Simulation in Metropolis

Guang Yang
10/28 /2004

Outline

B Introduction

m SystemC-based Simulation

= Implementing MMM Semantics
m Imperative Constructs

B Declarative Constraints

= Bfficient Simulation Techniques

m Case Study

m Conclusion

10/28/2004

Introduction

m Platform based design

= Platforms have sufficient flexibility to support a series of
products

® Choose a platform by design space exploration
m Above two require models to be reusable

m Orthogonalization of concerns
= Computation vs. Communication
m Behavior vs. Coordination

m Behavior vs. Architecture

m Capability vs. Cost
® Challenges

= Relate orthogonalized concerns
= Potential big overhead in design analysis

10/28/2004 EE 249

Metropolis Meta-Model

A combination of imperative program and declarative
constraints

Imperative program:
® objects (process, media, quantity, statemedia)
netlist
await

block and label

interface function call

quantity annotation

Declarative constraints:
= Linear Temporal Logic (LTL)
= (synch)
m [ogic of Constraints (LOC)
Challenges
m Simulate constructs with rich semantics like await
m Enforce declarative constraints in simulation

10/28/2004 EE 249

SystemC-based Simulation

m Why SystemC Based Simulator?
= Widely used by system designers
® High simulation speed

® Increasing number of supporting EDA tools

m Interleaving Concurrent Execution Semantics
® sc_module

B sc_channel
m Sequential Simulation Implementation

B http://www.systemc.org

10/28/2004 EE 249

m Challenges

) = Simulate constructs with rich semantics like
await

®m Enforce declarative constraints in simulation

10/28/2004

Implementing MMM Semantics

process sc_module

medium sc_channel

statemedium sc_channel

quantity sc_channel

netlist sc_channel, sc_main

pott SC_port

interface sc_interface

10/28/2004

Overall Framework

Process Info
& Functions

i}—ﬂ

10/28/2004

Simulation Algorithm

m Alternating running phases

® Process phase

® Manager phase

5 HEE

Manage e Manage ' Manage '
I I, +1 I, I,+1 I5 DeltaCycle

10/28/2004 EE 249 9

Simulation Algorithm (2)

m When to alternate?

® At named events(currently await, IFC, label, block)

m After manager makes decisions

await(C;T;S)...; Manager

portA.1IFC1();

Labell: x =5

10/28/2004

Await Example

interface reader extends Port{

PO,Pl ,CO prOtOWpe update int read();

eval int n();

}

interface writer extends Port{

process Proc {
port reader X;
port writer Y;

update void write(int i);

void thread() {

) eval int space();
iIntw = 0;

}

while (w < 30) {
await {
(Y.space() = O; Y.writer; Y.writer) {
Y.write(w);
w=w+1;, }
(X.n() = 0; X.reader; X.reader) {

K.read(); } int storage[];

read(){...}
nO{...}

write(){...}

space(){...;

10/28/2004 -1

await{(Y.space() > 0; Y.writer; Y.writer) Y.write(W);
¢ X.n() > 0; X.reader; X.reader) X.read(); }

Delta ﬂ
Cycle

Initialize Initialize Initialize
wait(invokeP1) wait(DeltaCycle) wait(invokeCO)
notify(invoke_all)
while(true){
wait(manager)

set Testlist & Setlist
notify(manager)
wait(invokeP1)

notify(manager)
wait(invokeCO0)

if(N’
notify(invoke?)
wait(manager)}

Evaluate guards
notify(manager)
wait(invokeP1)

1st filtering
Call scheduling func
2"d filtering
notify(invoke?)
Run critical section Run interface function

+

10/28/2004

Quantity

m System using GlobalTime quantity

NETE

m Make request

process P{

SO LI beg{ port2SM.requestI(0); }
thread(){

while(true){ end{ begTime=port2SM.A(beg(, LAST);
z=7+1: port2SM.request(end(, begTime+4)); }
Y.write(z);

10/28/2004 }}}

Quantity Resolution in Simulation

go back to Process phase

cleanup by
Q::postcond()

do await-intfc scheduling ‘ Q3::resolve()
Fix-point)
computation
Ql::resolve() Q2::resolve()

call quantity
resolution functions \

10/28/2004

Simulation Result

A sample of simulation result

10/28/2004

m Challenges

B Simulate constructs with rich semantics like
await

mm) = Enforce declarative constraints in simulation

10/28/2004

Constraints
m [.ogic of constraints (1.LOC)

B Specify quantitative properties
m c.o. throughput, rate, latency

® can be checked by simulation+ILOC checker

B can be enforced by simulator

® can be formally verified

m [inear Temporal Logic (ILTL)

m Defined over events, variables, etc.

® Standard temporal operators, boolean operators

10/28/2004

Enforcing L' TL Constraints

m Basic idea
m Convert LTL to BUchi Automaton (BA)
m Keep track of system state and BA

= Use BA to guide simulation

10/28/2004

L'TL constraints

process P{

port writer Y;
thread(){
while(true){

z=z+1;
Y.write(z);
1

{

/[mutual exclusion between PO and P1

Itl(G(beg(PO -> ((1 beg(P1

Itl(G(beg(P1 -> ((! beg(PO
P}

10/28/2004

LTL constraints in Simulation

PO PO PO

cetac Manager Phase

Process Phase

L T R PR

switch to Manager phase Build Buichi Automaton for LTL
wait loop{
: wait
Y.write(z); i)
YV Lo do await-intfc scheduling
switch to Manager phase _~ choose good transition in BA
wait switch to Process phase

}

Mutual
Exclusive
Behavior

All Behavior

10/28/2004

Simulation Result

With LTL Enforcement

monitor> ¢ monitor>c read BEGIN
monitor> PO i monitor> PO write BEGIN
monitor>c read END
monitor> PO write END
monitor> P1 write B \
monitor>c read BEGIN

monitor> P monitor> PO write BEGIN
monitor> ¢ monitor>c read BEGIN
i i monitor> PO write END
monitor> P1 write BEGIN
monitor> ¢ monitor>c read END
monitor> PO monitor> P1 write END
monitor> P1 monitor>c read BEGIN
monitor> ¢ monitor> PO write BEGIN

10/28/2004

Case Study

® Picture-in-Picture

USRCONTROL

MPEG |,.| RESIZE

PES PARSER
MPEG

m 60 processes
m 200 media
m Approximately 19,000 lines of code

10/28/2004 EE 249

o
-
@
®
o
m

Py

Advantages of Using
Orthogonalization of Concerns

m [dentified three critical errors in the behavior
deadlocks: one in the algorithm and two in the
communication protocols (first refinement step
towards implementation)

m Quick architecture exploration

® Changed rapidly different architectures
® Changed rapidly communication mechanisms

m Analysis of interaction between algorithm
choices and implementation architecture

10/28/2004

Efficiency in Simulation

m Performance degradation w.r.t. native SystemC
simulation (i.e., maintaining no separation of concerns)

Opt Sim. Cycle/
Tech Time(s) Second*

Baseline 7276 9.16K

Native SystemC 22.7 2.94M

Source: Philips
*: based on 200MHz clock

10/28/2004

m Challenges

® Relate orthogonalized concerns

m Potential big overhead in design analysis

10/28/2004

The Fix (Part 1):
Optimization Techniques for Imperative
Exclusion Constraints

® Medium-Centric Approach
m Interface usage information is stored in media

® Time complexity is linear in the number of processes

® Named Event Reduction

® A named event is an event that needs to be observed —
Record information and stop simulation at this event

= Among the named events, static analysis could remove some
unnecessary observance need

m Interleaving Concurrency

10/28/2004

Exclusion constraints —
Interleaving Concurrency (1)

m Metropolis uses true concurrency

® The simulation platform, SystemC, uses interleaving

N

concurrency

process P1{ medium M implements process P2{
port writer Y; reader, writer{ port reader X;

void write(int z){
thread(){ e thread(){

while(true){ this.writer, this.reader; while(true){
7=7*2; this.writer, this.reader) { X.read();
z=z+1; == 1}
Y.write(z); }}

} int read(){...}

}

10/28/2004

Exclusion constraints —
Interleaving Concurrency (2)

m Interleaving implies that concurrent processes
in Metropolis specification are scheduled on a

sequential process

m [dea: take advantage of interleaving to make
simulation faster

medium M implements await statement
reader, writer{

void write(int 2){ becomes if medium M implements

it(true: reader, writer{
await(true; statement. void write(int z){

this.writer, this.reader; > if (true)

this.writer, this.reader) { | _——
s=z; o
) }
int read(){...}

}
int read(){...} }

10/28/2004 }

Exclusion constraints —
Intetleaving Concurrency (3)

m A sequence of events 1s Interleaving Concurrent

Atomic (IC-Atomic) if no effective named
events exists in that sequence of events.

process P1{ medium M implements process P2{
port writer Y; reader, writer{ port reader X;

void write(int z){
thread(){ await(true; el

while(true){ this.writer, this.reader; while(true){
7=7*2; this.writer, this.reader) { X.read();
z=2+1; 5T 1

Y.write(z); }}

int read(){...}
}

10/28/2004

Exclusion constraints —
Intetleaving Concurrency (4)

Theorem 1: For an await(guard, test list; set lisi) {critical
sectiony , it critical section is 1C-Atomic, and all interface
functions 1n fest /st are IC-Atomic, then the await can

be simplified to

await(guard, ;) {critical section} ot it (guard) 3 critical section

await(guard;
In test list: test list;

funct?onl() {...} set list;
function2() {...} . critical section

}

10/28/2004

The Fix Part 2:
Constraints for coordinating sequential
programs: Declarative Simultaneity Constraints

B Declarative Simultaneity Constraints: constraints
separated from imperative programs

m Can be used to specify behavior-architecture mapping

read() — — eadMEM(),

10/28/2004

Simultaneity constraints(2)

Elaborate constraints

e,

g

e
L
.
.

-

-

L

.
e

.
-
.
.-

(EE)
Generate SystemC code

group O counter++;

else ...

10/28/2004

Case Study (2)

B Picture-in-Picture behavior simulation result

Opt
Tech

Sim.

Time(s)

Cycle/

Second*

Overall
Speedup

Baseline

7276

9.16K

1

MC

1797

371K

4

MC/NER

89.26

—

747K

80

MC/NER/IC

< 20129

\

3.29M

Native System

\

2207

/

2.94M

MC: Medium-Conh
NER: Named Event Reduction

IC: Interleaving Concurrency

*: based on 200MHz clock

10/28/2004

*: compared with the time spent on behavior and architecture

Case Study (3)

m PiP Behavior model + CPU-Bus-Mem model
m Behavior-Architecture Mapping

of Simultaneity
Constraints

Handling Overhead *

8

2.9%

16

2.9%

32

3.4%

64

4.0%

themselves

10/28/2004

Conclusion

m MMM language has strong expressive powetr. Simulation
of the language 1s done on top ot SystemC.

m Orthogonalizing concerns in system desiopds essential,
but introduces overhead to analyg

10/28/2004

Questions?

10/28/2004

