedup
of individual techniques. Combine the techniques of individual techniques. Combine the techniques
together, they eliminate all overhead.together, they eliminate all overhead.

Efficient SystemC-based

Metropolis Simulator!

10/28/2004 36EE 249

Questions?Questions?

